Chapter 19 : Mechanical Waves

There are many different kinds of waves in nature, sound, light and even particles
exhibit wave-like properties. Mechanical waves require a medium in which they
propagate. Without the wave the medium is in equilibrium (e.g. a string under
tension). In the medium is disturbed away from equilibrium this costs energy.
Such a disturbance will propagate in the medium in the form of waves.

Some properties of mechanical waves:

1. waves transport energy from one part of the medium to another.

2. the speed of propagation or wave speed v depends on the medium.

3. in a wave there is local motion in the medium about equilibrium

but there is no transport of matter. (note this is quite unlike energy transport
when a ball is thrown in the air.)
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Periodic Wave
In a wave pulse the medium is
displaced away from equilibrium at any particular
position only for a short time when the pulse is
passing.
One can also create a continuous wave disturbance
called a periodic wave in which the displacement
of the atoms varies sinusoidally both as a function
of space and time.

y(x,t) = Asin(at —2770(); Eqgn*

In other words at any position the medium moves

in simple harmonic motion with a angular

frequency o and period T=1/f=27/w. (see blue dot)
Also, at any particular time the displacement varies
sinusoidally with a wavelength A. Note in one period T
the crest moves one wavelength.Thus the

wave propagates with a speed v=A/T=fA. Rewriting
Egn *
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= Asin(at —kx); where k :%is called the wave number
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This “wave function” describes a sinusoidal wave moving in the +ve x- direction.
What would the wave function be for a wave moving is —x direction?
If one follows a particular crest of the wave then the argument

of the sin function , ot KX e =m/2  dX,, @ £1- asbefore
d kO

Example. The end of a string is moved up and down sinusoidally with a frequency
f=2Hz with an amplitude 0.075 m such that the displacement is zero at t=0.

The resulting periodic wave has a velocity of 12.0m/s. (a) What are the amplitude
wavenumber, angular frequency and wavelength? (b)

What is the displacement as a function of time 3 m down from the end?



Wave function and speed of a wave

Consider a small element of the wave of length Ax on a string with mass per unit
length u which is under tension F. In equilibrium without any disturbance the string
lies on the x axis such y(x,t)=0. If there is disturbance we can show that wave
equation is satisfied for each and every element on the string.

i:_(@) . Z:‘F(Qj ;,'2‘;*.
F 8X X | F GX X+AX

Applying F=ma on this element leads to:
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Any disturbance of the string (with no external forces) can be described by

a wave function y(x,t) which must satisfy the above wave equation. In particular
Asin(ot—kx) will only be a valid solution if the wave speed v= fA=w/k=(F/n)2.
Note the wave speed is only a function of the string tension and mass per unit
length. It doesn’t depend on o (or f), k(or &) or A. Waves with different frequency
must propagate with the same speed. If the frequency of a wave is doubled
what happens to the wavelength?



Example

How long does it take for a wave pulse to travel up the rope? g 28

80.0m

= 20.0 kg
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Wave power and energy density for periodic wave on a string

Consider a small element Ax at a position X, on a string with periodic wave

y(x,t) = Asin(at —kx) t
y(%,t) = Asin(et —kxg) = Asin(@t +¢) o

The element is undergoing simple harmonic
motion and therefore the time averaged
energy of this small element : =t T ------------------- > X

max !

X
AE=K +U :%mv2 , wherev __ iSthe maximum velocity of the element
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Thus the energy density (kinetic plus g 4 ,
potential) or energy per unitlength ~ — = Eﬂ(Aw)
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The transmitted energy in one period T or t=2T
the average wave power is then N
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Principle of Superposition

This principle states that if one has two separate waves (pulsed or continuous)
propagating on a string (medium) described by wave functions y, (x,t) and y,(x,t)
then the total displacement of the string is given by a combined wave

function y(x,t) which is just a linear sum of the two separate wave functions:

y(X’t) - yl(X1t) + yz(X’t)

Show this function satisfies the wave equation.

2 2 2 2
a_Z:ﬁa Y. d z/:ﬁd Y it youdon't like partial derivatives
ox= F ot {dx* F dt

Why must this be true? Based of what you know about the simple
harmonic oscillator under what conditions would you expect the
wave equation and principle of superposition to breakdown for a string?

