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Lec 1

Welcome to PHYS 312:
Introduction to Mathematical Physics

Instructor: Joanna Karczmarek (karch-MA-rek, she/her)

Format: In person, attendence is required.

However: do not come to class if you are sick.

I will provide accomodations when you have to miss class.

Most of this course is about two connected topics:

• linear (partial) differential equations

and

• Fourier series.

We will also discuss

• the physical derivations and interpretations of the

differential equations we study,

• common special functions (Bessel, Legendre, spherical har-

monics . . .),

• Fourier transforms.
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Applications:

• Quantum mechanics (PHYS 304, 402)

• Electromagnetism (PHYS 301, 401)

• Vibrations and Waves, Fluid mechanics, Quantum Field

Theory, General Relativity, . . .

We will be using the language of Linear Algebra to unify the

material into a single framework so we can see the patterns more

clearly. This is also the language that Quantum Mechanics is

written in (quantum states = vectors).

Linear Algebra is in some ways more important than Calculus:

it is the basis of most numerical computations, machine learning,

image processing, etc. . .

Some practical details:

• Everything will go through Canvas

• Come to class! We will do a lot of worksheets and similar

activities, and there will be a participation component in

your grade (10%).

• Please participate in class: interrupt me, ask questions,

discuss with others.

• There will be weekly HW, due Tuesdays at class time, paper

or PDF (15%). The first is due this Tuesday.

• We will have 5 tests (every second Thursday, basically, see

Syllabus for dates) and a final exam, for a total of 75%.

• Exam = 3 tests; 5 + 3 = 8, your 6 best count (so each test

is 12.5% and the exam is at most 37.5%).

No required textbook. A list of free on-line books, notes and

other resources is listed in the Syllabus.

If you cannot come to class, email me in the morning!

Accomodations include a 24 hour window to hand in a

completed worksheet via Canvas and a possibility of making a

missed. Lectures will not be recorded.

Questions?
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The goal of today’s lecture is to learn a technique called

‘separation of variables’, which allows us to take a partial

differential equation (ie, an equation involving partial derivatives

of a function of several variables) and decompose it into several

ordinary differential equations (which in principle you know how

to solve already).

When this method fails (equation is not separable), this

course will have very little to say about the solutions.

We start with the definition of a function.

A function f with domain X and range Y is a rule or a

process that associates to every element of X exactly one

element of Y : f : X → Y .

Example 1: let X and Y be the real numbers. Let f be the rule “for every real number

x ∈ X, output half of x2”.

This function can be described by a simple formula: f(x) = 1
2
x2.

Its graph is the set of pairs of numbers {(x, y)|y = 1
2
x2}. When those pairs are represented

as points on x-y plane, the result is a parabola (the graph of the function).

Example 2: Let X and Y be real numbers again. Consider a rule that associated to ev-

ery number x a solution y of the equation y2 − (2 + x2)y + 1 = 0. Is this a function?

1. The equation has a solution for every x, good. (∆ = (2 + x2)2 − 4 = 4x2 + x4 ≥ 0)

2. For some x, there is more than one solution, bad. The rule should not be ambiguous.

We will fix it: associate with x the largest solution y to the equation. Now, every x has a

corresponding y. We can write down a formula, too

y = f(x) =
2 + x2 +

√
4x2 + x4

2
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Example 3: Repeat example 2, but with this equation: y5 + xy3 + 3y2 − y + 7 = 0. While

this defines a perfectly good function, there is no simple formula we can write down! It is

possible to graph it, though.

I could introduce a notation for the function in the last example, say y = F(x). Here, F
is the function (F : R→ R), while F(x) is the value of the function at x.

I can even make it more general and denote the largest (real) root of y5+xy3+ay2−by+c = 0

by Fa,b,c(x). This notation stresses that we are considering a large family of functions, Fa,b,c
whose domain is the set of real numbers R. Each member of the family is labelled by three

real parameters a, b and c.

Alternatively, I could consider a G function whose domain is R4 and write y = G(x, a, b, c).

The line between a parameter and a variable is a matter of definition.

We will define a lot of special functions in this course; it helps to remember that they

are just notation for rules that cannot be expressed by a simple formula.

Ok, let’s do a worksheet question.

1. Consider two functions, F : R → R and G : R → R. Given the following proper-

ties:

1. for all values of x and y, F (x) = G(y) and

2. F (0) = 3 ,
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find the functions F and G.

2. What real functions A and B have the property that, for all x and y, A(x) + B(y) = 2?

Make sure you find all of them!

We are now ready for separation of variables. Consider the following differential equation:

∂

∂x
ϕ(x, y) + 2

∂

∂y
ϕ(x, y) = 5ϕ(x, y)

To find some solutions of this equation, we will assume that there exist solutions of the form

ϕ(x, y) = f(x)g(y). Obviously, that’s a big assumption! so maybe we won’t find all possible

solutions, but maybe we can at least find some. Let’s see what happens. Substituting, we

get

f ′(x)g(y) + 2f(x)g′(y) = 5f(x)g(y)

Divide both sides by f(x)g(y):
f ′(x)

f(x)
+

2g′(y)

g(y)
= 5

Now, we can think of f ′(x)
f(x)

= A(x) and 2g′(y)
g(y)

= B(y). We have an equation similar to the

worksheet question 2: A(x) + B(y) = 5. We know that A(x) and B(y) must be constant

functions! but we don’t know what those constants are. Invent some names:

f ′(x)

f(x)
= A(x) = a

2g′(x)

g(x)
= B(x) = b

and the original equation becomes a + b = 5, or b = 5 − a. So, we have two equations to

solve:

f ′(x) = af(x)

g′(x) = (5− a)g(x)

These are ordinary differential equations which you are (supposed to be) able to solve al-

ready. We will review that soon.

For now, we want to practice this trick some more. Let’s do a slightly more involved question

(Laplace equation in 2d in cylindrical coordinates).

1

r

∂

∂r

(
r
∂

∂r
ϕ(r, θ)

)
+

1

r2
∂2

∂θ2
ϕ(r, θ) = 0
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Ansatz: ϕ(r, θ) = f(r)g(θ). Substitute:

1

r

∂

∂r

(
r
∂

∂r
f(r)

)
g(θ) + f(r)

1

r2
∂2

∂θ2
g(θ) = 0

Divide by f(r)g(θ) to try to isolate the variables:

∂
∂r

(
r ∂
∂r
f(r)

)
rf(r)

+
1

r2
g′′(θ)

g(θ
= 0

Following our previous argument, consider the function G with formula G(θ) = g′′(θ)/g(θ).

Let G(0) = λ, labelling an unknown value. Consider our above equation at a fixed value of

r (say 6) and a different value of θ, say θ = 2. We have that

∂
∂r

(
r ∂
∂r
f(r)

)
rf(r)

∣∣∣∣∣
6

+
1

62
λ = 0

∂
∂r

(
r ∂
∂r
f(r)

)
rf(r)

∣∣∣∣∣
6

+
1

62
G(2) = 0

Clearly, we must have G(2) = G(0) = λ. The argument can be repeated for every value

of θ (not just 2), to show that G must be a constant function, with a formula G(θ) = λ.

Therefore, the separated equations are

g′′(θ) = λg(θ)

and
1

r

∂

∂r

(
r
∂

∂r
f(r)

)
= − 1

r2
λf(r)

It’s now your turn!

3. Separate variables in the following partial differential equation.

∂3

∂x3
ϕ(x, y, z)− ∂

∂x

∂

∂y
ϕ(x, y, z) +

∂2

∂z2
ϕ(x, y, z) = 4x2ϕ(x, y, z)
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On the first Homework,

the last question will asked

you to show that a given

function is a solution to

a differential equation. In

other words, you are asked

to show that when the func-

tion given is substituted into

the equation, the equation

holds.

Let’s clarify what a proof is.

Example: show that f(x) = e3x solves f ′(x) = 3f(x).

Presentation 1: Let f(x) = e3x. Clearly, 3e3x = 3f(x).

Also, d
dx
e3x = 3e3x by the usual rules of differentiation. Putting

this together, we have

f ′(x) =
d

dx
e3x = 3e3x = 3f(x)

Therefore, f ′(x) = 3f(x) as required.

Presentation 2: Let f(x) = e3x. Consider the differential

equation f ′(x) = 3f(x):

LHS = f ′(x) = 3e3x = 3f(x) = RHS �

Hand in your worksheets (for participation grades, we will not

grade for correctness).

For HW 1, which is due on Tuesday, you will separate

variables in several more equations.

HW 1 is posted on Canvas already.
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Lec 2
1. Separate the equation

∂2

∂x2
u(x, y, z) +

1

x

∂

∂x

∂2

∂y2
u(x, y, z) +

2

x2
∂

∂z
u(x, y, z) = 0

Let’s solve these equations one by one. This will cover the most common equations in

the course. The first two are linear equations with constant coefficients. The third is a

different type of equation, called Cauchy-Euler, or equidimensional equation. It is special

because it is homogeneous: every term has the same power of x (derivatives count).

We will use the same approach to both kinds of equations: write down an ansatz (ie,

a guess) of the right form with an unknown parameter, substitute this ansatz into the

differential equation, simplify to obtain an auxiliary equation, solve auxiliary equation for

the parameter.

In general, linear differential equations with constant coefficients are solved by exponen-

tials, the ansatz being of the form ekx. For the Cauchy-Euler equation, the ansatz is a power

law, xp.

A useful fact about differential equations to remember is first degree equations should

have a one parameter family of solutions, second degree equations a two parameter family,

etc... We therefore expect one solution to the auxiliary equation for a first order differential

equation, two solutions for a second order one, etc...

Let’s now solve the three equations in turn.

h′(z) = αh(z) → h(z) ∼ eαz

The easiest way to see that is to realize that it’s exponential functions that are proportional

to their own derivatives, try ekx and get that k = α. Notice that this first degree differential

equation has a one parameter family of solutions for every α: h(z) = ceαz, where c is any

constant.

It’s always good to ask whether there are some special corner cases we are missing. Here,

α = 0 is special since the solution is then a constant function. This, however, works: the

constant function h(z) = c is a solution to the equation h′(z) = 0.

g′′(y) = βg(y)

This equation has constant coefficients, so we try an exponential: g(y) = eky (this k is not

the same as the previous k). Substituting, get k2 = β. Looks like we are going to have to

consider some cases, because β does not need to be a positive number. Keep in mind that

we expect two solutions even if β is negative!

Case 1: β > 0, and k = ±
√
β are the two solutions of the auxiliary equation. Since

the differential equation is linear, we can add any two solutions to get new solutions, and we

write down the most general solution as g(y) = c1e
√
βy + c2e

−
√
βy, clearly a two parameter
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family, as expected.

Case 2: β = 0 (The quadratic equation k2 = β has a double root.) It seems here that

we get only one solution, a constant. But that cannot be right, since second order equations

must have two solutions. Let’s re-examine this from the start: the equation is g′′(y) = 0,

and it has as the most general solution g(y) = c1y + c2.

Case 3: β < 0, k is imaginary: k = ±
√
β = ±

√
−|β| = ±

√
−1
√
|β| = ±i

√
|β| = ib

where β = −b2 and b is positive. Solutions are g(y) = c1e
iby + c2e

−iby.

When solving physical problems, usually only one of these cases will be relevant given what-

ever boundary conditions and symmetries have to be applied. But it’s good to see all three

cases since you never know which one you are going to need.

Looking at Case 3 again, we can ask what is eiby? and how come we end up with an

imaginary/complex solution to a real problem? does the problem have a real solution? you

might remember that there are real solutions to this equation of the form sin(ky) and cos(ky).

Where are those in this analysis?

To answer all these questions, let’s go back and review some things about complex numbers.

Interlude: complex numbers

Why do we need complex numbers?

When solving real problems, it seems unnecesary to introduce complex numbers at all.

But it turns out that they actually simplify (and unify) our thinking.

Let’s recall: we have an auxiliary equation k2 = β and we expect two solutions for the

original differential equation. It would be convenient, then, to be able to say that ‘(nearly)

all quadratic equations have two solutions’.

This is in fact what complex numbers buy us (and why they were invented). In the field

of complex numbers, all polynomial equations have at least one root. And if we count double

(and higher) roots as distinct ones, an n-th degree polynomial has n roots.

So, what is the field of complex numbers? it is an extension of the real numbers, where we

add a formal new element called i such that i2 = i · i = −1. A complex number has a form

x + iy where x and y are real numbers. x is called the real part, y is called the imaginary

part. All the standard rules of arithmetic (operations involving +,-,*,/ and integer powers)

apply to complex numbers (addition and multiplication are associative and commutative,

multiplication distributes over addition, etc...).

