

In the picture, process 1 and 3 are isothermal. During how many of the four processes does (positive) heat flow in to the gas?

D) 3

4

E)

positive since P1 implies T1 at const. volume 1: Du=0 so Q=W>0 since expanding

By Gonfer - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=10901965

EFFICIENCY OF AN ENGINE

$$\begin{array}{c} Q_{H} : \text{Heat absorbed by gas each cycle} \\ Q_{C} : \text{Heat expelled by gas} \\ Q_{C} : \text{Heat expelled by gas} \\ W : \text{Net work done each cycle} \\ Q_{H} = |Q_{C}| + W \\ Efficiency is: e = \frac{W}{Q_{H}} = \text{work we get ont} \\ Efficiency is: e = \frac{1}{Q_{H}} = \frac{|Q_{C}|}{|Q_{H}|} \\ \end{array}$$

Internal combustion engine movie:

https://youtu.be/5tN6eynMMNw?t=26

"compression stroke"

"power stroke"

Otto cycle: model of internal combustion engine

12

Question: Calculate the efficiency of the internal combustion engine operating via the cycle shown in terms of the compression ratio $r = V_{max} / V_{min}$

> Step 0: find P,V,T for the various points if not given.

For each step, write an equation that relates the final temperature from the initial temperature, assuming all pressures and volumes are known. Click A if you are finished.

EXTRA: work out all the temperatures in term of T_A , r, and P_C/P_B

Step 1: find the work for each part and add them up.

The work for the process B -> C is

A) Positive B) Negative C) Zero

What is the work for the processes C -> D in terms of n, C_v , and the various temperatures, volumes or pressures?

Click A when you have an answer (and then try to calculate the net work)

Step 1: find the work for each part and add them up.

C→D: A→B

> Step2: find the heat for the steps with Q>0.

How many of the steps have Q > 0?

A) 0 B) 1 C) 2 D) 3 E) 4

> Step2: find the heat for the steps with Q>0.

Calculate Q for the process B -> C, in terms of n, C_V and the various temperatures, pressures, and volumes.

Click A when you have an answer, or B if you are stuck.

> Step2: find the heat for the sleps with Q>0.

Calculate Q for the process B -> C: const. volume : W = OQ = $\Delta U = n C_v (T_c - T_B)$

 $\frac{W}{Q} = \frac{T_c - T_D + T_A - T_B}{T_c - T_B} \xrightarrow{\text{plug in results}} e = 1 - \frac{1}{r^{\gamma}}$

DIESEL ENGINE : larger compression ratio - inject fuel when T very high, ignites spontaneously - more efficient.