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Chapter 21:   Superposition 
       
Section 21.1 
 
Principle of Superposition  
 
If two or more travelling waves are moving through a medium, the resultant wave function at 
any point is the algebraic sum of the wave functions of the individual waves. 
 
The principle of superposition depends on the medium having a linear response to perturbations. 
I.e. Hookes Law, F = -kx. For an elastic medium, the linear regime is defined as that where 
Hookes law is obeyed.  
 
Interference: when waves add, the interference is constructive. When waves cancel each other, 
the interference is destructive. 
 
Consider two sinusoidal travelling waves with the same wavelength and velocity but different 
phases.  
 
D1       
           t 
 
 
D2 
 
 
 
           t 
 
 
D1 = DM sin(kx - ωt)  D2 = DMsin(kx - ωt + φ)  
 
We wish to find the sum D1 + D2 

 

 
First, we need the trigonometric identity: 
 
sin(a) + sin(b) = 2cos[(a -b)/2] sin[(a + b)/2] 
 
To prove this identity, use sin(θ1 + θ2) = cosθ1 sinθ2 + sin
 

Then set θ1 = (a - b)/2 and θ2 = (a + b)/2, to get 
 
sin(a) = cos[(a-b)/2] sin[(a+b)/2] + sin[(a-b)/2] cos[(a+b)
 
Followed by θ1 = (b-a)/2 and θ2 = (b+a)/2, to get 
 

Note that D2 is just like D1 but it has
a relative phase difference of φ. The 
text uses ∆φ
I am assuming that everyone is 
familiar with this basic identity. 

θ1 cos θ2 

/2]  Eqn #1 
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sin(b) = cos[(b-a)/2] sin[(b+a)/2] + sin[(b-a)/2] cos[(b+a)/2]  Eqn #2 
 
Now, cos[(b-a)/2] = cos[(a-b)/2] and sin[(b-a)/2] = - sin[(a-b)/2] 
 
So, summing eqns 1 and 2 we get: And, of course, cos(a+b) = cos(b+a) 

and sin(a+b) = sin(b+a).  
sin(a) + sin(b) = 2cos[(a-b)/2] sin[(a+b)/2] 
 
Now we can use the above with a = kx - ωt and b = kx - ωt + φ to get: 
 
D = D1 + D2 = 2DMcos(φ/2)sin(kx -ωt + φ/2) 
 
Note that the sine part of the equation is the original sinusoidal wave with wave number k and 
angular frequency v. Its phase angle is 1/2 the relative phase angle between the two waves being 
added. The amplitude is given by 2DMcos(φ/2). 
 
For what relative phases φ do we get constructive interference? 
 
ANS: cos(φ/2) = ±1    φ = 0, 2π, 4π, 6π, …. = 2mπ, m = 0,1,2,3,… 

Question: When cos(φ/2) is -1, is the resultant wave inverted with respect to D1? 
ANS: no {note: if φ/2 = 180, sin(θ + ½φ) = sinθ cosπ = - sin θ, so D = 2DMsin(kx-ωt)} And of 
course, this corresponds to a 2π phase shift! 
 
For what relative phases φ do we get destructive interference? 
 
ANS: cos(φ/2) = 0 φ = π, 3π, 5π, 7π,…  = 2(m+ ½)π, m = 0,1,2,.. 
 
 
 
 
 
+      + 
 
 
 
 
 
=      = 
 
 

 
cos(φ/2) = ±1     cos(φ/2) = 0 
 

φ = 0, 2π, 4π,.. =m(2π), m=0,1,2…  φ = π, 3π, 5π,..  = 2(m+ ½)π, m=0,1,2.. 
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Sections 21.2, 3, 4  Standing waves, transverse standing waves and standing sound waves 
and musical acoustics. 
 
Reflection: Consider a string fixed to a solid wall at both ends: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we send a wave pulse down the string it will be reflected and inverted at the wall. This 
amounts to a phase change of 180o at the wall boundary. The inversion is caused by the reaction 
force of the wall against the string as the wave is pulled down when it meets the wall. 
 
Consider another string which moves freely at its right end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we send a wave pulse down this string, the wave pulse will be reflected but not inverted at the 
right hand end.   

This diagram 
might look more 
plausible if it 
were turned 90o 
so the rope was 
hanging 
vertically down. 
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The action of sound waves in pipes follows an analogous trend.  
 
StringWave Simulation 
 
Demonstrate what happens to a pulse when it gets to a fixed end and when it gets to a loose end. 
 
http://phet.colorado.edu/simulations/stringwave/stringWave.swf  
 
1) Fixed both ends: Use the Oscillate mode with the fixed end. Set Tension high, 
damping 0, and amplitude 20. 
 