Let z = x + iy be a general complex number. Other basic definitions are: the complex

conjugate, z̄ = z∗ = x − iy and the magnitude: |z| =
√
x2 + y2, where the positive root is

understood.

Let’s do some exercises.
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Definitions (memorize these)

i2 = −1

Let z = x+ iy. Then,

Complex conjugate:

z̄ = z∗ = x− iy

Magnitude:

|z| =
√
x2 + y2

Note that |z| = 0 iff z = 0.

2.

(a) Show that zz̄ = |z|2

(b) Solve the above for 1
z

and write down a formula for 1
z

in terms of x and y.

(c) Let β be a negative real number. Show that k = ±i
√
|β| are solutions to the equation

k2 = β. Clearly explain where you assumed that β is negative.

We now need some more sophisticated functions of complex numbers. These can be de-

fined from basic arithmetic operations using Taylor expansions. Let’s start with

ex = 1 + x+
1

2
x2 +

1

3!
x3 + . . . =

∞∑
k=0

1

k!
xk

d

dx
ex =

d

dx

∞∑
k=0

1

k!
xk =

∞∑
k=0

1

k!

d

dx
xk =

∞∑
k=0

k

k!
xk−1 =

∞∑
k=1

1

(k − 1)!
xk−1 =

∞∑
n=0

1

n!
xn = ex

where on the last step we redefined n = k − 1.

ex+y =
∞∑
n=0

1

n!
(x+ y)n =

∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
xkyn−k =

∞∑
k=0

∞∑
j=0

1

k!j!
xkyj =

(
∞∑
k=0

1

k!
xk

)(
∞∑
j=0

1

j!
yj

)
= exey

where going from the first to the second line we defined j = n−k.
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This Taylor expansion definition works for complex numbers just as well. Let x be real (we

are not going to differentiate wrt a complex number here) but α be potentially complex.

Then

eαx =
∞∑
k=0

1

k!
αkxk

d

dx
eαx =

d

dx

∞∑
k=0

1

k!
αkxk =

∞∑
k=0

k

k!
αkxk−1 =

α

∞∑
k=1

1

(k − 1)!
αk−1xk−1 = α

∞∑
n=0

1

n!
αnxn = αeαx

Next, as you can imagine, we want to establish a connection to trigonometric functions, and

the formula eiθ = cos θ + i sin θ. There are two different ways to do that. One is to look at

the real and imaginary parts of the Taylor expansion of eiθ:

eiθ = 1 + iθ +
1

2
(iθ)2 +

1

3!
(iθ)3 +

1

4!
(iθ)4 + . . .

=

(
1− 1

2
θ2 +

1

4!
θ4 + . . .

)
+ i

(
θ − 1

3!
θ3 + . . .

)
= cos θ + i sin θ

or, more formally:
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eiθ =
∞∑
k=0

1

k!
ikθk =

∞∑
n=0

1

(4n)!
i4nθ4n +

∞∑
n=0

1

(4n+ 1)!
i4n+1θ4n+1+

∞∑
n=0

1

(4n+ 2)!
i4n+2θ4n+2 +

∞∑
n=0

1

(4n+ 3)!
i4n+3θ4n+3 =

where we broke the single sum over integers into four sums based

on the reminder when k is divided by 4.

Next, we will use that i4 = 1, which implies that i4n = 1,

i4n+1 = i, i4n+2 = −1 and i4n+3 = −i.

=

(
∞∑
n=0

1

(4n)!
θ4n −

∞∑
n=0

1

(4n+ 2)!
θ4n+2

)
+

i

(
∞∑
n=0

1

(4n+ 1)!
θ4n+1 −

∞∑
n=0

1

(4n+ 3)!
θ4n+3

)
=

(
∞∑
m=0

1

(2m)!
(−1)mθ2m

)
+

i

(
∞∑
m=0

1

(2m+ 1)!
(−1)mθ2m+1

)
=

cos θ + i sin θ

where we used the Taylor expansions of sin and cos.

A simpler way to think about this relies on the fact that cos(θ) is the unique solution of the

differential equation f ′′(θ) = −f(θ) with f(0) = 1 and f ′(0) = 0. This is quite instructive,

so let’s go over it.

3. Solve the problem f ′′(θ) = −f(θ), f(0) = 1, f ′(0) = 0 using an exponential ansatz

f(θ) = ekθ.

Now, recall that the unique solution to this problem is cos(θ). Therefore, cos(θ) = eiθ+e−iθ

2
.

Similarly, we can prove that sin(θ) = eiθ−e−iθ
2i

. Then, cos θ + i sin θ = eiθ.

One particular value of θ makes a neat little fact: eiπ = −1, or eiπ + 1 = 0. All the most

important numbers tied together into one equation.
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Equations to memorize:

ex = 1 + x + 1
2x

2 + 1
3!x

3 + . . .

and eiθ = cos θ + i sin θ

Also: 1 + x + x2 + x3 + . . . = 1
1−x

and ln(1 + x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4 + . . .

end of digression on complex numbers

So, what about the solutions to our equation? we obtained the following general, complex

looking solution to our real differential equation g′′(y) = βg(y) for β negative: g(y) =

c1e
iby + c2e

−iby with β = −b2. Now, use

eiby = cos by + i sin by and e−iby = cos by − i sin by.

We can combine these solutions to get 1
2
(eiby + e−iby) = cos bx and 1

2i
(eiby − e−iby) = sin bx

Oh, good. We recover a different class of solutions to g′′(y) = βg(y) for negative β, which

are sin(by) and cos(by) for β = −b2. The general solution is c1 sin(by) + c2 cos(by). If we

chose c1 and c2 to be real, this solution is clearly real, even though it came from complex

solutions.

f ′′(x) +
β

x
f ′(x) +

2α

x2
f(x) = 0

The coefficients in this equation are not constant. This is a different type of equation, called

Cauchy-Euler, or equidimensional equation. It is special because it’s homogeneous: every

term has the same power of x (derivatives count). Solutions are power law: f(x) = xp.

Substituting we get the associated polynomial:

p(p− 1) + βp+ 2α = 0

p2 + (β − 1)p+ 2α = 0

Solutions are given by the quadratic formula:

p =
1− β ±

√
(1− β)2 − 4α

2

Again, we have square roots and perhaps we have to analize some cases since for 4α > (1−β)2,

the solution is complex. Let’s not do that (since it’s messy and not useful from a learning

perspective). We do however need to understand what happens when the discriminant is
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zero: 4α > (1− β)2. In this case, we only have one solution xp and need two (second degree

equation). The second solution can be found using the reduction of order method and is

xp lnx. The general solution is f(x) = (c1 + c2 lnx)xp.

To write any specific solution u(x, y, z), we multiply all these together. For example, we

have a family of solutions for any positive number b and for any α < (1 + b2)2/4 given by

eαz(c1 sin(by) + c2 cos(by))
(
c3x

1
2

√
(1+b2)2−4α + c4x

− 1
2

√
(1+b2)2−4α

)
x

1+b2

2

Terribly messy, is it not? physical problems will often turn out to work out a bit nicer.

Often, we will have boundary conditions which will pick out a particular solutions out of

the infinite families we get from all the unknown constants from separation of variables.

This will be the topic of Thursday’s lecture.
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Lec 3
Last lecture we discussed the Taylor expansion definitions of ez and the connection be-

tween eix, cos(x) and sin(x). Let’s consider this again, but from perspective of differential

equations, which is quite instructive.

cos(θ) is the unique solution of the differential equation f ′′(θ) = −f(θ) with f(0) = 1

and f ′(0) = 0. This is due to a general theorem about uniqueness of solutions to differential

equations: an n-th order ODE with n initial conditions for the function and its first n − 1

derivatives has a unique solution (at least locally).

1. Solve the problem f ′′(θ) = −f(θ), f(0) = 1, f ′(0) = 0 using an exponential ansatz

f(θ) = ekθ.

Now, recall that the unique solution to this problem is cos(θ). Therefore, cos(θ) = eiθ+e−iθ

2
.

Similarly, we can prove that sin(θ) = eiθ−e−iθ
2i

. Then, cos θ + i sin θ = eiθ. We have obtain

this fact previously using Taylor expansions.

One particular value of θ makes a neat little fact: eiπ = −1, or eiπ + 1 = 0. All the most

important numbers tied together into one equation.

Homogeneous boundary conditions

Often, in addition to the differential equation itself, physics will dictate some sort of restric-

tion along lower dimensional subspace. As an example, the laplace equation in 3-d describes

conditions of thermal equilibrium in a heat-conducting material (such as a metal block). At

the boundaries of the material (sides of the block), mathematical restrictions representing

physical conditions present at the boundary have to be applied. These can take place of, for

example, fixing the boundary temperature at a certain value.

We will encounter many types of boundary conditions in this course. They are generally

classified as either boundary or initial conditions, an as either homogeneous or inhomoge-

neous. We will see why these are (mathematically) different types of restrictions that need

conceptualy different treatements. In this lecture, we begin with homogeneous boundary

conditions. Homogeneous here means setting certain values to zero. We will see that this

generically leads to restricting the allowed values of separation constants. The whole thing

is best understood through an example.

2. Find the most general solution to the wave equation

c2
∂2

∂x2
u− ∂2

∂t2
u = 0

for u(x, t) on the region 0 ≤ x ≤ L and −∞ < t < ∞, with boundary conditions u(0, t) =

u(L, t) = 0. Hint: The most general solution is simply a sum of all possible solutions of the

form f(x)g(t).

As a first step, make a plan.

1.
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2.

3.

4.

Done early? You can get started on HW 2.

u(x, t) =
∞∑
n=1

(
bn,1 cos

(
nπct

L

)
+ bn,2 sin

(
nπct

L

))
sin

πnx

L

Looking forward: For concretness, let’s take c=1. Let’s consider

the problem we just solved with inital condition

u(x, 0) = sin(πx)− 1

9
sin(3πx) +

1

25
sin(5πx) ,

and
∂

∂t
u(x, 0) = 0 ,

which is a reasonable approximation to the string being plucked

in the middle.

Here is the shape of the string at t=0:

When we solve the wave equation, we obtain the evolution of the

string’s shape in time. You can see it animated on Canvas.
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The second animation on Canvas includes a small exponetial

dampening term, changing the general solution to

u(x, t) =
∞∑
n=1

(
bn,1 cos

(
nπct

L

)
+ bn,2 sin

(
nπct

L

))
×

× exp

(
−αnπct

L

)
sin

πnx

L
.

α is a small parameter; in the animation, c = 1 and α = 0.015.

To obtain the time-dependent solution, we must substitute the

initial conditions into our general solution and find the coeffi-

cients:

u(x, 0) =
∞∑
n=1

bn,1 sin
πnx

L
= sin(πx)− 1

9
sin(3πx) +

1

25
sin(5πx)

∂

∂t
u(x, 0) =

∞∑
n=1

bn,2
nπc

L
sin

πnx

L
= 0

The coefficients are, by inspection, b1,1 = 1, b2,1 = −1
9

and b3,1 =
1
25

, with the rest being zero.
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Lec 4
Jupyter Worksheet - read lecture4-worksheet.pdf

Solutions to Worksheet 5 include some solutions to the PDEs in this lecture.
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Lec 5
Jupyter Worksheet - read lecture5-worksheet.pdf
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Lec 6
The differential equations we have been focusing on are linear (ie, when u is the unknown

function, every term in the equation has no more than one factor of u in it, there are no u2

terms, etc...) which is why the principle of supperposition applies to their solutions.

Algebraic linear equations should be familiar to you from Math 221. The theory of linear

differential equations has a lot in common with systems of algebraic linear equations. The

framework that encompasses both is called Linear Algebra. Linear Algebra is fundamental

for lots of physics, most notably Quantum Mechanics. It’s also the language of Machine

Learning and lots of other modern topics.

We need to start with the basic definitions.

F is called a field, which is a math word for ‘a bunch of things

that can be added, multiplied, divided by, etc. . . ’.

For us, F is either the set of real numbers R or (sometimes) com-

plex numbers C.

Reference: This and other definitions are from ‘Linear Alge-

bra Done Right’ by Sheldon Axler, PDF available for free from

Springer for UBC students (see link in the syllabus).

There are two main examples of vectors we will consider, and we want to make sure we

understand this definition in both cases:

• Example 1: V1 is the set of d-dimensional column vectors (ie, Rd)

• Example 2: V2 is the set of all real functions f : R→ R.

In both cases, we have a natural way to add vectors and a natural way to multiply a

vector by a number (a scalar).

For V to be a vector space, the addition and scalar multiplication must have some par-

ticular properties:
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continued on next slide. . .

Vector space part two:

Certain ‘obvious’ things are easily proven. The additive identity is unique, because if

there were two such identities, say 0 ∈ V and 0̃ ∈ V , then

0 = 0 + 0̃ = 0̃ + 0 = 0̃ .

