## Learning goals:

- Give an example of a material where the thermal expansion coefficient has a significant temperature dependence and describe some consequences of this
- Define the concepts of stress and strain and explain how the Young's modulus of a material is defined
- To argue that the Young's modulus depends only on the material and not on the shape or size
- To calculate the fractional change in length of an object given its dimensions, the Young's modulus, and the forces applied
- For static systems with multiple parts, to use Newton's second and third law to related the various internal forces
- to calculate the mechanical forces (thermal stress) on a constrained system arising from changes in temperature.

Homework sessions with TAS: Monday 5-7pm in Hennings 200 Tuesday 5-7pm in Hennings 202 Piazza: an online Q&A forum for questions about homework, course material, etc... Office hours: Today: 3-5pm Hennings 420



Thermal expansion:



$$\Delta L = \alpha L_0 \Delta T$$
applies to each dimension



Water, a special example





Today: thermal expansion forces



## Young's modulus of a marshmallow



Young's modulus of a marshmallow



**Clicker:** Suppose you repeated the measurement of Y for a mini-marshmallow. In this case, we would expect a value of Y that is

A.Significantly higherB.Significantly lowerC. About the same



**Clicker:** In the top picture, the force on the right brick from the left brick has magnitude



C) 2 F

All forces shown have the same magnitude.

**EXTRA:** can you come up with a sharp argument for your answer?

**Clicker:** In the top picture, the force on the right brick from the left brick has magnitude force from left brick on vight brick A) 0 - bricks not moving so hel force on vight brick must be zero, so Force of left brick C) 2 F on right exactly All forces shown have the same magnitude.





## Young Modulus of Various Materials

| Material    | Young's Modulus, Y (Pa)                |     |
|-------------|----------------------------------------|-----|
| Aluminum    | $7.0 	imes 10^{10}$                    |     |
| Brass       | $9.0 \times 10^{10}$ Units of          |     |
| Copper      | $11 \times 10^{10}$ pressure:          |     |
| Crown glass | $6.0 \times 10^{10}$ Pure for          | 01% |
| Iron        | $21 \times 10^{10}$ eg. ressure of 0.0 | 170 |
| Lead        | $1.6 \times 10^{10}$                   | 6   |
| Nickel      | $21 \times 10^{10}$                    |     |
| Steel       | $20 \times 10^{10}$                    |     |
| Marshmallo  | $J = 8 \times 10^3$                    |     |
|             | $\frac{F}{A} = Y \underbrace{AL}{L}$   |     |



THERMAL STRESS : forces on a material due to surrounding materials preventing thermal expansion/ contraction





A steel rod of length  $L_0$  is heated by temperature  $\Delta T$ .

How much stress (force per unit area) is required to compress the rod back to its original length?

Write an answer in terms of  $\Delta T$  and the parameters Y,  $\alpha$ , L<sub>0</sub> for the rod.

Click A if you have an answer, B if you are stuck.





A steel rod of length  $L_0$  is heated by temperature  $\Delta T$  and expands. How much stress (force per unit area) is required to compress the rod back to its original length?

Write an answer for the magnitude of F/A in terms of Y,  $\alpha$ , L<sub>0</sub>. and  $\Delta T$ . Thermal Expansion DL = ~ L. DT A) Y  $\alpha$  L<sub>0</sub> $\Delta$ T want DLF = - DLH B) Y  $\alpha \Delta T$ = - xLast C) Y  $L_0 \Delta T$  $\frac{F}{A} = Y\left(\frac{\Delta L}{L}\right)$  $= Y(-\alpha \Delta T) = - sign means$ compressiveforce $<math display="block"> = Y \alpha \Delta T$ D)  $\alpha L_0 \Delta T$ E) Y  $\alpha$  L<sub>0</sub>



**Clicker:** 10m long steel train rails are laid end to end on a winter day (0 °C). If the engineer forgot to leave gaps for thermal expansion, roughly how much force is generated at the ends of each rail due to thermal stress when the temperature reaches 30 °C?

Cross sectional area of rail:  $0.01m^2$   $Y_{steel} = 20 \times 10^{10} Pa$  $\alpha_{steel} = 1.2 \times 10^{-5} K^{-1}$ 

previous result:  $\frac{F}{A} = Y \propto \Delta T$ 

A) 700 N B) 7,000 N C) 70,000 N D) 700,000 N E) 7,000,000 N

EXTRA: How much gap should have been left?



**Clicker:** 10m long steel train rails are laid end to end on a winter day (0 °C). If the engineer forgot to leave gaps for thermal expansion, roughly how much force is generated at the ends of each rail due to thermal stress when the temperature reaches 30 °C?

Cross sectional area of rail:  $0.01m^2$   $Y_{steel} = 20 \times 10^{10} Pa$  $\alpha_{steel} = 1.2 \times 10^{-5} K^{-1}$ 

A) 700 N B) 7,000 N C) 70,000 N D) 700,000 N E) 7,000,000 N

F= 102 × 2×10"× 1.2×105 × 30 =7×105

EXTRA: How much gap should have been left? ~ 3.6 mm



**Extra Clicker:** Do you expect that the Young's modulus you measured for a marshmallow is higher or lower than for steel?

A.Higher

**B**.Lower

C.Could be higher or lower depending on the relative dimensions of the steel/marshmallow

$$\frac{F}{A} = Y \frac{\Delta L}{L_o}$$

**Clicker:** Do you expect that the Young's modulus you measured for a marshmallow is higher or lower than for steel? Y only depends on what the object is made of, not its size A.Higher B.Lower  $F_A = Y \stackrel{\Delta L}{=} : Y \text{ bigger if it takes more force}$ C.Could be higher or lower depending on the relative dimensions of the steel/marshmallow Y has units of pressure: roughly, the pressure required to produce a significant fractional change in length. 23