Set frequency 8 for lowest mode 
Set frequency 16 for next mode 
Set frequency 25 for next mode next 33, next 42,  
 
2) Fixed one end: Same as above but one end loose 
 
Set frequency 5 for lowest mode 
Set frequency 13 for next mode 
Set frequency 21 for next mode, next 30 
 
Standing waves 
 
Consider a string suspended between two fixed walls: 
 
     L 
 
 
 
 
 
 
Nodes          Nodes 
    antinodes 
 
 
 
 
 
 
 
 
 
 

http://phet.colorado.edu/simulations/stringwave/stringWave.swf
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If we excite it at random, chances are that reflected waves will interfere with each other and the 
disturbance will dissipate. However, if we excite it at a particular frequency which depends on 
the length of the string, we can excite a resonance or standing wave. 
 
The standing wave is the sum of waves. We define nodes where the waves interfere destructively 
to produce zero amplitude and antinodes where the waves interfere constructively to produce 
maximum amplitude.  
 
Standing waves occur at more than one frequency. Allowed frequencies are determined by the 
placement of nodes and antinodes.  
 
For a string fixed at both ends, the longest wavelength occurs when there are nodes at each end 
and one antinode in the centre. Then λ1 = 2L and f1 = v/λ1. This is called the fundamental 
frequency. The next higher frequencies are called the second and third harmonics and they occur 
with two and three antinodes for λ2 = L and λ3 = 2/3L.  
 
 
 

The fundamental frequency is sometimes called the first harmonic. The higher harmonics are 
sometimes called overtones.

 
The harmonics are characterised by λm = 2L/m   m = 1,2,3,…. 
 
The natural frequencies are fm = v/λm = mv  recall that for a string, v = √(Ts/µ) 
          2L 
 
Then fm = m √(Ts/µ)  are the frequencies of the harmonics of this system. 
        2L  
 
 
This is how a guitar works. The thicker strings play the lowest frequency music. If plucked in the 
middle, the first harmonic is the main mode excited. Because the string is plucked near one end 
and not the middle, more than one harmonic is excited in the standing waves. To change the 
frequency of the standing waves, the guitar player moves their finger up and down the strings to 
change the length of available string. To tune the instrument, the player adjusts the tension in the 
strings.  
 
Mathematical representation of a standing wave 
 
A standing wave is actually made up of two travelling waves travelling in opposite directions 
one with velocity v (to the right) and the other with velocity -v (to the left). 
 
What does this say about energy? An equal amount of energy is being transferred in each 
direction. Standing waves store energy. 
 
The two waves are D1(x,t) = DMsin(kx - ωt) and D2(x,t) = DMsin(kx + ωt). 
 
D = D1 + D2 = DM[sin(kx - ωt) + sin(kx + ωt)] 
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And cos (-φ) = cos (φ)  
Use sin(θ1) + sin(θ2) = 2sin½(θ1 + θ2)cos½(θ1- θ2)   
 

This equation tells us that the string oscillates at the angular 
frequency ω everywhere but has an amplitude which varies with 
x as 2DMsin(kx). 

Derived before 
 
Then D = 2DMsin(kx)cos(ωt) 
 
We know that x=0 and x=L must correspond to nodes, so kL = mπ where k=2π/λ 
 
Then we can write λ = 2L/m    
 
The nodes occur where sin(kx) = 0 or 

This means that the fixed points of the string at each end 
determine the wavelengths of possible standing waves. 

 
kx = mπ or (2π/λ)x = mπ, Then x = mλ/2, m=1,2,3 

Sine waves pass through the origin every half 
wavelength. Each mode has a different λ. 

 
The antinodes occur when sin(kx) = ±1 or where kx = mπ/2, m=1,3,5,.. 
 

Note that here we deal only with positive m. Or x = mλ/4, m=1,3,5.. 
 
 
Standing waves in air columns 
 
When we discussed standing waves, we considered a system where the string is attached at both 
ends. For air column, this type of system is not useful since there is no way for the sound to leave 
the column. In air columns, we look at two types of system: one with both ends open and the 
other with one end open.  
 
Consider a cylindrical pipe closed at one end: 
 
 
 
Standing longitudinal sound waves can be set up in this column. For sound waves there are two 
variables: 
 
1) Displacement: D(x.t) = DMsin(kx - ωt) 

Note that this displacement is along the longitudinal direction 
 

 2) Pressure: ∆P = -∆PMcos(kx - ωt) 
 
The closed end of an air column is a displ
 
Air molecules cannot move through a soli
molecules push (and pull) against the wal
 
The open end of an air column is a displac
 

When we talked about nodes earlier, we meant 
displacement nodes. Now we can talk about pressure
acement node and a pressure antinode. 

d wall. Pressure builds up (and dies down) as the air 
l. 

ement antinode and a pressure node. 
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Pressure at an open end is fixed at atmospheric pressure. 
 