The two identities turn out to be the same!

The addivite inverse is unique, because if there were two such inverses w and w̃, with

v + w = 0 and v + w̃ = 0, then

w = w + 0 = w + (v + w̃) = (w + v) + w̃ = 0 + w̃ = w̃

The two inverses turn out to be the same! The usual notation is for the additive inverse of

v is −v.

Moreover, when any vector v is multiplied by the number 0, the result is the (unique!)

additive identity 0 ∈ V . Proof: for all v in V , 0v + 0v = (0 + 0)v = 0v. Now, add the
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negative inverse of 0v, denoted with w0, to both sides: w0 +0v+0v = w0 +0v ⇒ 0+0v =

0 ⇒ 0v = 0.

Finaly, we can show that (−1)v = −v, by computing

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0 .

This gives you a taste of how this object is studied abstractly. For more, check out the

textbook.

It turns out that we won’t have to check all these properties every time though, because

most of the vector spaces we will need to construct will ‘sit inside’ another vector space for

which we already know that these properties work. You met this approach in Math 221

when you defined a vector space as a subset of V1 = Rd.

Any subset U of a vector space V is guaranteed to be a subspace

as long as it is nonempty, and addition and scalar multipli-

cation are still well defined. This basicaly means that the set U is:

• closed under scalar multiplication:

au ∈ U if a ∈ F and u ∈ U
• closed under addition:

u+ ũ ∈ U if u ∈ U and ũ ∈ U

We will take the same approach for V2: set of real functions of one real variable. A subset

of these functions satisfying the above closure conditions is also a vector space.

Examples: Set of functions which are 0 when evaluated at 0, {f : R → R | f(0) = 0},
is a vector subspace.

Set of functions which are 1 at 0, {f : R→ R | f(0) = 1}, is not.

Set of even functions is a subspace, as is the set of odd functions. The subspaces of even

and odd functions intersect at exactly one vector: the zero function.

Worksheet Question: 1. In the list below, all but five sets are examples of vector spaces.

Spot the five sets that are not vector spaces.

(A) Functions of one real variable that are continuous

(B) Functions of one real variable that are differentiable everywhere

(C) Functions of one real variable that have a continuous derivative

(D) Functions of one real variable that are bounded (ie, for each function f(x) there is a

number C such that |f(x)| < C for any x).
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(E) Functions of one real variable that have a limit of 0 for x→ ±∞.

(F) Functions of one real variable that go to zero faster than x−1 for large x (ie, for each

function f(x) there are positive numbers C and x0 such that |f(x)| < |Cx−1| for any

x with |x| > x0). Can substitute any function that asymptotes to 0 for x−1, such as

x−2, e−|x| or 1/ ln |x|.

(G) Functions of one real variable that grow faster than x2 for large x (ie, for each function

f(x) there are positive numbers C and x0 such that |f(x)| > Cx2 for any x with

|x| > x0).

(H) Functions f of one real variable x such that f(0) = 0

(I) Functions f of one real variable x such that f(1) = 0

(J) Functions f of one real variable x such that f(0) = 1

(K) Functions f of one real variable x such that f(1) = 0, f(2) = 0, f(4) = 0.

(L) Functions f of one real variable x such that limx→0 |f(x)| =∞.

(M) Periodic functions: functions f of one real variable x such that f(x) = f(x+ 2π)

(N) A subspace of the last space: functions f of one real variable x such that f(x) =

f(x+ π). This can be continued with smaller and smaller periods.

(O) Even/odd functions of one real variable

(P) Positive/negative functions of one real variable

(Q) Increasing/decreasing functions of one real variable

(R) Functions of x of the form
∑N

n cnx
n, where cn are real numbers.

(S) Polynomial functions

(T) Functions defined on the interval [0, 1]

(U) Functions defined on integer numbers only

(V) Functions defined on the unit sphere

(W) Functions of two or three variables

(X) Functions of three variables (x, y, z) that vanish on evaluated on points lying on the

sphere x2 + y2 + z2 = 1.

(Y) Functions of three variables (x, y, z) that vanish when evaluated on points with x =

y = 3.

(Z) Vector fields (in three dimensions, for example, a vector field is a function that assigns

a 3-vector to every point in space).
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In math 221, you wrote systems of linear equations in matrix form, as

Ax = b .

You then learned how to solve these equations in various cases, including with A invertible

(x = A−1b) and non-invertible (more complicated).

We want to think of linear differential equations as equations of the form Ax = b. We

want x and b to be elements of some vector space of functions. What should A be then?

The generalization of a matrix to the abstract vector space is called a linear map:

A linear map is a function from one vector space to another that

respects the structure of the vector spaces.

Let’s consider some examples, again. We might take L : V1 → V2 which defines an arrow

in V2 using the top two numbers of a vector in V1 as cartesian coordinates of the arrow (and

simply ignores the bottom number).

This map is clearly linear. However, if we change it a bit so that the two top numbers

define an arrow using cylindical coordinates: r and θ, respectively, the map is no longer

linear. (It’s still a function, but it’s not linear.).

Another worksheet question: 2. Consider these two vector spaces:

• V1 is the set of 3-dimensional column vectors;

• V2 is the set of all functions f : R→ R.

Let’s define three maps from V1 to V2, by

M1 : V1 → V2 , M1

ab
c

 = axb + c

M2 : V1 → V2 , M2

ab
c

 = ax2 + bx+ c
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M3 : V1 → V2 , M3

ab
c

 = ax+ 4

Which of these are linear maps?

3. Since this is a calculus course, of special interests are linear maps from a vector space of

functions (a function space) to another function space. Give some examples of linear maps

L : V2 → V2.

4. Consider a differential equation:

∂u

∂t
= 2

∂2u

∂k2

with boundary conditions:

u(0, t) = u(π, t) = 0

Write this differential equation in the form Ax = b. Identify: the linear map A and the

vector space that x and b live in.

A linear map is a function from one vector space to another that

respects the structure of the vector spaces. It can also be called

an operator (especially in Quantum Mechanics).

One key property of all linear maps T is that T0 = 0 (0 here is a vector). The proof goes

as follows: Take any vector v. Then T0 = T (0v) = 0T (v) = 0. �

We have already seen that operations such as differentiation are linear maps. Thil allow

us to think about differential equations in the same way as matrix equations. For example

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = 0
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so we can think of the differential equation as an equation of the form Au = 0, a homogenous

version of the general form Au = b.

An extra term can result in an inhomogenous equation:

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) + cos y →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = cos y

Now we have an equation of the form Au = b, with A = ∂2

∂x2
+ ∂2

∂y2
− x2 and b = cos y.

For now, we will stick to homogenous equations, with b = 0.
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Lec 7
Recall from last lecture:

A linear map is a function from one vector space to another that

respects the structure of the vector spaces. It can also be called

an operator (especially in Quantum Mechanics).

We have already seen that operations such as differentiation are linear maps. This will allow

us to think about differential equations in the same way as matrix equations. For example

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = 0

so we can think of the differential equation as an equation of the form Au = 0, a homogenous

version of the general form Au = b.

An extra term can result in an inhomogenous equation:

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) + cos y →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = cos y

Now we have an equation of the form Au = b, with A = ∂2

∂x2
+ ∂2

∂y2
− x2 and b = cos y.

Consider a linear operator (map) A : V → W . The set

of vectors k in V such that Ak = 0 is called the kernel of A.

Theorem: the kernel of any linear map A is a subspace of

V , and therefore a vector space.



PHYS 312 notes by Joanna Karczmarek, 2022 version 28

Proof: We discussed that for a set to be a subspace, all we need is closure under vector

addition and scalar multiplication. Therefore, take any two vectors k1 and k2 in the kernel

of A: Ak1 = 0 and Ak2 = 0. Then, 0 = Ak1 +Ak2 = A(k1 +k2), which implies that k1 +k2 is

in the kernel (closure under vector addition). Further, let λ be any number (real or complex,

as is appropriate), then 0 = λ(Ak1) = A(λk1), so that λk1 is in the kernel (closure under

scalar multiplication). �

We have been using this fact already, as the principle of linear superposition. The above

proof shows you that the principle of superposition applies to any equation of the form

Ax = 0 where x is a vector and A any linear map. Such equations are called linear and

homogenous. Linear inhomogenous equations are Ax = b, and we will return to those later.

However, recall than the most general solution to Ax = b is of the form xp + xh where xp
is any particular solution to Ax = b nad xh is the general solution to the corresponding

homogeneous equation Ax = 0.

When we separate variables, we often end up with equations of the form

Au = λu .

This is is not a linear equation if λ is some unknown parameter, since the two unknows λ and

u multiply each other. It is called an eigenvalue equation (or problem). We are looking for

eigenvectors of the operator (linear map) A, ie vectors which do not change direction when

A acts on them. Instead, these vectors are only rescaled, by the corresponding eigenvalue λ.

Notice that separation variables just about forced us into considering these eigenvalue

problems. This will turn out to be a blessing in disguise.

The boundary problems we have been solving so far had two kinds of boundary conditions:

homogeneous ones (something was set to zero) and inhomogeneous ones. The homogeneous

boundary conditions specify a vector subspace (of the space of all functions) that we want

to solve our differential equation in. The inhomogeneous conditions should be applied at

the end of the solution and can be used to determine undefined coefficients. So far, the

exact form of these has been chosen so that the coefficients can be more-or-less determined

by inspection, because the functions chosen were already sums of solutions to the separated

equations.

For example, consider the Laplace problem ∇2u(r, θ) = 0 in polar coordinates, with

u(1, θ) = cos 2θ. We separated variables u(r, θ) = f(θ)g(r) and obtained an eigenvalue

equation f ′′(θ) = λf(θ). There is an implicit boundary condition which is that f is periodic,

f(θ) = f(θ+ 2π). This defines the particular vectors space in which we solve the eigenvalue

equation ∂2θf(θ) = f ′′(θ) = λf(θ). The solutions, as we already know, are the eigenvectors

fn = einθ and the corresponding eigenvalues λn = −n2, for any integer n. Recall further that

when trying to match to boundary conditions, you wrote u(1, θ) = cos(2θ) = 1
2
eiθ + 1

2
e−iθ,

ie, you used fn(θ) as a basis in which to write the function cos 2θ.

But what if the boundary condition was, say u(r, θ) = cos(cos(θ))? It is not immediately

obvious how to write this down in terms of fn = einθ. It is not immediately obvious that
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this is possible at all. Figuring this sort of thing out is where we are going.

Let’s take a little detour into questions about finite dimensional (column) vectors.

1. Consider the following vectors, with a, b some real numbers:

f1 =

[
1

0

]
, f2 =

[
0

1

]
, v =

[
a

b

]
Write v in the basis {f1, f2}.

2. Redo the question above, with

f1 =

[√
3
2
1
2

]
, f2 =

[
−1

2√
3
2

]
, v =

[
a

b

]
Write v in the basis {f1, f2}.

The key property in the above solution was orthogonality. Let’s see how this would work

more generaly, in d dimensions.

Let {f1, f2, . . . , fd} be d orthogonal vectors in a d-dimensional space: fk · fj = 0 for any

k 6= j. What coefficients cn give you
∑d

n=1 cnfn = v?

Answer: Let’s start with a piece of useful notation, the Kronecker delta symbol, which is

a function of two integers, defined by

δkn =

{
1 when k = n

0 when k 6= n

Then, orthogonality can be written as

fk · fn =

{
fn · fn when k = n

0 when k 6= n
= (fn · fn)

{
1 when k = n

0 when k 6= n
= δkn (fn · fn) = δkn ‖fn‖2

We are trying to solve
d∑

n=1

cnfn = v

for the coefficients cn. Project this equation onto the direction of fk by taking a dot product

on both sides:

fk ·

(
d∑

n=1

cnfn

)
= fk · v

d∑
n=1

cn(fk · fn) = fk · v

d∑
n=1

cn‖fn‖2δkn = fk · v
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The terms is the sum are all zero, except when n = k, so
∑d

n=1 cn‖fn‖2δkn = ck‖fk‖2.
Therefore,

ck‖fk‖2 = fk · v → ck =
fk · v
‖fk‖2

This is exactly what we got in the worksheet question (except there, the basis vectors were

length 1, so the denominator was 1).

We see that orthogonality of a basis can be a great help with finding coefficients. It will turn

out that eigenvectors (eigenfuncions) of differential operators will be orthogonal as long as we

pick the right generalization of the dot product. Let’s talk about how this is accomplished.

Define the inner product, which is a generalization of the dot

product: a way to multiply two vectors together to get a number.

