
Today:

- Binary numbers calculation

- Bitwise Operators

- Input – output ports

- Introduction to microprocessor programing in C

Before the first lab:

- read the lab manual parts 1, 2and 3

- Install Code Composer on your PC or Mac.

- We will test it during the first lab period.

- You are expected to do parts 1, 2 and 3 described in the

manual in the first 2 weeks of the labs and submit your

notes for marking at the beginning of third week’s lab

- You are expected to do parts 1, 2 and 3 described in the

manual in the first 2 weeks of the labs and submit your

notes for marking at the beginning of third week’s lab.

- If you finish early go on! The next parts are

progressively more difficult. If you finish all the

experiments early you will have more time for a great

project!

Binary numbers

● Decimal numbers

● There are 10 digits 0-9

● Each digit represents consecutive power of 10

● 256 = 2x102 + 5x101+ 6x100

● Binary numbers

● There are only 2 digits 0 and 1

● Each digit represents consecutive power of 2

● Binary 101 = 1x22+0x21+1x20 = 5 in decimal

Operators

Arithmetic Operators:

=, +, -, *, /

% - modulus

5 mod 2 = 1

Reminder of dividing 5 by 2

Bitwise operators

& - bitwise AND

| - bitwise OR

^ - bitwise XOR (exclusive OR)

~ - bitwise NOT

<< - bitshift left

>> - bitshift right

Bitwise AND, OR and Exclusive OR

Comparison and Logical operators

Comparison:

==, <, >, !=, >=,<=

For example if (i < 3), if (i != 3)

&& - logical AND if (i == 1 && j == 2)

|| - logical OR if (i == 1 || j == 2)

! logical NOT

Input – output port

● Connection of 8 pins which can receive or output

voltages.

● When we use it as digital port the only possible

inputs or outputs are about 0 V or about 3.3 Volts.

● The way each pin works depends on the state of

number of 8 bits in various memory locations.

● To set the state of each of these locations we send to

it an 8 digit binary number.

● The binary number is indicated with prefix 0b

General Purpose Input/Output (GPIO) Ports

Several registers control the configuration and operation of sets of pins.

In these registers, the different bits in the register control different pins.

For our microprocessor x can be any integer between 1 and 8 as we have 8 GPIOs. Not

all the pins are accessible.

PxDIR – sets the pin directions. Bit = 0 = input, Bit = 1 = output.

PxIN – input register. When configured for input, this register contains

the digital input values

PxOUT – output register. When configured for output, writing to this

register sets the outputs. When configured as input sets the

pullup (1) or down (0)

PxREN – pullup/pulldown enable. Bit = 1, enable resistor (P1OUT

sets whether pullup or down).

PxSEL – alternate function enable –0 means GPIO.

PxIE – Enable interrupt on some input port pins

PxIES – chooses if interrupt occurs on raising (0) or falling (1) edge

eg setting P1DIR = 0b00000011 configures pins P1.0 and P1.1 as outputs, P1.2-P1.7 as inputs

Programming ports in C

To decide which pin is output or input we set it to 1 or 0. It means sending a

binary number to the port register PxDIR. To set the student number you have to

add the commands, which will send the high (3.3V) or low (0V) to the pins

corresponding to address and value of the digits corresponding to your student

number using PxOUT = xxx commands after PxDIR commands set up the appropriate

ports for output. Notice that the connection table indicates that we use 3 ports. With

these series of commands you need to repeat what you did manually.

You will have to set the data and the address and while keeping them constant bring

the strobe down and up again. How many commands does it require per digit?

Programming ports in C: Main

#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b00111111; // All pins of port 1 are set to be outputs except P1.6 and 1.7

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//pins 1.1, 1.2, 1.3 and 1.5 will have 0. Status of P1.6 and

// P1.7 will depend on what we connect there!

}

Every C program must have a routine
called main. The compiler generates the
code necessary for the address of the
main routine to go into the reset vector.