Natural frequencies for air columns 
  L 
 
    L = λ/4  Fundamental   λ = 4L 
 
 
    L = 3λ/4  Third Harmonic  λ = 4/3L 
 
       
    45  Fifth Harmonic  λ = 4/5L 
 
 
For a pipe closed at one end, fm =  mv   m = 1,3,5,..  v = velocity of sound, v = λf 

L = 5λ/4 

             4L 
 
        L = λ/2 Fundamental   λ = 2L 
 
 
        L = λ Second harmonic  λ = 2L/2 
 
 
      Third harmonic λ = 2L/3 
 
 

L = 3/2λ 

For a pipe open at both ends, we get:  fm = mv   m = 1,2,3,… 
               2L 
 
 
Problem: Find the fundamental frequency for your eardrum. 
 
In the average adult, the auditory canal is about 1 ml in volume and 2.7 cm long. It can be 
approximated by a pipe with one end closed, the ear drum, and the other end open, the outer ear. 
 
    From the above relations f1 = v/4L = (343m/s)/[4(0.027m)]  
    f1 = 3175 Hz. 
    This frequency is quite close to the frequency of speech,  
 L = 2.7 cm  In fact, some claim that it is the frequency of a babies cry. 
 
The auditory canal acts as a filter since it will set up a standing wave at the fundamental 
frequency. Small perturbations at this frequency will be successful in producing audible sounds. 
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Sections 21.5, 6, 7  Interference of waves 
 
Superposition of waves of the same frequency produces spatial interference 
 
Example: Interference of sound waves 
 
Consider a sound system containing two speakers: 
 
  
 
 
Speaker 1 
   r1 
 
 
 
Speaker 2  r2    receiver  
        
 
 

Note that these interference phenomena occur at discrete frequencies. 
Music is a combination of many frequencies so the interference 
phenomena for particular frequencies are much harder to detect. 

 

Speaker's 1 and 2 transmit identical sound waves of wavelength λ an
 
What are the conditions for r1 and r2 such that there is constructive (
the receiver? 
 
Note that for each speaker, D = DMsin(kr -ωt); where r is the distanc
the listener. At any time t, the relative phases are determined by the 
speaker; i.e. the phase difference between the speakers is kr1 – kr2 o
phase difference ∆φ  between speakers 1 and 2 is then 
 
∆φ = 2π(r1 - r2)/λ  or equivalently, r1 - r2 = ∆φ(λ/2π) 
 
We have already learned that (maximum) constructive interference o
get constructive interference when  
 
r1 - r2 = ∆φ(λ/2π) =  (2mπ)λ/2π = mλ where m = 0,1,2,3 
 
Similarly, for (perfect) destructive interference, we use ∆φ = (m+ ½
 
r1 - r2  = (m+ ½ )λ,  where m=0,1, 2,3,.   
 
The above relations assumed that the inherent phase of the speakers
t=0, phase =0). If this is no the case we add a term ∆φo to ∆φ and  
 
∆φ = 2π(r1 - r2)/λ + ∆φo   
 

We use r rather than ∆x (as in the
text) to make this a 3D problem 
as in section 21.7. 
d relative phase φ zero. 

or destructive) interference at 

e between the speaker and 
relative distances from each 
r 2πr1/λ – 2πr2/λ. The relative 
Note that as r1 – r2 varies from 0 to λ, ∆φ 
varies from zero to 2π. 
ccurs for ∆φ = 2mπ, so we 

)2π (m= 0,1,2,3) to get 

 were the same. (i.e. at rn=0, 
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Problem: A tuning fork generates sounds with f = 246 Hz. The waves travel in opposite 
directions along a hallway, are reflected by walls at each end and return. The hall is 47.0 m long 
and the tuning fork is located 14 m from one end. What is the phase difference between the 
reflected waves when they meet back at the tuning fork? v = 343m/s 
 
 
 
 
 
 
 
 

Reflected waves meet here 

     14m       33m 
 

To put this problem another way, 
r1-r2 = 38m = 27.2536λ where λ = 
1.39m. So, 38m = 27λ + 0.2536λ 

Then r1 (to the left and back) is (47 -33)m x 2 = 28m 
 
And r2 = 66m 
 
φ = 2π(r1 - r2)/λ = 2π(r1 - r2)f/v = 2π(38m)(246 s-1)/(343m/s) = 2π(27.2536) = 2π(27+.2536) = 
(171.24 rad) = 0.2536(2π) = 1.59 rad = 91.39 degrees(multiply by 360/2π to get degrees) 
 
Problem from midterm: Two speakers are attached to the same amplifier so that at each box 
they emit sound waves at the same phase. What is the lowest frequency that will provide 
constructive interference at the location of the observer A? 
 
