

TODAY:

- a little more about thermal expansion

- more on stress and strain

- combined effects of thermal expansion and external forces

Volume expansion:

$$\Delta V = \beta V_o \Delta T$$

$$V + \Delta V$$
 -lemp T+ ΔT

Clicker: When heated, each side of a cube of material expands by 0.1%. As a percentage of the original volume of the cube, the extra volume (shown in the third picture) after the expansion is

A) 0.0000001% B) 0.001% C) 0.1% D) 0.3%

E) There is not enough information

Mathematical derivation:
original volume:
$$L^{3}$$

new volume $(1.001 \times L)^{3} \approx 1.003 L^{3}$
so 0.3% bigger
generally: $(L + \Delta L)^{3} = L^{3} + 3L^{2}\Delta L + 3L(\Delta L)^{2} + (\Delta L)^{3}$
 V
 ΔV
 ΔV

Volume expansion:

V Hemp T

$$\Delta V = \beta V_o \Delta T$$

 $V + \Delta V$ Hemp T + ΔT
 $\beta = 3\alpha$ for solids

Water, a special example

Back to stress & strain

Clicker: Which of these is closest to the order of magnitude of the Young's modulus of your marshmallow?

- A. 10² Pa
- **B**. 10⁴ Pa
- C. 10⁶ Pa
- D. 10⁸ Pa
- E. 10¹⁰ Pa

Clicker: Which of these is closest to the order of magnitude of the Young's modulus of your marshmallow?

- A. 10² Pa
- B. 10⁴ Pa
- C. 10⁶ Pa
- D. 10⁸ Pa
- E. 10¹⁰ Pa

 $\frac{\Delta l}{l} \sim 0.1$ $F = mg \sim 1 N$ $l cm^{2} < A < locm^{2} < \int_{0}^{-3} m^{2}$ $V = \frac{F/A}{\Delta l/l} betwee |0^{4} and |0^{5}$

Clicker: Do you expect that the Young's modulus you measured for a marshmallow is higher or lower than for steel?

- A.Higher
- **B**.Lower
- C.Could be higher or lower depending on the relative dimensions of the steel/marshmallow

$$\frac{F}{A} = Y \frac{\Delta L}{L_0}$$

Clicker: Do you expect that the Young's modulus you measured for a marshmallow is higher or lower Y only depends on what the object is made of, not its size than for steel? A.Higher B.Lower $F_A = Y \stackrel{\Delta L}{=} : Y \text{ bigger if it takes more force}$ C.Could be higher or lower depending on the relative dimensions of the steel/marshmallow Y has units of pressure: roughly, the pressure required to produce a significant fractional change in length. 16

Young Modulus of Various Materials

Material	Young's Modulus, Y (Pa)
Aluminum	$7.0 imes 10^{10}$
Brass	9.0×10^{10}
Copper	11×10^{10}
Crown glass	6.0×10^{10}
Iron	21×10^{10}
Lead	1.6×10^{10}
Nickel	21×10^{10}
Steel	20×10^{10}

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Clicker: In the top picture, the force on the right brick from the left brick has magnitude

EXTRA: How much is the right brick compressed compared to the brick in the bottom picture?

EXTRA: How much is the right brick compressed compared to the brick in the bottom picture? ----> Same forces, same compression

Next time:

THERMAL STRESS : forces on a material preventing expansion/contration due to heating/cooling

