

In the two situations below, a gas is heated from 300K to 400K. We can say that the heat added

- A) is the same in both cases.
- B) is greater in the first case where the volume is held fixed.
- C) is greater in the second case where pressure is fixed.

In the two situations below, a gas is heated from 300K to 400K. We can say that the heat added

- A) is the same in both cases.
- B) is greater in the first case where the volume is held fixed.

C) is greater in the second case where pressure is fixed.

1st law: Q = DU+W DU same for both W tre for 2nd case so Q larger for 2nd case

HEAT FOR CONSTANT PRESSURE

$$Q = \Delta U + W_{P\Delta V}$$

$$nC_{V}\Delta T \qquad nR\Delta T$$

so
$$Q = n \cdot (C_v + R) \cdot \Delta T$$

Define
$$C_p = C_v + R$$

CONSTANT PRESSURE

$$W = P\Delta V$$

$$Q = nC_P\Delta T$$

$$C_{v}+R$$

"isobaric"

Gas in a cylinder is slowly expanded while in contact with a heat reservoir so that its temperature remains constant. During this process, we can say that

- A) Both Q and ΔU are 0.
- B) Q is 0 and ΔU is positive.
- C) Q is 0 and ΔU is negative.
- D) ΔU is 0 and Q is positive
- E) ΔU is 0 and Q is negative

Gas in a cylinder is slowly expanded while in contact with a heat reservoir so that its temperature remains constant. During this process, we can say that

- A) Both Q and ΔU are 0.
- B) Q is 0 and ΔU is positive.
- W is positive (expassion) C) Q is 0 and ΔU is negative.

1st law: DN=Q-W 50 Q=W>0

- ΔU is 0 and Q is positive
- ΔU is 0 and Q is negative

Which graph could represent the expansion of an ideal gas at constant temperature?

Which graph could represent the expansion of an ideal gas at constant temperature?

$$P = \frac{constant}{V}$$

CONSTANT TEMPERATURE

$$\Delta U = 0$$

Work for constant temperature:

$$W = \int_{V_{:}}^{V_{f}} P(v) dv$$

O Find P(V): Ideal Gas Law gives:

$$P(V) = \frac{nRT}{V}$$

2 Find F(V) with F'(V) = P(V)

3 Calculate F(Vf)-F(Vi)
Get:

$$W = nRT \ln V_f - nRT \ln (V_i)$$

$$= nRT \ln \left(\frac{V_f}{V_i}\right)$$

CONSTANT TEMPERATURE

Ideal GasLaw => PV = const.

$$\Delta U = 0$$

$$Q = W = nRT \ln \left(\frac{V_f}{V_i} \right)$$

$$\int_{V_i}^{V_f} P(V) dV$$

"isothermal"

Gas in a perfectly insulated cylinder is compressed. During this process, we can say that

- A) Q is positive and $\Delta T = 0$.
- B) Q = 0 and ΔT is positive.
- C) Q = 0 and ΔT is negative.
- D) Q =0 and ΔT =0.
- E) Q is positive and ΔT is positive.

Gas in a perfectly insulated cylinder is compressed. During this process, we can say that

- A) Q is positive and $\Delta T = 0$.
- B) Q = 0 and ΔT is positive.
- C) Q = 0 and ΔT is negative.
- D) Q = 0 and $\Delta T = 0$.
- Insulated = 0 E) Q is positive and ΔT is positive. Have W negative (compression) $\Delta U = -W > 0 \quad 50 \quad \Delta T > 0$

$$\Delta U = -W > 0 \quad 50 \quad \Delta T > 0$$

Adiabatic processes: Q = 0

- 2 cases: gas is well-insulated from environment.
 - 2) process happens very quickly, so not enough time for significant heat transfer

ADIABATIC: Q = 0

First Law: $\Delta U = -W$ compressed gas heats up! $nC_v \Delta T = -W$

Ideal gas law: PV Constant.

Combining these, can show PV8 = constant

Y =
$$\frac{C_P}{C_V}$$
 See video derivation