Learning Goals:

• For an object made of some material, to calculate the changes in length or volume that material undergoes in response to changes in temperature and external forces (stress).
• To explain why the change of length of an object due to thermal expansion is proportional to its initial length.
• For systems consisting of two different materials, to quantitatively analyze effects resulting from the different expansion rates of different parts.
• To explain why the fractional change in volume of an object for a small change in temperature is three times the fractional change in length.
Clicker: A steel ball does not quite fit through a hole in a copper plate. If $\alpha_{\text{steel}} < \alpha_{\text{copper}}$, we could help the ball fit through the hole by

A. Heating the system
B. Cooling the system
C. Either A or B will work
D. Neither A nor B will work

EXTRA: does the hole get larger or smaller when we heat the system? Why?
Define Kelvin scale by:

\[T = \text{const.} \times \frac{\text{const.}}{\text{pressure}} \]

and

\[T = 273.16 \text{ K} \]

at triple point of water

\[T_c = T_k - 273.15 \]
Thermal expansion:

\[\Delta L = \alpha L_0 \Delta T \]

- Assumes \(\frac{\Delta L}{L} \) is small
- \(\alpha \) can depend on \(T \)

Coefficient of linear expansion: a basic property of a material
Discussion question: why is the change in length of an object proportional to its initial length L_0? E.g. why does a steel rod that starts out twice as long expand twice as much?

$$\Delta L = \alpha L_0 \Delta T$$
Discussion question: why is the change in length of an object proportional to its initial length L_0? E.g. why does a steel rod that starts out twice as long expand twice as much?

Each half expands independently, same amount as original object. Total expansion is double.

$$\Delta L = \alpha L_0 \Delta T$$
Why do materials usually expand when heated?

Nearby atoms in solid:

More higher energy configurations with $r > r_0$ than $r < r_0$.

Potential Energy

Lowest energy

Add energy
Clicker: A steel ball does not quite fit through a hole in a copper plate. If \(\alpha_{\text{steel}} < \alpha_{\text{copper}} \), we could help the ball fit through the hole by

A. Heating the system
B. Cooling the system
C. Either A or B will work
D. Neither A nor B will work

EXTRA: does the hole get larger or smaller when we heat the system? Why?
Clicker: A steel ball does not quite fit through a hole in a copper plate. If $\alpha_{\text{steel}} < \alpha_{\text{copper}}$, we could help the ball fit through the hole by

- A. Heating the system
- B. Cooling the system
- C. Either A or B will work
- D. Neither A nor B will work

EXTRA: does the hole get larger or smaller when we heat the system? Why?
If the radius of the ball at $T = 20^\circ C$ is 1.001cm and the radius of the hole is 1.000cm, to what temperature must we heat the system before the ball falls through?

We have: $\alpha_s = 1.2 \times 10^{-5} \text{ K}^{-1}$ and $\alpha_c = 8 \times 10^{-5} \text{ K}^{-1}$

Discuss a strategy for solving this. What should be true about ΔL_{ball} relative to ΔL_{hole}?

$\Delta L = \alpha L \Delta T$
Strategy:

1. Understand what happens to each part

2. Understand how the parts are related

1. Hole expands: \[\Delta L_{\text{hole}} = \alpha_{\text{Cu}} L_0 \Delta T \] (unknown)

2. Ball expands: \[\Delta L_{\text{ball}} = \alpha_{\text{s}} L_0 \Delta T \]

2. We need \(\Delta L_{\text{hole}} = \Delta L_{\text{ball}} + 0.001 \text{cm} \)
 in order for the ball to fall through

3. Rest is math: \[\alpha_{\text{Cu}} L_0 \Delta T = \alpha_{\text{s}} L_0 \Delta T + 0.001 \text{cm} \]
 solve for \(\Delta T \)
Clicker: In some car engines, the piston is aluminum ($\alpha = 2.4 \times 10^{-5}$), while the cylinder is cast iron ($\alpha = 1.2 \times 10^{-5}$). If the engine needs to operate between $0^\circ C$ and $120^\circ C$, which of these is not a good design:

A) The piston barely fits in the cylinder at $120^\circ C$

B) The piston barely fits in the cylinder at $0^\circ C$

EXTRA: what do we need to worry about if the engine gets too hot? Too cold?

$$\Delta L = \alpha L \cdot \Delta T$$
Clicker: In some car engines, the piston is aluminum \((\alpha = 2.4 \times 10^{-5}) \), while the cylinder is cast iron \((\alpha = 1.2 \times 10^{-5}) \). If the engine needs to operate between 0ºC and 120ºC, which of these is not a good design:

A) The piston barely fits in the cylinder at 120ºC

B) The piston barely fits in the cylinder at 0ºC

\[\Delta L = \alpha L \cdot \Delta T \]

EXTRA: What do we need to worry about if the engine gets too hot? Too cold?
Volume expansion:

\[\Delta V = \beta V \Delta T \]

also applies to liquids
Clicker: When heated, each side of a 1m cube of material expands by 0.001m. The extra volume (shown in the third picture) after the expansion is approximately

A) 0.0000000001m3 B) 0.00001m3 C) 0.001m3 D) 0.003m3

E) There is not enough information

look at the picture and use geometry to solve this!
Clicker: When heated, each side of a 1m cube of material expands by 0.001m. The extra volume (shown in the third picture) after the expansion is approximately

A) 0.000000001m³ B) 0.00001m³ C) 0.001m³ D) 0.003m³ E) There is not enough information

E) There is not enough information

Look at the picture and use geometry to solve this!
Volume expansion:

\[\Delta V = \beta V_0 \Delta T \]

\[\beta = 3\alpha \text{ for solids} \]

also applies to liquids
Mathematical derivation:

original volume: \(L^3 \)
new volume \((1.001 \times L)^3 \approx 1.003 \ L^3\)

so 0.3% bigger

generally: \((L + \Delta L)^3 = L^3 + 3 \ L^2 \Delta L + 3 \ L (\Delta L)^2 + (\Delta L)^3\)

\[
\frac{\Delta V}{V} = 3 \cdot \frac{\Delta L}{L} + 3 \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta L}{L}\right)^3
\]

this means \(\beta = 3 \alpha \)

these are negligible compared to the first term if \(\frac{\Delta L}{L} \) is small