 
  1.0m 
    A 

Solve r2 - r1 = mλ where λ = v/f and m = 0,1,2,3,… 
 
The lowest frequency corresponds to the longest wavelength 
(since λ = v/f) and hence the lowest value of m. Since r1 does 
not equal r2, then m=1 is the next lowest candidate. This 
corresponds to λ = r2- r1 = λ = (√2 - 1) = 0.4142m 
 
Then f = v/λ = (343m/s)/(0.414m) = 828 Hz 

       
   
 
    
     1.0m 
    
    
  

 
 
 
 

S1 

S2 
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Problem from Dec 2004 Exam 
 
A column of air in a tube is found to have standing waves at frequencies of 360, 504, and 648 
Hz. There are no standing wave frequencies between the above frequencies. 
 

(a) What is the fundamental frequency of the tube? 
(b) Is the tube open at both ends or open at one and closed at the other? 
(c) Draw a displacement curve for the 504 Hz standing wave. 
(d) The air is now replaced with carbon dioxide which has a speed of sound of 280 m/s. 

What are the new frequencies corresponding to the given standing wave frequencies? 
 

(a) For a tube closed one end, fm = mv/4L, m=1,3,5.; for a tube open both ends, fm = mv/2L, 
m = 1,2,3. and between adjacent modes, ∆f = v/2L in  both cases. In this case, ∆f = 
144Hz. Note that the lower frequencies correspond to 216 Hz and 72 Hz. The lowest 
frequency, 72 Hz, corresponds to the fundamental frequency. 

(b) If this were a tube open both sides, the fundamental frequency would have been 144Hz. 
So it is a tube open at one end 

(c) The 504 Hz standing wave corresponds to the 4th possible frequency (m=7) or the 7th 
harmonic; There will be three anti-nodes. 

 
 
 
 

 
 
(d)   Use fm = mv/4L; For the fundamental mode, L = (343 m/s)/4×72Hz = 1.19m. 

 
Then for CO2, fm’ = m(280m/s)/(4×1.19m) = 58.8Hz, 176.5Hz, 294.1Hz and 411.7Hz for the 7th 
harmonic.  
 

Speech and Hearing 
 
Speech involves only a few moving parts: lungs, vocal cords, tongue, jaw, lips, and soft palate. 
The total capacity of our lungs is about 7 l. During quiet breathing, we use only about 0.5 l. 
During speech we use about 1.2 l, about 25% of our lung capacity. During speech, we are 
breathing out in sawtooth fashion with 95% of the time spent breathing out.   
 
Normal    Breathing  
Breathing    while speaking 
 
During speech, air from the lungs is pushed through the vocal cords (folds) then through the 
vocal tract where it is altered by the shape of the vocal tract before being emitted from the lips. 
Vocal cords are elastic protuberances of tendon, muscle and mucous membrane. Their tension, 
elasticity, length, width and separation are altered during speech.  
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The output of the vocal cords has a fundamental frequency of about 150 Hz for men, 200 Hz for 
women and 300 Hz for children. These frequency differences are attributed to differences in 
vocal cord size (17-24mm long in men and 13-17mm long in women). This fundamental 
frequency is altered during speech.  In addition to the fundamental frequency, the output of the 
vocal cords contains harmonics of the fundamental frequency which fall off in intensity at a rate 
of about 12 dB for each doubling of frequency (octave).  

 
 

 
 