Of course, we will replace:

(d) above with 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉
and (e) above with 〈λv, u〉 = λ̄〈v, u〉
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Before we move on, we should have at least one example of an inner product on a function

space. Consider the space of continuous real functions on the interval [0, 1]. This is a real

vector space and we define an inner product via

〈f, g〉 =

ˆ 1

0

f(x)g(x)dx =

ˆ 1

0

dx f(x)g(x)

and the norm is then

‖f‖2 =

ˆ 1

0

(f(x))2dx .

If the functions are complex, we have instead:

〈f, g〉 =

ˆ 1

0

dx f(x)g(x)dx .

The complex conjugate on f(x) above is crucial for the whole thing to work, in particular in

means the norm is always real and non-negative:

‖f‖2 = 〈f, f〉 =

ˆ 1

0

dx f(x)f(x)dx =

ˆ 1

0

dx |f(x)|2

You can check for yourself that these definitions have the required properties.

Now comes one of the foundational arguments of all physics, which links a particular property

of a linear operator to orthogonality of its eigenvectors.

Consider, in a real vector space, two eigenvectors of the same operator, with different

eigenvalues

Av1 = λ1 and Av2 = λ2 with λ1 6= λ2

Then:

〈v2, Av1〉 = 〈v2, λ1v1〉 = λ1〈v2, v1〉

and

〈Av2, v1〉 = 〈λ2v2, v1〉 = λ2〈v2, v1〉

Therefore,

(λ1 − λ2)〈v2, v1〉 = 〈v2, Av1〉 − 〈Av2, v1〉

If the RHS vanishes, then we must have 〈v2, v1〉 = 0 (since λ1 − λ2 6= 0). This motivates a

definition and serves as a proof of a theorem:
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Definition symmetric A linear operator A on a real inner

product space is called symmetric iff 〈v2, Av1〉 = 〈Av2, v1〉 for

any two vectors v1 and v2.

Theorem On a real vector space, eigenvectors of a sym-

metric operator with distinct eigenvalues are orthogonal.

Corollary The set of eigenvectors of a symmetric operator

on a real vector space can always be made orthogonal.

As an example, consider a finite dimensional real space. The vectors can be presented as

column vectors and linear operators as matrices. Taking the inner product to be the regular

dot product, 〈v, w〉 = vẇ = vTw. Consider a symmetric operator A,

〈v, Aw〉 = 〈Av,w〉

vTAw = (Av)Tw = vTATw

where the last step comes from properties of transpose, (AB)T = BTAT . Since vTAw =

vTATw is true for all v and w, we must have that A = AT , so the matrix A is symmetric.

What if the vector space is complex rather than real? An operator with 〈v2, Av1〉 = 〈Av2, v1〉
is then called Hermitian. Immediately, if v is an eigenvector of A with Av = λv, we get that

〈v,Av〉 = 〈Av, v〉

〈v, λv〉 = 〈λv, v〉

λ̄〈v, v〉 = λ〈v, v〉

λ̄ = λ

The eigenvalues are real.

Let’s re-examine the proof above for a complex vector space: Consider, in a complex

vector space, two eigenvectors of the same hermitian operator, with different eigenvalues

Av1 = λ1 and Av2 = λ2 with λ1 6= λ2

Then:

〈v2, Av1〉 = 〈v2, λ1v1〉 = λ1〈v2, v1〉

and

〈Av2, v1〉 = 〈λ2v2, v1〉 = λ̄2〈v2, v1〉 = λ2〈v2, v1〉
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Therefore,

(λ1 − λ2)〈v2, v1〉 = 〈v2, Av1〉 − 〈Av2, v1〉 = 0

for a hermitian A, implying that 〈v2, v1〉 = 0 (since λ1 − λ2 6= 0).

Definition hermitian A linear operator A on a complex inner

product space is called hermitian iff 〈v2, Av1〉 = 〈Av2, v1〉 for any

two vectors v1 and v2.

Theorem Eigenvalues of a hermitian operator are real.

Theorem On a complex vector space, eigenvectors of a

hermitian operator with distinct eigenvalues are orthogonal.

Corollary The set of eigenvectors of a hermitian operator

on a complex vector space can always be made orthogonal.

3. (Time Permitting) Consider d2

dx2
acting on real functions on the interval [0, L] whose first

derivative vanishes at the ends of the interval (so called free boundary conditions). Show that

this operator (second derivative) is symmetric with the inner product 〈f, g〉 =
´ L
0
dxf(x)g(x).
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Lec 8
Recall from last lecture:

A linear map is a function from one vector space to another that

respects the structure of the vector spaces. It can also be called

an operator (especially in Quantum Mechanics).

We have already seen that operations such as differentiation are linear maps. Thil allow

us to think about differential equations in the same way as matrix equations. For example

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = 0

so we can think of the differential equation as an equation of the form Au = 0, a homogenous

version of the general form Au = b.

An extra term can result in an inhomogenous equation:

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = x2u(x, y) + cos y →

(
∂2

∂x2
+

∂2

∂y2
− x2

)
u(x, y) = cos y

Now we have an equation of the form Au = b, with A = ∂2

∂x2
+ ∂2

∂y2
− x2 and b = cos y.

Recall that when solving (finite dimentional) linear equations of the form Af = b, we found

it very useful to know the solution to the eigenvalue equation Af = λf . The same will be

true here. Also, recall that we get equations of the form Af = λf from separation of vari-

ables. These two things together are the motivation for thinking about eigenvalue problems

for function spaces.

The key property we want to understand is orthogonality, so we need to first generalize

the concept of the inner product:
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Define the inner product, which is a generalization of the dot

product: a way to multiply two vectors together to get a number.

Of course, we will replace:

(d) above with 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉
and (e) above with 〈λv, u〉 = λ̄〈v, u〉
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Before we move on, we should have at least one example of an inner product on a function

space. Consider the space of continuous real functions on the interval [0, 1]. This is a real

vector space and we define an inner product via

〈f, g〉 =

ˆ 1

0

f(x)g(x)dx =

ˆ 1

0

dx f(x)g(x)

and the norm is then

‖f‖2 =

ˆ 1

0

(f(x))2dx .

If the functions are complex, we have instead:

〈f, g〉 =

ˆ 1

0

dx f(x)g(x)dx .

The complex conjugate on f(x) above is crucial for the whole thing to work, in particular in
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means the norm is always real and non-negative:

‖f‖2 = 〈f, f〉 =

ˆ 1

0

dx f(x)f(x)dx =

ˆ 1

0

dx |f(x)|2

You can check for yourself that these definitions have the required properties.

Now comes one of the foundational arguments of all physics: Consider, in a real vector

space, two eigenvectors of the same operator, with different eigenvalues

Av1 = λ1 and Av2 = λ2 with λ1 6= λ2

Then:

〈v2, Av1〉 = 〈v2, λ1v1〉 = λ1〈v2, v1〉

and

〈Av2, v1〉 = 〈λ2v2, v1〉 = λ2〈v2, v1〉

Therefore,

(λ1 − λ2)〈v2, v1〉 = 〈v2, Av1〉 − 〈Av2, v1〉

If the RHS vanishes, then we must have 〈v2, v1〉 = 0 (since λ1 − λ2 6= 0). This motivates a

definition and serves as a proof of a theorem:

Definition symmetric A linear operator A on a real inner

product space is called symmetric iff 〈v2, Av1〉 = 〈Av2, v1〉 for

any two vectors v1 and v2.

Theorem On a real vector space, eigenvectors of a sym-

metric operator with distinct eigenvalues are orthogonal.

Corollary The set of eigenvectors of a symmetric operator

on a real vector space can always be made orthogonal.

As an example, consider a finite dimensional real space. The vectors can be presented as

column vectors and linear operators as matrices. Taking the inner product to be the regular

dot product, 〈v, w〉 = vẇ = vTw. Consider a symmetric operator A,

〈v, Aw〉 = 〈Av,w〉

vTAw = (Av)Tw = vTATw

where the last step comes from properties of transpose, (AB)T = BTAT . Since vTAw =
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vTATw is true for all v and w, we must have that A = AT , so the matrix A is symmetric.

What if the vector space is complex rather than real? An operator with 〈v2, Av1〉 = 〈Av2, v1〉
is then called Hermitian. Immediately, if v is an eigenvector of A with Av = λv, we get that

〈v,Av〉 = 〈Av, v〉

〈v, λv〉 = 〈λv, v〉

λ̄〈v, v〉 = λ〈v, v〉

λ̄ = λ

The eigenvalues are real.

Let’s re-examine the proof above for a complex vector space: Consider, in a complex

vector space, two eigenvectors of the same hermitian operator, with different eigenvalues

Av1 = λ1 and Av2 = λ2 with λ1 6= λ2

Then:

〈v2, Av1〉 = 〈v2, λ1v1〉 = λ1〈v2, v1〉

and

〈Av2, v1〉 = 〈λ2v2, v1〉 = λ̄2〈v2, v1〉 = λ2〈v2, v1〉

Therefore,

(λ1 − λ2)〈v2, v1〉 = 〈v2, Av1〉 − 〈Av2, v1〉 = 0

for a hermitian A, implying that 〈v2, v1〉 = 0 (since λ1 − λ2 6= 0).

Definition hermitian A linear operator A on a complex inner

product space is called hermitian iff 〈v2, Av1〉 = 〈Av2, v1〉 for any

two vectors v1 and v2.

Theorem Eigenvalues of a hermitian operator are real.

Theorem On a complex vector space, eigenvectors of a

hermitian operator with distinct eigenvalues are orthogonal.

Corollary The set of eigenvectors of a hermitian operator

on a complex vector space can always be made orthogonal.

1. Consider d2

dx2
acting on real functions on the interval [0, L] whose first derivative vanishes

at the ends of the interval (so called free boundary conditions). Show that this operator

(second derivative) is symmetric with the inner product 〈f, g〉 =
´ L
0
dxf(x)g(x).
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2. Redo for functions defined on the interval [0, 2π] that are periodic, ie f(0) = f(2π),

f ′(0) = f ′(2π), etc. . .

3. Consider the operator from the Bessel equation,

1

r

d

dr

(
r
d

dr

)
Show that it is symmetric under the inner product 〈f, g〉 =

´ R
0
rdr f(r)g(r) for functions

that vanish at r = R and are finite at r = 0.
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Lec 9
We know that the solutions of Ax = 0 are always a vector space, we know how to

think about the general solution, which, as you will recall from examples in worksheets and

homework, is in a form of a sum with undertermined coefficients. Recall the concept of a

span:

Consider a set of vectors in some vector space V ;

S = {v1, v2, v3, ..., vk} ⊂ V .

The (much larger!) set of vectors of the form
∑k

i civi is

called the span of S. In math notation this is

span(S) =

{
k∑
i

civi | ci ∈ F

}

span(S) is a subspace of V . This should be pretty obvious: the

sum of any two vectors of the form
∑k

i civi is also of this form,

as is a scalar multiple of any such vector.

Going back to differential equations, we will proceed as follows: we want to solve the equation

Au = 0, ie we want to find the kernel of A. To describe the kernel, we will find enough

solutions so that the desired kernel is their span.

To solve a partial differential equation of the form Au = 0, we will:

• identify an appropriate vector space V for A to act on by

imposing all relevant homogenous boundary conditions;

• separate variables to obtain a set of eigenvalue problems;

identify appropriate vector space (ie, boundary conditions)

for each eigevalue problem;

• recognize which of the eigenvalue problems have symmetric

operators; solve those eigenvalue problems first (you will get

specific values for separation constants); claim orthogonal-

ity of eigenvectors;
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• multiply appropriate solutions to separated equations

together to obtain a set of solutions to the equation

Au = 0, each solution corresponding to a different value of

the separation constant(s);

• write the general solution to Au = 0 as the span of all

those solutions (summing over all possible values of the

separation constant(s));

• impose nonhomogenous boundary conditions (if any) to re-

strict all or some of the arbitrary coefficients in the span.

Let’s use this series of steps to solve a problem similar to that on Homework 2A: Laplace

equation ∇2u = 0 in two dimensions, with the Laplacian operator expressed in polar coor-

dinates, (r, θ):

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
.

Solve this equation on the inside of the unit disk (ie, for r < 1) with the following boundary

conditions: u(r, θ) is bounded and u(1, θ) = ee
iθ

+ ee
−iθ

(which is a real function).
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Lec 10
Consider a set of vectors in some vector space V ;

S = {v1, v2, v3, ..., vk} ⊂ V .

The (much larger!) set of vectors of the form
∑k

i civi is

called the span of S. In math notation this is

span(S) =

{
k∑
i

civi | ci ∈ F

}

span(S) is a subspace of V . This should be pretty obvious: the

sum of any two vectors of the form
∑k

i civi is also of this form,

as is a scalar multiple of any such vector.

When span(S) is all of V , S is called a basis.

Of special interest are orthogonal bases.