Programming ports in C: void

#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b11110111; // All pins of port 1 are set to output except P1.3

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//other pins will have 0. Status of P1.3 will depend on

//what we connect there!

}

The word “(void)” indicates that no parameters are passed to this function,
void here means that no values are returned by this function

Programming ports in C: brackets

#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b11110111; // All pins of port 1 are set to output except P1.3

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//other pins will have 0. Status of P1.3 will depend on

//what we connect there!

}

Brackets indicate the code, which belongs to main

Programming ports in C: semicolons

#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b11110111; // All pins of port 1 are set to output except P1.3

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//other pins will have 0. Status of P1.3 will depend on

//what we connect there!

}

Each C instruction should end with semicolon

Programming ports in C: comments

#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b11110111; // All pins of port 1 are set to output except P1.3

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//other pins will have 0. Status of P1.3 will depend on

//what we connect there!

}

Programming ports in C: spaces

and new lines
#include <msp430.h> //this file provides the code with all the relevant names

//of the registers and their corresponding codes

void main(void) { //start of the main program

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog timer (the watchdog timer

// is a feature that allows the cpu to detect and

// recover from some kinds of software bugs.

//We just want to disable it for now.)

P1DIR = 0b11110111; // All pins of port 1 are set to output except P1.3

P1OUT = 0b00010001; // Pins P1.0 and P1.4 will have 3.3.V

//other pins will have 0. Status of P1.3 will depend on

//what we connect there!

}

Bitwise operators and calculator

https://miniwebtool.com/bitwise-calculator/

Notice that binary numbers do not have to be of

equal length.

You have to use the same number of bits for

calculation so if for example you need AND

these two numbers: 10011001 AND 1110 you

have to realize that1110 is the same as

00001110 (the same way as decimal 123 is the

same as 0123).

10011001 AND 1110 = 00001000 because

10011001 AND 00001110 = 00001000

https://miniwebtool.com/bitwise-calculator/

Activity 1due before lab of the

second week of labs.
1. Which pins will be set to input and which to output after the

command:

P1DIR = 00110111

2. What is the result of bitwise XOR

01000001 XOR 01

3. Write the command you have to issue to set pins 0, 3 and 7 of

port 4 to 3.3V

4. How you make sure that the commands you issue do not

affect the other pins?

If and If else statments

int n;

n=5;

if(n==5) n = n+1; // the same as if(n==5) n += 1;

else n=0;

n=?

If and If else statments

int n,m;

n=5;

if(n==4) {

n = n+1;

m=7;}

else {

n=0;

m=0;

}

n=?

m=?

For loop

int j;

for (j =16;j>0; j--) {

Some commands

}

These commands will be executed 16 times

if (i == 0){
a = 2;
b = 3;

}

As compared to:

if (i == 0) if (i == 0) a = 2;
a = 2; b = 3;
b = 3;

Tabbing is helpful for readability.
Many editors have automatic tabbing

braces

The compiler itself ignores whitespace – it's just for readability

braces

The compiler itself ignores whitespace – it's just for readability

executed even if
i != 0

if (i == 0){
a = 2;
b = 3;

}

vs

if (i == 0) if (i == 0) a = 2;
a = 2; b = 3;
b = 3;

Tabbing is helpful for readability.
Many editors have automatic tabbing

Example program Blink: while

#include <msp430.h>

void main(void) {

WDTCTL = WDTPW + WDTHOLD; //Stop WDT

P1DIR =0b00000001; //Set P1.0 to output;

P4DIR =0b10000000; //Set P4.7 to output;

P1OUT = 0b00000000; //Set the output Pin P1.0 to low

P4OUT = 0b10000000; //Set the output Pin P4.7 to high

while (1) { // Loop forever

_delay_cycles (500000); //This function introduces 0.5 s

delay

P1OUT = P1OUT ^ 0b00000001; //bitwise xor the output with

00000001 // can be also P1OUT^= 0b00000001;

P4OUT = P4OUT ^ 0b10000000; //bitwise xor the output with

10000000

}

}

