
Computational Physics
Physics 410 2014W

Assignment 4: ODE Solver Specifications
Due: Wednesday, November 5, 2014 6PM

Design and code an ODE integrater that can solve a N-dimensional first order ODE

d~Y
dt

= ~f (~Y, t)

It should take as input a vector ”Yi” = ~Yi of initial data, the name of a function ”derivs”
that returns the vector of derivatives d~Y

dt , a set of time points ”tpoints” (of length Nt) the
solution is desired at, an integration method ”method” to advance each timestep, and a
single parameter ”param” that can be used to adjust the accuracy of the solution for a
given method. It should return the solution to the ODE as a N by Nt array ”Ysoln”. It
should also separately return a count of the total number of times that ”derivs” was called
while finding the solution.

You should include methods: Euler (euler), Second-Order Runge-Kutta (rk2), Fourth-
Order Runge-Kutta (rk4), Fourth-Order Runge-Kutta with Adapative Stepzie (rk4adapt),
Leapfrog (leap), Verlet (verlet), Modified Midpoint (mm), and Bulirsch-Stoer (bs). Please
use these conventions when selection your method name.

For the fixed-step methods like the euler, rk2, rk4, leap, verlet, and mm methods ”param”
should be a factor indicating how many substeps to divide the problem in between each
adjacent set of time points. (i.e., for param = 1 you have a single step between tpoints[i]
and tpoints[i+1], while for param = 5 you have a five substeps between tpoints[i] and
tpoints[i+1] even though you only return the values at tpoints[i] and tpoints[i+1]). For
fixed-accuracy methods like rk4adapt or bs ”param” should be the inverse of the target
fractional accuracy of each step between tpoints[i] and tpoints[i+1] (i.e., for param = 100
you demand 1% accuracy on each full step).

Note: For the verlet method please take the convention that the first N/2 variables are
position-like and the second N/2 variables are velocity-like.

Please include comments in your code on how to call your routine, and a short paragraph
describing how to use your routine in your report. Code your routine so that it takes
parameters in the order:

odeintegrator(Yi,derivs,tpoints,method,param)

1