Let gn be an orthogonal basis of some space V .

〈gn, gm〉 = δn,m‖gn‖2

Then, for any vector v in V , it must be possible to find coefficients

cn so that

v =
∑
n

cngn

Explicitely, these coefficients are

ck =
〈gk, v〉
〈gk, gk〉

=
〈gk, v〉
‖gk‖2

How do we know if our basis is orthogonal? A: when it is made

of eigenvectors of a symmetric/hermitian operator A:

(i) Agn = λngn

(ii) 〈g, Af〉 = 〈Ag, f〉 for all f, g

The trick is to use the correct inner product; once you have that,

everything falls into place.

The inner product will invariably be an integral of the form

〈g, f〉 =

ˆ
D

ρ(x)dx ḡf

where D is the domain of the functions in V , and ρ is some density

which will often be just ρ(x) = 1.
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We can prove the above formula for coefficients as follows: When solving an equation such

as
∞∑

n=−∞

cngn = v ,

we can use the same method we used in Lecture 8. To find, say c0, we take an inner product

of both sides of the equation with the vector g0:〈
g0,

∞∑
n=−∞

cngn

〉
= 〈g0, v〉

∞∑
n=−∞

cn 〈g0, gn〉 = 〈g0, v〉

∞∑
n=−∞

cn 〈g0, g0〉 δ0,n = 〈g0, v〉

c0 〈g0, g0〉 = 〈g0, v〉

c0 =
〈g0, v〉
〈g0, g0〉

Similarly, to find any other coefficient ck, we take an inner product with gk and obtain:

ck =
〈gk, v〉
〈gk, gk〉

=
〈gk, v〉
‖gk‖2

Example: let’s say you were solving the following problem, on a half disk in polar coordi-

nates,

∇2u(r, θ) = 0 , ∂θu(r, 0) = ∂θu(r, π) = 0 , u(R, θ) = sin(θ)

You are now masters at the steps that get you to a the facts that

u(r, θ) =
∞∑
n=0

cnr
n cos(nθ)

and that

u(R, θ) =
∞∑
n=0

cnR
n cos(nθ) = sin(θ)

The above equation cannot be solved by inspection for cn. Instead, we go to our theory. We

kno that ∂2θ cos(nθ) = −n2 cos(nθ); cos(nθ) are eigenvectors of ∂2θ by definition. The relevant

vector space is function with vanishing derivatives at 0 and π:

V = {v : [0, π]→ R | v′(0) = v′(π) = 0}

The inner product turns out to be simple: 〈v, w〉 =
´ π
0
dθv(θ)w(θ). We proved that the

operator is orthogonal in our last worksheet 〈∂2θv, w〉 = 〈v, ∂2θw〉 (see solutions). Therefore,



PHYS 312 notes by Joanna Karczmarek, 2022 version 45

go directly to the formula for coefficients:

Rkck =

´ π
0
dθ sin(θ) cos(kθ)´ π
0
dθ cos2(kθ)

It is instructive to perform the integrals. Note that we got this one for ‘free’:

ˆ π

0

dθ cos(kθ) cos(nθ) = 0 if k 6= n ,

but we need to compute two more
´ π
0
dθ sin(θ) cos(kθ) and

´ π
0
dθ cos2(kθ). When in doubt,

convert to complex exponentials and expand:

ˆ π

0

dθ sin(θ) cos(kθ) =

ˆ π

0

dθ
eiθ − e−iθ

2i

eikθ + e−ikθ

2

1

4i

ˆ π

0

dθ
(
ei(1+k)θ + ei(1−k)θ − ei(−1+k)θ − ei(−1−k)θ

)
1

4i

(
ei(1+k)θ

i(1 + k)
+

ei(1−k)θ

i(1− k)
− ei(−1+k)θ

i(−1 + k)
− ei(−1−k)θ

i(−1− k)

)∣∣∣∣π
0

1

−4

(
(−1)(1+k) − 1

1 + k
+

(−1)(1−k) − 1

1− k
− (−1)(−1+k) − 1

−1 + k
− (−1)(−1−k) − 1

−1− k

)
1

−4

(
−(−1)k − 1

) ( 1

1 + k
+

1

1− k
− 1

−1 + k
− 1

−1− k

)
1

4

(
(−1)k + 1

) ( 2

1 + k
+

2

1− k

)
=

(−1)k + 1

4

4

1− k2
=

(−1)k + 1

1− k2

What if k = 1?? no problem, the numerator is 0. Is that the right answer, though?

ˆ π

0

dθ sin(θ) cos(θ) =

ˆ π

0

dθ
eiθ − e−iθ

2i

eiθ + e−iθ

2

1

4i

ˆ π

0

dθ
(
e2iθ + 1− 1− e−2iθ

)
= 0

It is the right answer, good. The integral vanishes for all odd k. Next, we do

ˆ π

0

dθ cos2(kθ) =
1

2
π

You can: use a double angle formula cos2(kθ) = 1
2
(cos(2kθ)+1) or the complex exponentials.

Best remember that cos2 and sin2 always average out to 1
2

over complete quarter-periods,

though. Pay attention to the special case at k = 0, though!!!

ˆ π

0

dθ cos2(0θ) = π
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Put this all together: for even k > 0,

Rkck =
4

π(1− k2)

and

c0 =
2

π

and therefore (let k = 2m)

u(r, θ) =
2

π
+

4

π

∞∑
m=1

cos 2mθ

1− 4m2

( r
R

)2m
This answer can now be truncated and plotted.

One important lesson: need to pay a lot of attention to special cases.
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Lec 11
1. Consider the one-dimensional heat equation ∂

∂t
T = α ∂2

∂x2
T . This describes the time

evolution of a temperature profile T (x, t) along, say, an insulated metal rod. We will take

the initial condition to be a uniform temperature distribution, T (x, 0) = T0, where T0 > 0 is

some fixed temperature. There are two physically significant boundary conditions possible:

(1) the ends of the rod are in thermal contact with a (heat) bath at some temperature, say

0 for simplicity: T (0, t) = T (L, t) = 0.

(2) the end of the rod are insulated (no heat can leave through the ends): ∂xT (0, t) =

∂xT (L, t) = 0.

For each of these two cases, think about the physics and sketch qualitatively what T (x, t)

should look like at

(a) a very early time t ≈ 0

(b) very late times t→∞ (ie, in thermal equilibrium)

(c) some intermediate time

2. For each of the two boundary conditions above, write down the general solution for

T (x, t).

3. What is T (x, t) with initial condition T (x, 0) = T0 and under insulating boundary

conditions (2)?
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We will look at a problem very similar to the homework:

∂

∂t
T (x, t) = α

∂2

∂x2
T (x, t)

T (0, t) = T (L, t) = 0 homogeneous bc

T (x, 0) = T0 inhomogeneous bc, replacing γx(L− x)

Separation of variables T (x, t) = f(x)g(t) leads to an eigenvalue

problem with a symmetric operator ∂2x:

f ′′(x) = af(x) with f(0) = f(L) = 0

with solutions fn = sin(nπx/L) an = −(nπ/L)2 for n ∈ Z

The other equation is

g′(t) = αag(t) = −α(nπ/L)2g(t)

with solutions proportional to

gn = e−α(nπ/L)
2t

Together, the general solution is

T (x, t) =
∞∑
n=1

cngn(t)fn(x) =
∞∑
n=1

cne
−α(nπ/L)2t sin(nπx/L)

A different way to do this is to try the following form of the most

general function of two variables:

u(x, t) =
∞∑
n=1

Gn(t)fn(x) .

Substituting this into the differential equation,

u̇ =
∞∑
n=1

Ġn(t)fn(x) = α∂2xu = α
∞∑
n=1

anGn(t)fn(x)

which implies that Ġn(t) = αanGn(t), with solutions

Gn = cne
αant = cne

−α(nπ/L)2t. The general solution is, again,

T (x, t) =
∞∑
n=1

cngn(t)fn(x) =
∞∑
n=1

cne
−α(nπ/L)2t sin(nπx/L)
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We need to determine the coefficients cn so that

u(x, 0) =
∞∑
n=1

cn sin(nπx/L) = T0

Last week, we’ve seen that problems of the form∑
i

civi = w

where vi are orthogonal vectors under some inner product are easy

to solve. And vi are orthogonal because they are eigenvectors of

a symmetric operator with distinct eigenvalues:

〈vn, vm〉 = δnm〈vn, vn〉 if λn 6= λm

We can multiply (using the inner product) both sides of the above

sum by vj: 〈
vj,
∑
i

civi

〉
= 〈vj, w〉

Bring it inside (using the distributive law):∑
i

ci 〈vj, vi〉 = 〈vj, w〉

Realize that only i = j term in the sum is nonzero, since 〈vj, vi〉 =

0 if i 6= j, so that

cj 〈vj, vj〉 = 〈vj, w〉

Apply this idea to our problem,

∞∑
n=1

cn sin(nπx/L) = T0

to obtain

cn =
〈sin(nπx/L), T0〉

〈sin(nπx/L), sin(nπx/L)〉
So now all that remains is doing the integrals.

〈sin(nπx/L), T0〉 =

ˆ L

0

dx T0 sin(nπx/L) = −T0L
nπ

(cos(nπ)− 1)

〈sin(nπx/L), sin(nπx/L)〉 =

ˆ L

0

dx T0 sin2(nπx/L) =
L

2
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The required coefficients are thus

cn = −2T0
nπ

(cos(nπ)− 1) =

{
4T0
nπ

for n odd

0 for n even

The complete solution to the heat equation with the given initial

condition is

T (x, t) =
4T0
π

∞∑
n=1,n odd

1

n
e−n

2 απ2

L2 t sin(nπx/L)

=
4T0
π

∞∑
k=0

1

2k + 1
e−(2k+1)2 απ

2

L2 t sin((2k + 1)πx/L) .

Is it really possible to write any function of x ∈ [0, L] as a sum

of eigenvectors of ∂2x? Even when that function is not in the

originally considered vector space?

In what sense is

T−10 T (x, 0) =
4

π

∞∑
k=0

1

2k + 1
sin((2k + 1)πx/L) = 1

true? What does it mean?

If I cut off the sum at some finite number (say, N = 10), can I

say that

4

π

N∑
k=0

1

2k + 1
sin((2k + 1)πx/L) ≈ 1 ?

To see how well it actually works, consider plots for 2, 4 and 50

components:
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4. Consider two functions f : [0, L]→ R and g : [0, L]→ R. What does it mean for them

to be close to each other? How could we measure how close are they?

Try to think of some ways to measure how close to each other two functions are.

The specific answer to the above question we want to use (because

it’s the one that gives nice theorems) is:

‖f − g‖2 =

ˆ L

0

dx (f(x)− g(x))2

(Recall that ‖u‖2 = 〈u, u〉.)

With this definition, solving

∞∑
n=1

cn sin(nπx/L) = γx(L− x)

for cn can be replaced with picking some N and asking

For what cn is
N∑
n=1

cn sin(nπx/L) is closest to γx(L− x) ?

We need to find cn that minimize〈
N∑
n=1

cn sin(nπx/L)− γx(L− x),
N∑
n=1

cn sin(nπx/L)− γx(L− x)

〉
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To find a miminum, set all derivatives w.r.t. cm to zero:

0 =
d

dcm 〈
∑N
n=1 cn sin(nπx/L)−γx(L−x),

∑N
n=1 cn sin(nπx/L)−γx(L−x)〉

=

〈
sin(mπx/L),

N∑
n=1

cn sin(nπx/L)− γx(L− x)

〉
+

〈
N∑
n=1

cn sin(nπx/L)− γx(L− x), sin(mπx/L)

〉

= 2

〈
sin(mπx/L),

N∑
n=1

cn sin(nπx/L)− γx(L− x)

〉
= 0

This is the same as what we had before:〈
sin(mπx/L),

N∑
n=1

cn sin(nπx/L)

〉
= 〈sin(mπx/L), γx(L− x)〉

cm 〈sin(mπx/L), sin(mπx/L)〉 = 〈sin(mπx/L), γx(L− x)〉

cm =
〈sin(mπx/L), sin(mπx/L)〉
〈sin(mπx/L), γx(L− x)〉

I find the following picture, drawn for N = 2, to be useful:
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It’s interesting to also look at how the temperature profile evolves

in time, using just a finite number of components.

In the first animation, we use 50 components. Notice that the

heat equation is smoothing - almost immediately, the temperature

distribution becomes a smooth function that is 0 at the ends and

close to constant through most of the middle.

In the second animation, we use just 2, 3 or 4 componets. At the

time the first animation ended (t=0.1), the difference between the

three plots is already small and the shape has converged to that

seen at the end of the first animation.

The solutions look completely reasonable. And as long as we

don’t want to study the details of the very first instant of the

process, we only need the first few components.

