
Physics 313 Problem Set 2

Important concepts from lectures 2-4

Notation:

T - temperature

P - pressure

V - volume

n - number of moles

N - number of molecules/atoms

U - internal energy

W - work

Q - heat

f - number of quadratic degrees of freedom

C - heat capacity

CV - heat capacity at constant volume

CP - heat capacity at constant pressure

R - gas constant

k - Boltzmann constant

NA - Avogadro’s number

—

When two objects at different temperatures are in thermal contact with each other, energy

(in form of heat) flows spontaneously from the hotter object to a colder one. Once the objects

have been in contact long enough, they reach equilibrium and energy stops flowing.

When two objects are in equilibrium, they have the same temperature. So, we define:

temperature is ”this thing” which is the same for all objects in equilibrium. Temperature is

also (another definition) a measure of the tendency of an object to give off heat.

—

Every system has certain properties which depend only on its current physical state (and

not on how the system was prepared). These are called functions of state. Examples:

temperature, pressure, volume, density, number of molecules, internal energy...

Heat is not a function of state, and neither is work!

—

To know everything about an ideal gas, all you need is 3 parameters (N, T and V; or P,

V and N; or ...) There are however 4 basic parameters of a gas: P, V, N, T. They cannot be

independent, then. The equation which links them is the Ideal Gas Law:

PV = NkT or PV = nRT

The constants k and R are connected by Avogadro’s number: k NA = R (to remember

this, think ‘k is per molecule, R is per mole’).

—



Average translational kinetic energy of a molecule in ideal gas is

K̄trans =
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The total internal energy due to translational motion alone is

Utrans = NK̄trans =
3
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PV

—

The Equipartition Theorem focuses on quadratic degrees of freedom. These have energies

of the form
1

2
(const)(coordinate)2

where the coordinate is in phase space (position + momentum). Examples:

1

2
m(vx)

2 translational kinetic energy

1

2
k(x)2 vibrational potential energy

1

2
I(ω)2 rotational kinetic energy

Examples of how to count the available degrees of freedom were given in class. Remember

that at any given temperature some degrees of freedom might be frozen out.

Equipartition Theorem: Uthermal = N · f · 1
2
kT

—

Temperature - tendency of the system to give up heat spontaneously.

Energy (U) - total energy in the system. A sum of all kinetic and potential energies of all

particles, all internal energies, quantum energies, etc...

Work (W) - energy transfer via macroscopic variables (ex, pushing on a piston, changing

the magnetic field)

Heat (Q) - energy transfered on a molecular level due to a difference in temperatures.

—

Types of heat exchange: conduction, convection, radiation.

—



First law of thermodynamics (also knows as Conservation of Energy):

∆U = W + Q

Q and W are defined as changes only, you cannot say ’the system has this much heat and

this much work in it’, you can only say ’this much work was done on the system’ and ’this

much heat has flown into it’.

—

Compression work

W = −P∆V for constant pressure

W = −
∫

P dV for variable pressure

—

We discussed in class the compression of ideal gas: adiabatic (no heat flow) and isothermal

(constant temperature).

• for isothermal compression, PV = const

• for adabiatic compression, V T f/2 = const and V (f+2)/fP = const

—

Heat capacity is the amount of heat you need to add to a system to raise its temperature

by a unit. C = Q/∆T .

This definition needs to be supplemented with information about the conditions under

which the heating is happening, such as constant volume or constant pressure. For example,

for the ideal gas, CV = fNk/2 and CP = (f + 2)Nk/2.

Enthalpy is defined as H = U + PV .



Problem Set
Due at the end of class, Wednesday September 17th (late assignments will not be accepted).

1. Compute the root-mean-squared velocity (ie,
(
v2

)1/2
) of oxygen, nitrogen, carbon dioxide,

helium and xenon molecules/atoms at room temperature, assuming that the equipartition

of energy holds.

2. How many quadratic degrees of freedom are there per molecule in the following cases:

(a) Cubic crystal in D spatial dimensions

(b) Monoatomic gas in D spatial dimensions

(c) Diatomic gas in 2 spatial dimensions, assuming that

(i) Vibrations are frozen out, but rotations are not

(ii) Nothing is frozen out

3. The table below contains constant volume heat capacities (taken from the CRC hand-

book for Physics and Chemistry), for a few substances at room temperature. Estimate the

constant volume heat capacities of these substances using the equipartition theorem, and

compare to the data in the table. Is the equipartition theorem doing well?

Substance Phase at room temperature Cv [J/(g K)]

Fluorine (F2) gas 0.605

Hydrogen (H2) gas 10.1

Helium gas 3.11

Ammonia (NH3) gas 1.61

Iron solid 0.444

Aluminum solid 0.900

4. Start with one mole of pure oxygen O2 at temperature T and volume V .

(a) The gas is compressed adiabatically until its pressure is tripled. Compute (as a

function of V and T ), the final volume at the end of the compression, the final temperature

and the total work done.

(b) After the adiabatic compression in part (a), the gas is allowed to cool back down to

its original temperature T at constant volume. Compute the final pressure at the end of this

cooling, and the amount of heat emitted.

5. Schroeder problem 1.37 (page 26)

6. Schroeder problem 1.47 (page 33). You will find some useful data just above the problem.


