
Physics 313 Problem Set 10

Important concepts from lectures 32-35

To deal with (noninteracting) quantum gases we changed our focus from particles to 1-

particle states and allowed the number of particles N to fluctuate, making the chemical

potential µ constant instead. This is analogous to fixing the temperature and allowing the

internal energy to fluctuate, which lead us to the Boltzmann factor. Fixing µ and allowing

N to fluctuate leads to the Gibbs factor, the probability of having n particles is state s which

has energy Es

P (s, ns) ∼ e−β(Es−µ)ns

The grand partition function for a single particle state with energy ε is

Z(T, µ, ε) ≡
∑
n

e−β(ε−µ)n (1)

where the sum is over all allowed particle numbers in that state.

To obtain the total grand partition function for the whole system, multiply the individual

Z together for all states

Z(T, µ, V ) ≡
∏
s

Z(T, µ, ε(s))

—

The grand partition function is typically used to calculate the average occupation number,

and all further calculations start from there. There are two cases:

• Bosons - any number of bosons can occupy the same state (Bose-Einstein statistics).

The sum in (1) is therefore over all n from 0 to infinity. We have shown that

Z =
1

1− e−β(ε−µ)

and that the average occupation number is

nBE =
1

eβ(ε−µ) − 1

• Fermions - two or more fermions can never occupy the same state (Pauli exclusion

principle). This gives the Fermi-Dirac statistics. The sum in (1) is therefore reduced

to n = 0, 1. We have then that

Z = 1 + e−β(ε−µ)

and the average occupation number is

nFD =
1

eβ(ε−µ) + 1



—

Notice that the formulas for bosons make no sense if µ > ε. When µ is raised as high as the

lowest energy state in any system, all the particles collapse to that one state! this is called

Bose-Einstein condensation (BEC) – check out the course website for links to more info on

this topic.

—

One of the most important examples of Bose-Einstein statistics is Black Body Radiation

(BBR).

The energy spectrum of a BBR in a box is the so-called Planck distribution

I(ε) =
8π

(
ε
hc

)3

eβε − 1

Just like the Maxwell speed distribution, this function lives to be integrated. The most

intense energy (the peak of I(ε)) is at εMAX = (2.82)kT (Wien’s law). The total energy per

volume is
U

V
=

∫
I(ε)dε =

8π5

15

(kT )4

(hc)3
∼ T 4

—

One of Nature’s nearly perfect examples of BBR is the Cosmic Microwave Background (check

out the course website for more info on this topic).

—

A Black Body (BB) is something whose surface absorbes all indident light. Power radiated

by the surface of a BB per its area is (Stefan’s law)

power

A
=

c

4

U

V
= σT 4

where σ is the Stefan-Boltzmann constant

σ =
2π5

15

k4

(hc)3
= 5.67 · 10−8 W

m2K4

A BB radiates with the Plank spectum above, propertly normalised.



Problem Set
Due at the end of class, Friday November 28th (late assignments will not be accepted).

1. (a) Show that the peak of the Planck spectrum as a function of energy is at εMAX =

2.82kT .

(b) Rewrite formula (7.83) in the book so that the integration is over the wavelength

λ = hc/ε instead over the energy ε and find λMAX , where the wavelength distribution peaks.

Note: you will not get that λMAX = hc/εMAX .

(c) Find λMAX for the Sun (T=5800K). What color does that correspond to? (look it up!)

2. Show that the photon density in a BBR gas of photons is proportional to T 3 (you

do not need to calculate the coefficient of this proportionality).

3. Schroeder 7.45, page 297.

4. Schroeder problem 7.55, page 307.

5. Schroeder problem 7.56, page 307.

6. A satelite is in orbit around the Earth, where the intensity of solar radiation (the so

called solar constant) is 1370 W/m2. The surface temperature of the Sun is 5800K.

(a) Imagine the temperature of the Sun suddenly decreased by a factor of 2. What would

then be the intensity of radiation experienced by the satellite?

(b) The satelite has an array of solar batteries, pointed at the Sun., absorbing the blackbody

radiation the Sun is emitting. The total area of this array is 5m2. To be converted into elec-

tricity, the energy of the absorbed photon must be at least 1.5eV. Any photon with energy

below this threshold is wasted. Any photon with energy above the threshold is converted

to electrical power with 80% efficiency. Estimate the electrical power (in watts) the array is

producing.

You will find the following table of integral values useful:

y
∫ y
0

x3

ex−1
dx

1 0.225

2 1.18

3 2.55

4 3.88

5 4.90

6 5.59

∞ π4/15 = 6.49