5. What is
∂2

∂x2
f(x) if f(x) =

4

π

∞∑
k=0

1

2k + 1
sin((2k + 1)πx/L) ?

Lesson: ∂2

∂x2
seems to be a different operator depending on the

boudary conditions used!

The correct procedure understanding a symmetric operator

goes something like this:

Consider the space of suitably smooth functions which sat-

isfy the boundary conditions

Find orthogonal eigenvectors of this symmetric operator in

this space
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Consider a span of the eigenvectors where the convergence of the

infinite sum is really good; the action of the symmetric operator

on a sum is determined by its eigenvalues

Now, extend the space of vectors and the action of the

symmetric operator in a ’smooth’ way to a more general space

of functions (often, this means L2). The technical terms is ’a

self-adjoint extension’.

The self-adjoint operator you get depends on the boundary

conditions. Its existance is assumed by physicists and (hopefully)

proved by mathematicians.

A comment on our definition of inner product: Consider two func-

tions, f : [0, L] → R and g : [0, L] → R. We can approximate

these functions by a vector of n+1 discrete data points, x = iL/n

for i from 0 to n:

F =


f(x0)

f(x1)
...

g(xn)

 G =


g(x0)

g(x1)
...

g(xn)


Then, the dot product between these column vectors is an ap-

proximation to the inner product

〈f(x), g(x)〉 =

ˆ L

0

f(x)g(x) ≈
n∑
i=0

f(xi)g(xi) = F ·G
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Lec 12
Functions of several variables

The gradient at any point points towards the direction that the function is increasing the

fastest. Another way to put this is that the linear approximation to a multivariable function

is

f(~x) ≈ f(~x0) + ~∇f(~x0) · (~x− ~x0)

The specific example we want to talk about first is when the function represents tem-

perature (as a function of position). When the temperature is not uniform, a non-zero

temperature gradient results in a flow of heat. This flow is called heat flux, and is repre-

sented by a vector field: a functions that assigns a vector to each point in space. We will

use ~Φ = ~Φ(~x, t) to denote the heat flux. ~Φ has units of (energy)/(area)/(time).

The heat flux is proportional to the temperature gradient,

~Φ = −κ~∇T

where κ is the heat conductivity.

Consider now a small, box-shaped region of space given by x0 < x < x0 + ∆x, y0 < y <

y0 + ∆y, z0 < z < z0 + ∆z. The rate at which heat flows into the box through the face

at x = x0 is given by the x-component of ~Φ at x = x0, Φx(x0), times the area of this face

∆y∆z: Φx(x0)∆y∆z. Similarly, the rate at which heat flows into the region through the

face at x = x0 + ∆x is −Φx(x0 + ∆x)∆y∆z. Repeating with the other 4 faces, we get the

total rate at which heat flows into the box as

[Φx(x0)− Φx(x0 + ∆x)] ∆y∆z+[Φy(y0)− Φy(y0 + ∆y)] ∆x∆z+[Φz(z0)− Φz(z0 + ∆z)] ∆x∆y

= −
[

Φx(x0)− Φx(x0 + ∆x)

∆x
+

Φy(y0)− Φy(y0 + ∆y)

∆y
+

Φz(z0)− Φz(z0 + ∆z)

∆z

]
∆x∆y∆z

= −
(
∂

∂x
Φx +

∂

∂y
Φy +

∂

∂z
Φz

)
Vol(box)

Defining new notation:

~∇ · ~Φ :=
∂

∂x
Φx +

∂

∂y
Φy +

∂

∂z
Φz

for a quantity called the divergence of Φ, from conservation of energy we can connect the

rate of change of the thermal energy inside the box to the heat flux:

d

dt
E = −~∇ · ~Φ Vol(box)

A more general theorem extends this result to general region shapes (notice that any region

can be build up, at least approximately, from small box-shaped pieces). It is called the

divergence theorem, and it states that

‹
∂R

ds n̂ · ~Φ =

˚
R

dv ~∇~Φ
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where R is any region, ∂R is the region’s boundary surface, n̂ is a vector normal to this

surface pointing outwards. (Read more about this theorem in Ref. 2 (see Syllabus)).

So, for any region, it is true that

d

dt
E = −

‹
∂R

ds n̂ · ~Φ = −
˚

R

dv ~∇~Φ

Returning to the infinitesimal version,

1

Vol(box)

d

dt
E = −~∇ · ~Φ = κ~∇ · (~∇T )

Thermal energy is given by E = Vol(box)cT where c is the heat capacity per unit volume.

Then, with α = κ/c, we get the heat equation

∂

∂t
T = α∇2T

where we have defined the Laplacian operator ∇2 by ∇2 = ~∇ · ~∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. When

we separate the time variables from the space variables, we have T = u(t)f(~x), with

u̇ = αλu ⇒ u ∼ eαλt

and

∇2f(~x) = λf(~x)

There is a special solution to the heat equation, called the steady-state solution, which

has no time dependence at all. It is simply the solution to ∇2T = 0, possibly with nonho-

mogeneous boundary conditions to make the solution non-trivial.

To solve an initial value problem for the heat equation, with a known initial temperature

distibution T (~x, 0), we have to first solve the Laplacian eigenvalue problem, often called the

Helmholtz equation. We want the solutions to be orthogonal, so let’s prove symmetry of the

Laplacian once and for all.
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Consider the vector space of real functions on some arbitrary

region R in 3-dimensions which vanish on the boundary of R, ∂R.

Prove that the Laplacian is symmetric under the inner product

〈f, g〉 =
˝

R
d3x f(~x)g(~x). Hint: divergence theorem.

1. Consider the vector space of real functions on some arbitrary region R in 3-dimensions

which vanish on the boundary of R, ∂R. Prove that the Laplacian is symmetric under the

inner product 〈f, g〉 =
˝

R
d3x f(~x)g(~x). Hint: divergence theorem.

What other boundary conditions could we use, other than vanishing? If ~n ·
(
~∇f(~x)

)
vanishes on the boundary for all functions f , then the Laplacian is also symmetric.

The physical intepretation of the vanishing boundary condition is clear: the region of

interest is surrounded by something (say, water) that keeps its boundary at a constant

temperature. Zero here is an arbitrary choice: you can always add a constant to the solution

of the heat equation if you want the boundary temperature to be, say, 15 in some units.

Also called the Dirichlet boundary condition.

The physical intepretation of ~n ·
(
~∇T (~x)

)
is that the flux ~Φ = −κ~∇T (~x) is zero in the

direction perpendicular to the boundary: ~n · ~Φ = 0. No energy flows across the boundary

anywhere: an insulating boundary condition. Also called the Neumann boundary condition.

An in-between boundary condition (Robin) is when we assume Newton’s law applies to

the boundary: there is some ambient temperature T0 and heat flux across the boundary is

caused by the difference between that ambient temperature and the temperature of our body

at its surface:

−κ~n · ~∇T (~x) = ~n · ~Φ = β (T (~x)− T0)

or

~n~·∇T (~x) = −β
κ

(T − T0)

This condition inteporpolates between fixed/constant (β
κ

very large) and insulating (β
κ

very

small).

A computation similar to that in the above question on the worksheet allows us to prove

that on finite regions with vanishing boundary conditions, the Laplacian has only negative
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eigenvalues. Let ∇2f = λf . Then

λ

ˆ
R

ddxf(~x)f(~x) =

ˆ
R

ddxf(~x)~∇·(~∇f(~x)) =

ˆ
R

ddx~∇·
(
f(~x)(~∇f(~x)

)
−
ˆ
R

ddx~∇f(~x)·~∇f(~x)

˛
∂R

ds ~n ·
(
f(~x)(~∇f(~x)

)
−
ˆ
R

ddx~∇f(~x) · ~∇f(~x) = 0 −
ˆ
R

ddx~∇f(~x) · ~∇f(~x) ≤ 0

This implies that λ ≥ 0. Note that we have used that
´
R
ddx(g(x))2 ≤ 0.

If the boundary conditions are insulating: n̂· ~∇f(~x) = 0 on the boundary ∂R, we reach the

same conclusion. There is a difference, however: the constant function is a zero eigenvector

of ∇2. For vanishing boundary conditions, constant nonzero functions are not in the vector

space. For insulating boundary conditions, they are. In fact, constant functions are the only

zero eigenvectors of ∇2 under either type of boundary condition, since ∇2f = 0 implies that

(using the above argument)

ˆ
R

ddx~∇f(~x) · ~∇f(~x) = −
ˆ
R

ddxf(~x)~∇ · (~∇f(~x)) = 0

which implies that ~∇f(~x) = ~0, which means that f is constant. The conclusion is that: ∇2

has

• strictly negative eigenvalues with vanishing boundary conditions and

• non-positive eigenvalues with insulating boundary conditions, where the constant func-

tions are the only ones with zero eigenvalue

Physically, this means that the time dependence eαλt always decays: the heat equation

smooths out any initial configurations and approaches the steady state solution at late times.
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Lec 13

Let’s solve the heat equation in 2 dimensions (plus time):

∂

∂t
T = α∇2T ,

We want to solve for T (x, y, t) with 0 < x < L and 0 < y < L

with boundary conditions

T (0, y, t) = T (L, y, t) = T (x, 0, t) = T (x, L, t) = 0

In rectilinear coordinates, the Laplacian is just

∇2 =
∂2

∂x2
+

∂2

∂y2
.

To illustrate some other ideas, let’s use a piecewise defined initial

condition (D < L/2):

T (x, y, 0) =

{
T0 for D < x < L−D and D < y < L−D
0 otherwise

Let’s try an approach like this: assume that we have eigenvectors

of the spacial part (the Laplacian): ∇2gs(x, y) = λsgs(x, y), where

s is a label for the eigenvector. Then, let the solution be of the

form

T (x, y, t) =
∑
s

hs(t)gs(x, y)

. The equation for hs(t) is, as before ḣs(t) = αλshs(t)

1. Let’s start with the Laplacian eigenvalue problem:(
∂2

∂x2
+

∂2

∂y2

)
g = λg

on a square with side L and with vanishing boundary solutions:

g(0, y) = g(L, y) = g(x, 0) = g(x, L) = 0 .

Separate variables in this equation, solve each separated equation with the correct boundary

conditions and explain why the (unnormalized) eigenvectors are labelled by a pair of positive

integerts m,n and are equal to

gn,m = sin(nπx/L) sin(mπy/L)
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Make sure to find λnm.

2. Write down the general solution to the heat equation,

∂

∂t
T (x, y, t) = α∇2T (x, y, t)

with the boundary conditions given above.

3. Match to the initial condition:

T (x, y, 0) =

{
T0 for D < x < L−D and D < y < L−D
0 otherwise
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Lec 14
Reminder: heat equation is Ṫ = α∇2T . The general solution has a form

T =
∑
s

cse
αλstfs

where fs are eigenvectors of the Laplacian ∇2: ∇2fs = λsfs. At very large t,

T →
∑
s s.t.
λs=0

csfs

I.e., at large time, the solution approaches a sum of zero eigenvectors of∇2, which is the same

as being a zero eigenvector of ∇2. At late times, the solutions becomes 1. time independent

and 2. a solution to the Laplace equation.

The laplace equation ∇2T = 0 can also be obtained from the heat equation by assuming

that temperature is independent of time, so that Ṫ = 0. This is why ∇2T = 0 is also

refered to as the time-independent heat equation. A solution to this equation is called the

steady-state solution.

A simple way to find a solution to the heat equation with inhomogeneous (time indepen-

dent) boundary conditions is to look for the steady-state solution and solve just the Laplace

equation. This will give you the thermal equilibrium temperature distribution arising from

the boundary conditions. Then, separately, you can solve the problem with homogeneous

boundary conditions to get the general solution and to match to initial conditions. This is

an example of the Divide and Conquer strategy. Use it for Question 2 on HW 4A.

Example: To solve Ṫ = α∇2T with boundary conditions Tboundary = T0, break it into

two problems: ∇2T = 0 with Tboundary = T0 and T independent of time (the steady state

problem) and Ṫ = α∇2T with boundary conditions Tboundary = 0, then add the two solutions.

Last lecture, we did proved some general statements about the Laplacian eigenvalue problem

in arbitrary dimension using rectilinear coordinates. To obtain explicit solutions, however,

we need to use coordinates adapted to the shape of the boundary. Today, we will talk about

polar coordinates in two dimensions.

Let’s solve the laplacian eigenvalue problem on a disk with radius R and vanishing bound-

ary conditions:

∇2u(r, θ) = −λu(r, θ) u(R, θ) = 0 ∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

As we know already, the eigenvalues of ∇2 will all be negative, so λ > 0.

Separation of variables: u(r, θ) = f(r)g(θ). g′′(θ) = −n2g(θ) which leads to gn = einθ.