1.low frequency

2. high frequency
3. small amplitude
4. large amplitude



Principle of superposition applied to two opposite propagating pulses

case 1:

- - case 2:
amplitudes same sign

amplitudes of opposite sign
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Reflection at a Boundary fixed free

For waves on a string there are two different kinds of
reflections depending on the boundary conditions.

(a) For a fixed boundary the reflected wave has the
opposite sign. It is as if a second wave was coming from the
other side of the wall and arriving at the boundary at the
same time as the real wave. Since it has the opposite sign
the amplitude at the boundary is zero (by the principle of
superposition)as it must be. Any point where the amplitude
of the wave is always zero is called a node in the wave
function. The wave must have a node at the wall position.
(b) At a free boundary the string is free to move up and
down. Since the downward restoring force only comes from
one side the amplitude is twice the amplitude of the
incoming wave when the wave reaches the boundary. In this
case the reflected wave has the same sign as the incident
wave. At the boundary the amplitude of the string

Is at maximum. Any point where the amplitude of the wave
IS at a maximum is called antinode in the wave function. For
a free boundary there is an antinode at the wall position.
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Standing Waves

Consider a string which is fixed at both ends. One can create a wavefunction that
doesn’t appear to be moving in either direction. Every part of the spring
undergoes SHM as in a propagating periodic wave. How is the motion different
than in a propagating periodic wave? What do you notice about the amplitude as

function of position?
N A N A N

N = nodes A = antinodes
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One can also construct a standing wave pattern mathematically as a superposition
of two periodic waves traveling in opposite directions with amplitudes
which are equal in magnitude but opposite in sign.

y(x,t) = Alsin(wt + kx) —sin(at — kx)]

using sin(a+ b) = sin(a)cos(b) + cos(a)sin(b)

y(Xx,t) = Alsin ot coskx+ coswt Sin kx — Sin wt coskx + coswt sin kx|

= 2Asin kxcosat;

Where are the nodes in this function?



Now consider a string of length L, under
tension F with mass per unit length p
which is fixed of both ends. Any standing

wave. y(Xx,t) = 2Asinkxcosat;
will satisfy the wave equation

provided w = vk wherev=,/F / i

However, only standing waves with
particular values of k also satisfy the
boundary conditions that there be

a node at each end. For this to be
true : ni_ . 27 nr
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or y(x,t) = 2Asm(nTx)cos(th n=1234...

The integer n can be used to label the

so called normal modes of vibration. /\\I//\
\ = ;)” = \erlj = nf,; where f, :%lscalledthefundamentd frequency N \//-\/
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Thus the string can only vibrate at discrete frequencies determined by the condition
that a half integral number of wavelengths must equal the string length L.
What happens if the string has two parts?



Example: Consider a 50 cm string of mass 1.5g which is fixed at both ends.
There is a standing wave on the string with a vibration frequency of 1200 Hz.
Besides the ends there are two nodes in the string. What is the string tension?




Example

A 75 cm string is fixed at both ends. There are two normal modes of vibration
with frequencies of f,=420Hz and f,=315 Hz and no frequencies in between.
What is a wave speed?



Standing Waves with Open Boundary Conditions

Consider a string of length L, tension F, mass per unit length u which is fixed at one
end and free to move or open at the other. What type of standing wave is possible
with these boundary conditions? The form of the standing wave will be the same as

before and since it must satisfy the wave equation.
y(x,t) = 2Asinkxcosawt; with therestriction @ = vk wherev=,/F / u

However the boundary conditions are different. There must be a node at one end
and an antinode at the other end.
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L=A/4

only standing waveswhereL isan odd multipleof A/4 arepossible

L=3A/4  |f the wave velocity is 10m/s and string is 2 m long
what is the fundamental frequency?
What is the frequency of the second harmonic
L=5A/4 (second lowest frequency) if the string is open

at both ends?



Example. Consider a metal rod of length L. Let y(x,t) be the transverse displacement
of the rod away from equilibrium. y(x,t) satisfies the wave equation because each
element of the rod experiences a restoring force proportional to both d2y/ dx2 and the
stiffness of the rod. This is the similar to a string under tension.

