
Today's Plan:

• Announcements

• Using Analog to Digital Converter – continuation

• Using Pulse Width Modulation

• Activity 3

• Ultrasonic Distance Sensor

In weeks 3-4 you have to finish

parts 4, 5, 6 and 7 of the manual

Notes will be due before each lab during the

week 5 of the labs.

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
P6SEL |= 0b00000001;; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001;; // set pin P1.0 as output
ADC12CTL0 |= ADC12ENC; // ADC enable
while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET IS ESSENTIAL!

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time 16 cycles, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
ADC12CTL0 |= ADC12ENC; // ADC enable
P6SEL |= 0b00000001; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001; // set pin P1.0 as output

while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET of the family IS ESSENTIAL!

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time 16 cycles, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
P6SEL |= 0b00000001;; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001;; // set pin P1.0 as output

ADC12CTL0 |= ADC12ENC; // ADC enable
while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET of the family IS ESSENTIAL!

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time 16 cycles, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer

P6SEL |= 0b00000001;; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001; // set pin P1.0 as output

ADC12CTL0 |= ADC12ENC; // ADC enable
while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET of the family IS ESSENTIAL!

Using peripherals: Analog to digital converter

#include <msp430f5529.h>
#include<stdio.h>

int main(void)
{

WDTCTL = WDTPW + WDTHOLD;
ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time 16 cycles, ADC12 on
ADC12CTL1 = ADC12SHP; // sampling timer
P6SEL |= 0b00000001; // P6.0 allow ADC on pin 6.0
P1DIR |= 0b00000001; // set pin P1.0 as output

ADC12CTL0 |= ADC12ENC; // ADC enable
while (1)
{

ADC12CTL0 |= ADC12SC; // Start sampling
while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}
}

READING THE DATASHEET of the family IS ESSENTIAL!

Notice that there
are 16 control
registers like that
corresponding to 16
ADC12MEMx
memory registers
where the
conversion results
appear

while (ADC12CTL1 & ADC12BUSY);//while bit ADC12BUSY in register ADC12CTL1 is high wait

if(ADC12MEM0>=3072) //This value depends on the input voltage
P1OUT |= BIT0;

else
P1OUT &= ~BIT0;

}

while (a & b){

}

As compared to:

while(a & b); {

}

Activity 3 due before each lab in

week 5 of the labs. 2 points

The result of ADC conversion on MSP430 is a 12

bit binary number corresponding to voltage range

0-3.3 V.

1. What is the accuracy (resolution) of the

conversion in volts?

2. What command or commands will you use to

convert this 12 bit number to 8 bit number

without loosing the 0-3.3 V range.

3. How such a conversion affects the accuracy

(resolution) in volts.

Pulse Width Modulation (PWM)

Full range square wave like this one

Pulse Width Modulation (PWM)

Controlling power with PWM

Duty cycle of PWM

Ratio of pulse width to period usually expressed

in %. Sometimes the pulse width is referred as

duty cycle.

Pulse Width Modulation (PWM)

Applications:

Power control without energy loss. (Compare

with voltage divider).

Controlling the servos.

Pulse Width Modulation (PWM)

PWM outputs on MSP430F5529.

P1.2

P1.3

P1.4

P1.5

P2.4

P2.5

Pulse Width Modulation (PWM)

#include <msp430.h>

int i = 0;

void main(void){ WDTCTL = WDTPW|WDTHOLD; // Stop WDT

P1DIR |= BIT2; // Output on Pin 1.2

P1SEL |= BIT2; // Pin 1.2 selected as PWM

TA0CCR0 = 500; // PWM period 500/1.048 microseconds

TA0CCR1 = 50; // PWM duty cycle

TA0CCTL1 = OUTMOD_7; // TA0CCR1 reset/set-high voltage

// below count, low voltage when past

TA0CTL = TASSEL_2 + MC_1 + ID_0 + TAIE;

// Timer A control set to SMCLK, count up mode MC_1, no division

//- keep 1.048 MHz, enable interrupt

_bis_SR_register(LPM0_bits); // Enter Low power mode 0

}
One needs to read a description in
Microprocessor family

http://www.ti.com/lit/ug/slau144j/slau144j.pdf

Names of Registers and Bits

They are all in include file "msp430.h"

Ultrasonic distance sensor

Idea comes from bats and dolphins

• Send a pulse (chirp) of high frequency sound

• Wait for the echo

• Estimate or calculate distance from a time

between the send time and return time

Radars work on the same principle but with

electromagnetic waves.

LADAR (LIDAR)

Connecting the ultrasonic distance sensor to test it:

5V

Oscilloscope

Pulse from Generator

Pulse amplitude should be 2V, offset 0 (no negative part), short with frequency
allowing echo to return from a long distance (say 15 m) before the next pulse comes
in.
You should see the width of the echo pulse on the oscilloscope changing when you
move an object (for example box) farther or closer to the sensor.

Distance measurement with real-time display on the computer.
Program should:

1. Trigger the ultrasonic distance measurement sensor to begin a measurement.

2. Do nothing till the “echo” pin goes high

3. Time the interval while the echo pin is high

4. Transmit the time interval through the serial port to the host computer where a python
program will receive it and print or plot it.

Connecting the ultrasonic distance sensor to Hantek for testing:

5V
Generator

The SR04 is a 5V device! To protect the MSP430 input from it,

you should put a resistor in between the 'Echo' line and the

MSP430. 3.3 V pulse is high enough to trigger it.

Oscilloscope

Connecting the ultrasonic distance sensor:

5V

MSP430

1-10kΩ

The SR04 is a 5V device! To protect the MSP430 input from it,

you should put a resistor in between the 'Echo' line and the

MSP430. 3.3 V pulse is high enough to trigger it.

Python and GUI's

For part 8 you will need Python installed and example temperature programs
tested.

Python is a “high-level language” (complicated things are often easier)

It is interpreted, not compiled which make it faster to change program but the
execution is slower and it take more memory.

It has the same format on windows, mac and linux

Remember that in python white spaces and indenting matters (unlike C where it's
just for readability)

●