The r equation is
1

r

∂

∂r

(
r
∂

∂r
f(r)

)
− n2

r2
f(r) = −λf(r)

This is not an equation that has a solution in terms of familiar functions. The best we can

do is to show that this is the Bessel equation by changing variables to z =
√
λr, and defining



PHYS 312 notes by Joanna Karczmarek, 2022 version 62

a new function Z it terms of f(r) as Z(z) = f(z/
√
λ). Then, dividing both sides of the

differential equation by λ:

1√
λr

d√
λdr

(√
λr

d√
λdr

f(r)

)
− n2

λr2
f(r) = −f(r)

and then using using d
dz

= dr
dz

d
dr

= 1√
λ
d
dr

= d√
λdr

,

1

z

d

dz

(
z
d

dz
f(z/
√
λ)

)
− n2

z2
f(z/
√
λ) = −f(z/

√
λ)

1

z

d

dz

(
z
d

dz
Z(z)

)
− n2

z2
Z(z) = −Z(z)

d2

dz2
Z(z) +

1

z

d

dz
Z(z) +

(
1− n2

z2

)
Z(z) = 0

The last equation is the Bessel equation in its standard form.

Bessel functions that don’t blow up at z = 0 are called Bessel functions of the first kind,

and denoted with Jn. So, since f(r) = Z(
√
λr), our solutions are f(r) = Jn(

√
λr).

The boundary conditions become Z(
√
λR) = f(R) = 0, ie

√
λ must be a solution to the

equation Jn(
√
λR) = 0.

Let’s look at some plots

From wikipedia, credit to Inductiveload, in Public Domain:

Looking at the plots, we can see that for every n, we get a series of values for λ by

solving the equation Jn(
√
λR) = 0. This cannot be done in closed form. We can denote

these solutions with λn,m, where m denotes the number of ’half-waves’ that fit from r = 0

to r = R.

Altogether, the eigenvectors of ∇2 take the form

un,m = Jn(
√
λn,mr)e

inθ .

You can replace einθ with sin(nθ) and cos(nθ) as desired and most convenient depending on
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boundary/inital conditions.

Look at some pretty pictures: https://www.chebfun.org/examples/disk/Eigenfunctions.html

We know already that these eigenvectors must be orthogonal, since we proved that ∇2

is symmetric which means that we know that

〈un,m, uñ,m̃〉 =

ˆ R

0

dr

ˆ 2π

0

rdθ un,muñ,m̃ = ‖un,m‖2δnñδmm̃

We have:

ˆ R

0

dr

ˆ 2π

0

rdθ un,muñ,m̃ =

ˆ R

0

dr

ˆ 2π

0

rdθ Jn(
√
λn,mr)e

−inθJñ(
√
λñ,m̃r)e

iñθ =

ˆ 2π

0

dθe−inθeiñθ
ˆ R

0

rdr Jn(
√
λn,mr)Jñ(

√
λñ,m̃r) =

2πδnñ

ˆ R

0

rdr Jn(
√
λn,mr)Jñ(

√
λñ,m̃r)

So, if we define an inner product for (real) functions of r alone by 〈f, h〉 =
´ R
0
rdrf(r)h(r),

then we have

〈Jn(
√
λn,mr), Jn(

√
λn,m̃r)〉 =

ˆ R

0

rdr Jn(
√
λn,mr)Jn(

√
λn,m̃r) = δmm̃‖Jn(

√
λn,mr)‖2

This is expected because Jn(
√
λn,mr) are eigenvectors of the operator

1

r

∂

∂r

(
r
∂

∂r

)
− n2

r2

which is symmetric under the inner product 〈f, h〉 =
´ R
0
rdrf(r)h(r) (see Worksheet 8,

question 3).

Note: Bessel functions are orthogonal when they have the same n and different m.

Summmary of (cylindrical) Bessel functions

When solving the Laplace eigenvalue problem in polar coordinates, you will have a differential

equation of the form
1

r

∂

∂r

(
r
∂

∂r
f(r)

)
− n2

r2
f(r) = −γf(r) .
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This equation for f is the Bessel equation, after we change variables to z =
√
γr, r(z) =

z/
√
γ:

γ
1

z

∂

∂z

(
z
∂

∂z
f(r(z))

)
− γn2

z2
f(r(z)) = −γf(r(z))

1

z

∂

∂z

(
z
∂

∂z
f(r(z))

)
+

(
1 − n2

z2

)
f(r(z)) = 0

The solutions to the Bessel equation are denoted by Jn(z) and Yn(z). Yn(z) blow up at z = 0,

but this does not bother us here since r = 0 is not part of the region where we are solving the

equation. We need to keep both to match boundary conditions, so we get a general solution

of the above equation as f(r(z)) = AJn(z) +BYn(z), or f(r) = AJn(
√
γr) +BYn(

√
γr).
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Lec 15
The heat equation is not the only important equation in physics that is solved by sep-

aration of variables. Other such equations include the Schrodinger equation and the wave

equation. These equations all have the Laplacian in them, but the time derivatives enter

differently.

Let ∇2fs = −λsfs, so fs are eigenvectors of ∇2.

HEAT:

Ṫ = α ∇2T T =
∑
s

cs e
−αλst fs

SCHRODINGER (free particle):

i~
∂

∂t
Ψ = − ~2

2m
∇2Ψ Ψ =

∑
s

cs e
− i

~
~2λs
2m

t fs

WAVE:

ü = v2 ∇2u u =
∑
s

??? fs

The Schrodinger equation is basically the heat equation with an imaginary α (or you can

think of it as the heat equation with imaginary time). ~2λs
2m

is the energy eigenvalue. For

more, see Phys 304.

In this lecture, we will focus on the wave equation. We can derive it (in 1 dimension)

by considering a system of masses connected by springs (like atoms in a 1d solid). This will

be the same argument we saw in the first Jupiter worksheet, but presented backwards.

At equilibrium, the atoms are spaced by spacing a. The spring constant of each spring is

k and the atoms have mass m. If each atom moves away from the equilibirium spacing by

yn, then the nth atom will experience a force given by

F = k(yn−1 − yn) + k(yn+1 − yn) = mÿn

This is a system of differential equations for yn, which we can write as
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m
d2

dt2


y0
y1
y2
...

yn+1

 = K


y0
y1
y2
...

yn+1



K =


k −2k k

k −2k k
. . . . . . . . .

k −2k k



We introduced the extra atom at each end to be able to impose a fixed boundary condition,

y0 = yn+1 = 0. We can now get rid of those:

m
d2

dt2


y1
y2
y3
...

yn

 = K


y1
y2
y3
...

yn

 ÿ =
1

m
Ky

K =



−2k k

k −2k k

k −2k k
. . . . . . . . .

k −2k k

k −2k



1. Let n = 1. Write an equation for y1 and solve.

2. Let n = 2. Find the eigenvectors v1 and v2 of the 2× 2 matrix K.

As we saw above,

[
y1(t)

y2(t)

]
= c1(t)v1 + c2(t)v2. What are c1 and c2?

When n is very large, it’s interesting to zoom out of the atomic picture and consider

a continuum limit. At a point x = ka along the chain, the displacement of an atom is
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y(x) = y(ka) = yk. The equation for y(x) is

mÿ(x) = k(y(x− a)− y(x)) + k(y(x+ a)− y(x)) = ka2
y(x+a)−y(x)

a
− y(x)−y(x−a)

a

a

Taking a to be very small, this becomes:

mÿ(x) = ka2
y′(x)− y′(x− a)

a
= ka2y′′(x)

We have supressed the t dependence of y for clarity, replacing it we have

ÿ(x, t) =
ak

m/a

∂2

∂2x
y(x, t)

m/a is simply the (linear) density of the chain of atoms (mass per length). ak has an

intepretation as an elastic modulus. The easiest case to understand is when if the relaxed

length of each spring is zero. Then, ak is the tension in the chain of springs. More generaly,

if a is the equilibrium length of a string, then we have a rigid body such as a rod, then ak

is the elastic modulus, which is defined as the ratio of stress to strain:

elastic modulus = stress/strain = force / (∆L/L) = L(force/∆L) = L(k/n)=(L/n)k = ak

In either case, ak/(m/a) has a macroscopic intepretation in terms of the collection of masses

and springs as a whole.

Let’s recall something from first year physics: a periodic moving wave is described by

sin

(
2π

(
x

λ
− t

T

)
+ φ

)
This is a wave moving to the right; when moving to the left, we have instead

sin

(
2π

(
x

λ
+
t

T

)
+ φ

)
Substituting this into the wave equation, we see that it is a solution as long as

ak

m/a
=

tension

density
=

elastic modulus

density
=
λ2

T 2
= v2

We will write the wave equation then as

ÿ(x, t) = v2
∂2

∂2x
y(x, t)

The higher dimensional version is

ÿ = v2 ∇2 y

and these equations apply equally well to transverse oscillations as to longitudinal oscilla-

tions.
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Boundary conditions for the 1D wave equation: ü = v2 ∂2

∂x2
u

Fixed bc (Dirichlet)

u(0, t) = u0

Free bc (Neumann)

∂xu(0, t) = 0

In-between bc (Robin)

∂xu(0, t) = −µ(u(0, t)− u0)

3. Let ü = v2 ∇2u. Then, u =
∑

s ??? fs(~x). What does ??? represent?

Comment: fs(~x) are called the normal modes.

4. What are the normal modes of oscillation for a circular drum membrane with radius R

and wave speed v? Find the spacial dependence fs(~x) and the corresponding frequency.
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Lec 16

1. (Repeated from last lecture’s worksheet, since we did not get to it.)

What are the normal modes of oscillation for a circular drum membrane with radius R and

wave speed v? Find the spacial dependence gs(~x) and the corresponding frequency. Recall

that in polar coordinates,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

Since, at a fixed n, Jn(knmr) all eigenvectors of Dn := 1
r
∂
∂r

(
r ∂
∂r

)
−

n2

r2
with distinct eigenvalues, they must be orthogonal if we can

find an inner product for which this operator is symmetric. We

saw such an inner product in a previous Worksheet:

〈a, b〉r :=

ˆ R

0

rdr a(r)b(r)

(subscript r will help us keep track of different inner products

here). We have

〈hnm, hnm′〉r = ‖hnm‖2δmm′

Note: same n!

We also have, for (complex) functions of the angle θ,

〈c, d〉θ =

ˆ 2π

0

dθ c̄(θ)d(θ)

and the two-dimensional inner product for function on a disk with

a surface element ds2 = r dr dθ:

〈u, v〉disk =

ˆ
r≤R

ds2ū(r, θ)v(r, θ) =

ˆ R

0

rdr

ˆ 2π

0

dθ ū(r, θ)v(r, θ)
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These are all compatible with each other, namely, for u = ac and

v = bd,

〈ac, bc〉disk =

ˆ R

0

rdr

ˆ 2π

0

dθ a(r)c̄(θ)b(r)d(θ) =

ˆ R

0

rdr a(r)b(r)

ˆ 2π

0

dθ c̄(θ)d(θ) = 〈a, b〉r〈c, d〉θ

The inner product that made the r-part of the two dimensional

Laplacian, Dn = 1
r
∂
∂r

(
r ∂
∂r

)
− n2

r2
, symmetric comes from the Ja-

cobian for spherical coordinates.

Orthogonality of gnm works out as well (as it must, since they are

eigenvectors of a Laplacian): gnm = einθhnm,

〈gnm, gjk〉disk = 〈hnm, hjk〉r〈einθ, eijθ〉θ = 〈hnm, hjk〉r (2π) δnj =

2π〈hnm, hnk〉rδnj = 2π‖hnm‖2δmkδnj

Therefore, for a general function on the disk, u(r, θ), we can write

u(r, θ) =
∞∑

n=−∞,m=1

cnmhnm(r)einθ

with
cnm =

〈hnmeinθ, u〉disk
2π‖hnm‖2 Phew!

Divide and Conquer

When you are comfortable with thinking of functions as vectors and differentiation etc... as

linear operators, you can view a linear partial differential equation as ‘built’ out of linear

operators. Boundary conditions can also be described in terms of linear operators: for

example, consider the space V of functions of two variables, r and θ. Then define the linear

operator (map) L : V → W where W is a function of one variable, which assigns to each

such function f a function of one variable, θ given by ∂rf(1, θ). In symbols g = L(f)

when g(θ) = ∂rf(1, θ), or even L(f)(θ) = ∂rf(1, θ). The homogeneous boundary condition

f(1, θ) = 0 is then given by the equation linear homogeneous equation Lf = 0.

A completely homogeneous problem would be given by a set such as

L1f = 0

L2f = 0
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L3f = 0

where L1 could represent differential operators such as ∇2 or ∇2 − α∂t, etc... and others

could represent boundary conditions, or even other differential equations (especially if there

are multiple unknown functions).