   
The vocal tract begins at the vocal cords and ends at the mouth.  It is a sound resonator 
analogous to an organ pipe.  The vocal tract approximates a tube closed at one end (vocal cords) 
and open at the other (lips).  The fundamental resonant frequency will have a wavelength 4 times 
the length of the tube.  A male vocal tract may be about 17 cm long.  This corresponds to a 
fundamental frequency,  f = v/4L= (343m/s)/(4x0.17m) = 500Hz, known as the formant F1. The 
higher harmonics follow fn = mv/4L; i.e. F2 has f =1500 Hz and F3 has f = 2500 Hz. The 
resonances of the vocal tract modify the frequency spectrum of the vocal cords by enhancing 
vibrations near each of the resonances and suppressing off resonance vibrations.  This results in 
three major peaks or formants in the frequency spectrum of speech.  The frequency of each 
formant can be altered if the shape of the vocal tract is altered near a point of maximum velocity 
(displacement antinode) or a point of maximum pressure (displacement node).  The vocal cords 
are always a point of maximum pressure and the lips are always a point of maximum velocity. 
Constrictions at point of maximum velocity lower the resonant frequency while constrictions at 
points of maximum pressure raise the resonance frequency.  The first formant (F1) is most 
responsive to changes in mouth opening; small mouth openings lower the frequency of F1 and 
large openings raise the frequency of F1.  The second formant F2 is most responsive to changes 
in the oral cavity; tongue backing or lip activity lower F2 while constrictions at the tongue would 
raise F2.  F3 is responsive to front versus back constrictions.  Positions of the mouth and the 
frequencies of the different formants have been characterized while producing different periodic 
(vowel) sounds.  
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Speech spectra for three sounds 
and the shape of the vocal tract 
while producing the sounds: 'Heed', 
'Hard' and 'Who'd' 

Hearing starts at the opening of the ears which face out and forward. Combining sound inputs 
from both ears enables the listener to determine direction from the relative phases of the sound. 
The next chamber, called the ear canal, has a dual role in hearing: 1) protection of the delicate 
inner parts of the ear and 2) it acts as a quarter wavelength resonator. This resonant cavity works 
such that the maximum air pressure (displacement node) is at the tympanic membrane at the 
inner end and the maximum air particle velocity (displacement antinode) is at the ear opening. In 
the average adult, the auditory canal is about 2.7 cm long. The fundamental frequency of the 
channel is given by f1 = vs/4L = (343m/s)/(4×0.027m) = 3.2 kHz. This is the frequency we hear 
best and it corresponds to about the centre of the speech frequency band (0.1 - 5kHz). 
 
Section 21.8  Beats 
 
Superposition of waves of different frequencies produces temporal interference 
 
Beating is the periodic variation in intensity at a given point due to the superposition of two 
waves of slightly different frequencies.  
 
Consider two sine waves of equal amplitude travelling through a medium with slightly different 
frequencies f1 and f2.  Lets suppose that we are sitting still so we 

needn't worry about the spatial dependence.  
At x=0, the time dependence of these waves follows: 
 
D1 = DMsinω1t;   D2 =DMsinω2t   where ω1 = 2πf1 and ω2 = 2πf2
 
sin(a) + sin(b) = 2 cos[(a-b)/2]sin[(a+b)/2] 
 
then D = D1 + D2 = 2DMcos[(ω1-ω2)/2t] sin[(ω1+ω2)/2t] 
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Or in terms of frequency: 
 
D = 2DMcos[2π(f1-f2)/2t]sin[2π(f1+f2)/2t] 
 
We treat the cosine term as an amplitude which varies at frequency (f1 - f2)/2 and the sine term as 
an oscillation at frequency (f1 + f2)/2. If this were a sound, the listener would hear the frequency 
(f1 + f2)/2 but its amplitude would vary up and down as (f1 - f2)/2. However, since there are two 
maxima, one positive and the other negative, which we cannot distinguish, the frequency of the 
'beat' is |f1 - f2|. 
 
Note that these beats occur as the two input sine waves come into phase and go out of phase with 
each other.  

Our ears can only pick up beats with frequency less than 20 beats/s.  
Problem:  
 
While attempting to tune the note C at 523Hz, a piano tuner hears 2 beats/s between a reference 
oscillator (at 523 Hz) and the string.  
 
(a) What are the possible frequencies of the piano wire? 
 
Answer y = ypiano + y523Hz = 2Acos[2π(fpiano - 523Hz)/2t] sin[2π(fpiano + 523Hz)/2t] 
 
Then, |fpiano - 523 Hz| = 2Hz, then fpiano = 523Hz ± 2Hz  i.e. 521 or 525 Hz 
 
(b) After tightening the string, she hears 3 beats/s, What is the string frequency now? 
 
 . 

Recall the fn = (m/2L)(√Ts/µ); so in
 
f1/f2 = √Ts1/√Ts2 or Ts1/Ts2 = f1

2/f2
2  

 
Hence the frequency fpiano = 523 + 3
 
By what percentage should the pian
 
Ts2/Ts1 = f2

2/f1
2 = 5232/5262 = 0.989

 

The beat frequency increased from 2 to 3 Hz
creasing tension increases the frequency. In fact,  

The solution fpiano = 523-3=520Hz is not 
possible since that would correspond to a 
decrease in tension. 

 

Hz = 526 Hz 

o tuner change the tension to bring the wire into tune. 

 or a 1.14% decrease in tension. 


