Formula Sheet

$$
\begin{gathered}
P V=N k T \quad P V=n R T \quad k N_{A}=R \\
\bar{K}_{\text {trans }}=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \\
U_{\text {trans }}=N \bar{K}_{\text {trans }}=\frac{3}{2} N k T=\frac{3}{2} P V \\
U_{t h e r m a l}=N \cdot f \cdot \frac{1}{2} k T \\
\Delta U=W+Q \\
W=-P \Delta V \quad \text { for constant pressure } \\
W=-\int P d V \quad \text { for variable pressure }
\end{gathered}
$$

For isothermal compression, $P V=$ const
For adabiatic compression, $V T^{f / 2}=$ const and $V^{(f+2) / f} P=$ const

$$
C=Q / \Delta T
$$

For the ideal gas, $C_{V}=f N k / 2$ and $C_{P}=(f+2) N k / 2$

Multiplicity of the two-state paramagnet:

$$
\Omega(N, q)=\binom{N}{q}
$$

Multiplicity of the Einstein solid:

$$
\begin{aligned}
\Omega(N, q) & =\binom{N+q-1}{q} \\
N! & \approx N^{N} e^{-N} \sqrt{2 \pi N} \\
N! & \approx N^{N} e^{-N} \\
\ln N! & \approx N \ln N-N
\end{aligned}
$$

For x small, we have:

$$
\begin{gathered}
f(x)=f(0)+\left.\frac{d f}{d x}\right|_{x=0} x+\left.\frac{1}{2} \frac{d^{2} f}{d x^{2}}\right|_{x=0} x^{2} \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
(1+x)^{\alpha}=1+\alpha x+\frac{1}{2} \alpha(\alpha-1) x^{2}+\ldots
\end{gathered}
$$

$$
S=k \ln \Omega
$$

$$
\begin{gathered}
T \equiv\left(\left(\frac{\partial S(U, N, V)}{\partial U}\right)_{N, V}\right)^{-1} \\
P=T\left(\frac{\partial S}{\partial V}\right)_{U, N} \quad \mu=-T\left(\frac{\partial S}{\partial N}\right)_{U, V}=\left(\frac{\partial U}{\partial N}\right)_{S, V} \\
d S=\frac{Q}{T} \quad \text { quasistatic, reversible only } \\
\Delta S=\int_{T_{i}}^{T_{f}} \frac{\left.C_{[V} \text { or } P\right]}{T} d T
\end{gathered}
$$

The entropy of a monatomic ideal gas is:

$$
S(N, V, U)=k N\left[\ln \left(\frac{V}{N}\right)+\frac{3}{2} \ln \left(\frac{U}{N}\right)+\frac{3}{2} \ln \left(\frac{4 \pi m}{3 h^{2}}\right)+\frac{5}{2}\right]
$$

Efficiencies and Costs of Operation:

$e=\frac{W}{Q_{i n}}$, where $W=Q_{i n}-Q_{o u t}, Q_{i n}=Q_{h}, Q_{o u t}=Q_{c}$

$$
e_{\max }=e_{C a r n o t}=1-\frac{T_{C}}{T_{H}}
$$

$$
\mathrm{COP}=\frac{Q_{i n}}{W}, \text { where } W+Q_{i n}=Q_{o u t}, Q_{i n}=Q_{c}, Q_{o u t}=Q_{h}
$$

$$
\mathrm{COP}_{\max }=\frac{T_{c}}{T_{h}-T_{c}}
$$

Enthalpy $H=U+P V$
Helmholtz free energy $F=U-S T$
Gibbs free energy $G=U+P V-S T=H-S T$

$$
\begin{array}{cc}
d U=T d S-P d V+\mu d N, & \mathrm{U}=\mathrm{U}(\mathrm{~S}, \mathrm{~V}, \mathrm{~N}) \\
d H=T d S+V d P+\mu d N, & \mathrm{H}=\mathrm{H}(\mathrm{~S}, \mathrm{P}, \mathrm{~N}) \\
d F=-S d T-P d V+\mu d N, & \mathrm{~F}=\mathrm{F}(\mathrm{~T}, \mathrm{~V}, \mathrm{~N}) \\
d G=-S d T+V d P+\mu d N, & \mathrm{G}=\mathrm{G}(\mathrm{~T}, \mathrm{P}, \mathrm{~N}) \\
G=N \mu &
\end{array}
$$

Clausius-Clapeyron:

$$
\frac{\partial P}{\partial T}=\frac{L}{T \Delta V}
$$

At constant V, U and N, S goes to a maximum At constant V, T and N, F goes to a minimum At constant P, T and N, G goes to a minimum

$$
\beta \equiv \frac{1}{k T}
$$

$$
\begin{gathered}
\text { s - state label } \\
Z(T) \equiv \sum_{\text {all states s }} e^{-\beta E(s)} \\
Z(T)=\sum_{\text {all energies } \mathrm{E}} \Omega(E) e^{-\beta E} \\
P(s)=\frac{1}{Z} e^{-\beta E(s)} \\
P(E)=\frac{1}{Z} \Omega(E) e^{-\beta E} \\
\bar{X}=\sum_{s} X(s) P(s) \\
U=N \bar{E}=-\frac{N}{Z_{1}} \frac{d}{d \beta} Z_{1}(\beta)=-\frac{1}{Z_{N}} \frac{d}{d \beta} Z_{N}(\beta)
\end{gathered}
$$

Maxwell speed distribution $\mathcal{D}(v)$ in an ideal gas:

$$
\begin{gathered}
\mathcal{D}(v)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{2} e^{-m v^{2} / 2 k T} \\
F=-k T \ln Z \\
S=-\left.\frac{\partial F}{\partial T}\right|_{V, N}=k \ln Z+\frac{U}{T} \\
Z_{N}=\left(Z_{1}\right)^{N} \quad \text { for distinquishable particles } \\
Z_{N}=\frac{1}{N!}\left(Z_{1}\right)^{N} \quad \text { for indistinquishable particles }
\end{gathered}
$$

Entropy of the ideal gas with f quadratic degs of freedom

$$
S(T, V, N)=k N\left[\ln \left((\text { constant }) \frac{V}{N}(k T)^{f / 2}\right)+\frac{f+2}{2}\right]
$$

Bose-Einstein (bosons) statistics:

$$
\bar{n}_{B E}=\frac{1}{e^{\beta(\epsilon-\mu)}-1}
$$

Fermi-Dirac (fermions) statistics:

$$
\bar{n}_{F D}=\frac{1}{e^{\beta(\epsilon-\mu)}+1}
$$

Planck distribution (blackbody radiation):

$$
\begin{gathered}
\mathcal{I}(\epsilon)=u(\epsilon)=\frac{8 \pi\left(\frac{\epsilon}{h c}\right)^{3}}{e^{\beta \epsilon}-1} \\
\frac{U}{V}=\int_{0}^{\infty} \mathcal{I}(\epsilon) d \epsilon=\int_{0}^{\infty} u(\epsilon) d \epsilon=\frac{8 \pi^{5}}{15} \frac{(k T)^{4}}{(h c)^{3}} \sim T^{4}
\end{gathered}
$$

Stefan's law (blackbody emission):

$$
\begin{aligned}
\frac{\text { power }}{A} & =\frac{c}{4} \frac{U}{V}=\sigma T^{4} \\
\sigma=\frac{2 \pi^{5}}{15} \frac{k^{4}}{(h c)^{3}} & =5.67 \cdot 10^{-8} \frac{W}{m^{2} K^{4}}
\end{aligned}
$$