Suppose one holds the rod at its midpoint. Then you create a transverse standing
wave. If the lowest frequency for transverse vibration is f, what is the velocity for
transverse wave propagation? What is the lowest frequency of vibration

if the rod is held at a distance L/4 from an end?



Normal Modes and Standing Waves

Consider a string (length L, tension F and

mass/length p). Each normal mode of the N A N
. . . . . 1 .
vibrating string ( standing wave) is labeled by 1 . || Fundamental frequency.
. .. = f2=L >
an integer n and has a characteristic i
wavenumber K, vibration frequency f, and
wave function y_(X,t) N A N A LI ——.
1 First overtone )
K 2t _nm, P 2L < 2312=L >
T T AT (n=2
n
N
0] nv F , : .
f,=—=nf,=—; wherev= ’— gt N e T *i“ Third harmonic, f,
2w 2L MU | Second overtone
: < 3A2=L >
Y, (X,t) = Asin(k,X) cos(2xf t) © n=3
. (Nnm nnv
Ya(X,1) = AS n[— Xj CO{_t] N A A N A N A N
L L 1 I Fourth harmonic, f,
L ¥ Third overtone
< 42/2=L 21
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Note any linear combination (superposition) of normal mode wave functions also
satisfies the wave equation and boundary conditions and is therefore a possible
mode of vibration. However normal modes are the simplest type of vibration or wave
function since all parts of the string vibrate at a single frequency.



Superposition of Normal Modes

Now suppose the string is plucked at t=0 i i I
(i.e. pulled at one point X, and then | T ) = A2 sin 2k
released). Then at t=0 the wave function 2 . Y
. . LY o —— -
looks like a trlangle Y actual(X:0)]. | ¥,060) = (A/9) sin 3,x
One can approximate y,,,(x.0) as a linear o (x0)
combination of the first three normal mode vl
wave functions evaluated at t=0. S
. . . (x,0) = vy, (x,0) + v,(x,0) + v,(x,0)
What is the time dependence of the string i e o
at x=L/27?
N N
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y(x,t) = Alsin(k,x) cos(kvt) + 2J/2s n(2k,x) cos(2kvt) + %si n(3k,x) cos(3k,vt)]

L . (7 T . (27 27 1. (37 3
y(z 1) =AS n(t x) CO{I vtj +24/25 n(T xj CO{T vtj + §SI n(T xj cos(T vtj]
- A{cos(z vtj 1 cos(?’—7Z vtﬂ
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Note in general the string may vibrate at the fundamental frequency f; plus

all the higher harmonics which are multiples of the fundamental. The amplitude of
the vibration at each frequency will depends on how the string is plucked

(initial position) and where on the string you measure the vibration.




Wave Equation and Velocity for a Compressional Wave

In a compressional wave(e.g. sound) the displacement is in the direction of
wave propagation. Consider a thin layer of material with density p of area A in
equilibrium (slab a) . As the wave passes the back face of the slab is displaced
by &, and the front face by &, The displaced slab is as shown in (b).

The net force on slab at (b) is equal to

the pressure difference (Ap) on both sides

of the slab times area A. Applying F=ma to the
slab with center of mass displacement &

vod¥ dp d%.
— APA = ( pAAX' or —=  Egnl
PA=(PAAX) - or = =P+ Ed

Now use the bulk modulus (B) to evaluate LHS

p:BAV:B_A(é:Z_fl): BA_gz |_3,d_(f
\Y AAX AX dx
dp d2&
—=-B , Egn 2
dx v
: : : d’¢ pd
Inserting Eqn2 into Eqn 1 gives B d
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; comparewith wave equation for astring

what isthewavevelocity = 7?
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Wave velocity in an ideal gas

Recall PV” = a(constant) inand ideal gasfor an adiabatic process
P=aV™; wherey=C /C,

3_\7 =—yaN 7 =PV VT =PV
dP

T B=

av iy PTBER

but LHS= —bulk modulus B and therefore the velocity

\/E P
p \p
m_nM

substitutein p=—=—=M i; using PV =nRT
vV Vv RT

V= ‘/%; whereM isthe molar mass. Note independent of pressure!

Example: What is the velocity of sound in air 300K ?
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