Example of a linear, homogenous system: let’s consider two un-

known functions, say u(r, θ, t) and w(θ, t) with equations such

as

∇2u− c2∂2t u = 0

u(R, θ, t)− w(θ, t) = 0

ρ∂2tw − τ∂2θw − ∂ru(R, θ, t) = 0

u(r, θ, t)− u(r, θ + 2π, t) = 0

w(θ, t)− w(θ + 2π, t) = 0

This could model a drum with a rim that has some flex to it.

If we add enough homogeneous equation, we might end up in the

situation where the only solution is the trivial one where every-

thing is zero. Here, we could add zero initial conditions

u(r, θ, 0) = 0

∂tu(r, θ, 0) = 0

Without these extra equations, we might have a need for a solu-

tion we will call the ‘solution to the homogeneous problem’, or

the ‘homogeneous solution’ (it’s sometimes also called the com-

plementary solution).

We can start complicating this problem by adding inhomogeneous terms to the right hand

sides of the equations. The trick is to find at least one solution to the inhomogeneous

problem, and then add the general homogenous solution to it.

However, we cannot approach a problem with a whole bunch of inhomogeneous terms at

once!

Recall that, given sufficient boundary conditions, the differential linear operators are sym-

metric under some inner product. Boundary condition operators and differential operators

serve different functions: the homogeneous boundary conditions define the vector space on

which the differential linear operators are symmetric. Working in the basis of eigenvectors of
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the symmetric operator(s), you can reduce a partial differential equation to ordinary differ-

ential equations for the coefficients of these eigenvectors. Inhomogeneous boundary and/or

initial conditions can be written in the eigenvector basis as well (using the fact that the

eigenvectors are orthogonal), and result in boundary conditions for these ordinary differen-

tial equation.

Ig we have too many inhomogeneous boundary conditions, there might not seem to be

enough homogeneous ones present. The ‘divide and conquer’ strategy is to split the problem

into several ‘elementary’ ones, each containing only one inhomogeneous boundary condition.

As a simple example, consider the Laplacian problem on a disk:

∇2u = g(r, θ) ∂ru(1, θ) = h(θ)

The corresponding homogeneous problem is, of course,

∇2uH = 0 ∂ruH(1, θ) = 0

We know that eigenvalues of the laplacian are generally non-positive, and that the constant

function is the only zero eigenvector. Therefore, the only solution here is uH(r, θ) = c0, a

constant. You can, if you don’t believe the theorem, confirm this by separating variables

and solving the usual way.

Now, we have two different homogeneous problems, one of which we know how to solve:

∇2u1 = 0 ∂ru(1, θ) = h(θ)

∇2u2 = g(r, θ) ∂ru2(1, θ) = 0

The first we know how to do. The second involves inverting a symmetric operator, ie un-

derstanding the meaning of u2 = (∇2)−1g(r, θ). Should we find some solutions (any solu-

tions, don’t have to be the most general ones), we can write the most general solution as

u = u1 + u2 + uH .

Notice that this technique parallels the one you learned for solving systems of linear

equations.

Another simple example, similar to the homework: the heat equation ∇2T = αṪ with a

boundary condition of the form ∂rT (R, θ, t) = κ(T (R, θ, t)−T0), which is not homogeneous,

and an inhomogeneous initial condition, T (r, θ, 0) = Ti. We could consider the following

inhomogeneous subproblems:

∇2T = αṪ ∂rT (R, θ, t) = κ(T (R, θ, t)− T0) T (r, θ, 0) = 0 (1)

∇2T = αṪ ∂rT (R, θ, t) = κT (R, θ, t) T (r, θ, 0) = Ti (2)

but this does not help us, since the first problem still does not have a good symmetric

operator. Instead, let’s think about the physics. There should be a steady state solution,

independent of time and possibly initial conditions. Removing time dependence, we have

a simple problem ∇2T = 0, ∂rT = κ(T − T0) which is solved by T = T0. To make this a
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solution of the first problem above, we have to modify it like this:

∇2T = αṪ ∂rT (R, θ, t) = κ(T (R, θ, t)− T0) T (r, θ, 0) = T0 (3)

∇2T = αṪ ∂rT (R, θ, t) = κT (R, θ, t) T (r, θ, 0) = Ti − T0 (4)

We compensate for this modification in the second problem so that T1+T2 solves the original

problem still.

A lesson: It pays to be clever in how we divide up the problem into pieces to make your

life easier. Use symmetry, physical intuition, check for constant solutions and generally try

to identify the simplest set of inhomogeneous problems you can find.

Our top-level linear algebra view allows us to see the whole last problem:

∇2T = αṪ ∂rT = κ(T − T0) T (r, θ, 0) = Ti

as being of the form LT = b where the linear operator L is a list of operators:

L = (∇2 − αṪ , (substitute r = R)(∂r − κ), substitute t = 0)

and where

b = (0,−κT0, Ti)

To divide and conquer, we consider the following three problems:

LTH = 0 := (0, 0, 0)

LT1 = b1 := (0,−κT0, T0)
LT2 = b2 := (0, 0, Ti − T0)

Once we solved all three, we add the solutions to obtain a solution to the original problem

TH + T1 + T2. This works because b1 + b2 = b, and therefore LT = L(TH + T1 + T2) =

LTH + LT1 + LT2 = 0 + b1 + b2 = b.

In the homogeneous case, we need to find the most general TH . In the inhomogeneous

cases, any particular solution will suffice. This is because a difference between any two

solutions TA and TB of an inhomogeneous equation LTA = b and LTB = b is a solution to

the homogeneous equation L(TA − TB) = LTA − LTB = 0.

In this case, the solution to the homogeneous problem is just TH = 0, and the solution

to the entire problem is therefore unique (something we have been glossing over up to this

point).

As explained above, chosing b1 = (0,−κT0, T0) and b2 := (0, 0, Ti − T0) makes your life

easy because then, by physical reasoning and/or inspection T1 = T0. Always consider simple

solutions to problems similar to the one asked to see if you can make one or more of the

inhomogeneous sub-problems easy (or at least easier).
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2. Solve the heat equation Ṫ = α∇2T in two dimensions in polar coordinates r, θ, for

a bounded temperature distribution T (r, θ, t), R1 ≤ r ≤ R2, t ≥ 0, with the following

boundary and initial conditions:

T (R1, θ, t) = T1

T (R2, θ, t) = T2

T (r, θ, 0) = Ti

(a) Divide and conquer: try to divide this problem into more basic ones that are similar to

what we have seen before.

(b) What Laplacian eigenvalue problem do you think you will need to solve?

(c) Write down a formal solution to the Laplacian eigenvalue problem.

(d) Solve your sub-problems from part (a).
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Lec 17
Test 4 + a clarification of last lecture
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Lec 18

Below are three problems; the second is a repetition from two lectures ago. For each, if

necessary, figure out a ‘divide and conquer’ strategy, reducing the problem to two or more

basic ones you know how to solve. Then, state what symmetric operator’s eigenvectors will

give you a good basis to work in. Don’t necessarily work out the details of the solution,

rather, focus on coming up with a strategy.

1. Solve the Laplace equation ∇2u = 0 for u as a function of x, y, z, on a unit cube:

0 < x < 1, 0 < y < 1, 0 < z < 1, with boundary conditions

u(x, y, 0) = x(1− x) u(x, 0, z) = sin(z/π) ∂xu(0, y, z) = 0

u(x, y, 1) = y(1− y) u(x, 1, z) = sin(x/π) sin(z/π) ∂xu(1, y, z) = 0

2. Solve the heat equation Ṫ = α∇2T in two dimensions in polar coordinates r, θ, for

a bounded temperature distribution T (r, θ, t), R1 ≤ r ≤ R2, t ≥ 0, with the following

boundary and initial conditions:

T (R1, θ, t) = T1

T (R2, θ, t) = T2

T (r, θ, 0) = Ti

3. Solve the Schrodinger equation

i~
∂

∂t
Ψ = − ~2

2m

∂2

∂x2
Ψ +KΨ

for the wavefunction of a spin 1/2 particle in one dimension, which has the form

Ψ(x, t) =

[
ψ+(x, t)

ψ−(x, t)

]
where K is an interaction term between the two spin states + and −:

K =

[
0 r

r 0

]
r is (real) constant. Let the particle be confined to a box with length L:

ψ±(0, t) = ψ±(0, t) = 0

and take the initial wavefunction to be

Ψ(x, 0) =

[
sin2(πx/L)

0

]
.
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Lec 19
Today, we are going to learn to solve inhomogeneous PDEs. The over-all methodology is

very similar to solving inhomogeneous linear equations, familiar from matrix algebra. Let’s

review

The equations we are interested in are of the form Av = b, where A is a matrix (ie, a

linear operator), v is a column vector and b is a column vector. We will focus on the case

where v and b are the same size (ie, live in the same vector space V and A : V → V ).

We know that we can write v = A−1b, if A−1 exists. But, there are equations where

A−1 does not exist (A has a nontrivial kernel, ie some zero eigenvectors). There are also

equations where there are no solutions, because b is not in the image of A. We learned that

if we know the eigenvectors of A with their eigenvalues, we can solve for v it terms of those

eigenvectors. Let Aus = λsus, then if

b =
∑
s

csus

for some coefficients cs (which we know how to compute), we can write

v =
∑
s

cs
λs
us .

The tricky part is when one (or more) of λs are zero. Let’s say that there exists an eigen-

vectors with zero eigenvalue, denoted with u0: Au0 = 0. Then, there are two possibilities:

if c0 = 0, there exists a solution, just omit the zero eigenvector from the sum and add the

kernel to the particular solution:

v =
∑
s,s 6=0

cs
λs
us + d0v0

If c0 6= 0, then there is no solution!

Let’s now see how this plays out with differential equations.

Example 1: Solve ∇2f(x, y) =
(
∂2

∂x2
+ ∂2

∂y2

)
f(x, y) = 1 with boundary conditions f(0, y) =

f(π, y) = f(x, 0) = f(x, π) = 0. Recall that the Laplacian with zero boundary conditions

has no zero eigenvectors. (we proved in lecture 11 that the laplacian with vanishing bound-

ary conditions has strictly negative eigenvalues). This means that the solution here will be

unique.

Example 2: Solve
(
∂2

∂x2
− ∂2

∂y2

)
f(x, y) = 1 with boundary conditions f(0, y) = f(π, y) =

f(x, 0) = f(x, π) = 0. This is more interesting, because the operator A := ∂2

∂x2
− ∂2

∂y2
does

have a nontrivial kernel (vector space of zero eigenvectors) on the space of functions with

these boundary conditions. We know (or can easily obtain by our usual methods) what the
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most general vector in this kernel looks like (solution to Af = 0)

∞∑
n=1

cn sin(nx) sin(nx)

In general, eigenvectors of A are given by sin(nx) sin(mx): A sin(nx) sin(mx) = −(n2 +

m2) sin(nx) sin(mx). If we just had a single (particular) solution to the inhomogeneous

equation with the correct boundary conditions... call it fP , the general solution would have

the form

f(x, y) = fP (x, y) +
∞∑
n=1

cn sin(nx) sin(nx)

We can obtain fP in the same way as for the finite dimensional case before, writing the

RHS as a sum over eigenvectors of A and dividing each term by its eigenvalue.

A: Assuming that A is a symmetric operator, eigenvectors come to the rescue. Let vq be

eigenvectors of A with nonzero eigenvalues: Avq = λqvq with λq 6= 0. If you can write b as a

linear combination of those vq: b =
∑

q cqvq, then you can check that

A
∑
q

1

λq
cqvq =

∑
q

1

λq
cqAvq =

∑
q

1

��λq
cq��λq vq =

∑
q

cqvq = b

so vP =
∑

q
1
λq
cqvq is a particular solution to Av = b.

However, if A has any zero eigenvectors, Av0 = 0, the equation might have no solution.

One way to check is to compute 〈b, v0〉. If this is nonzero, Af = b has no solutions.

Let’s put this theory to some practice. Example 1 in question 1. Example 2 in question

2.

1. (a) Find any particular solution to the equation
(
∂2

∂x2
+ ∂2

∂y2

)
f(x, y) = 1 with boundary

conditions f(0, y) = f(π, y) = f(x, 0) = f(x, π) = 0.

(b) Write the general solution to the above problem and finish solving Example 1.

2. (a) Find a particular solution to the equation
(
∂2

∂x2
− ∂2

∂y2

)
f(x, y) = 1 with boundary

conditions f(0, y) = f(π, y) = f(x, 0) = f(x, π) = 0.

(b) Find the general solution to
(
∂2

∂x2
− ∂2

∂y2

)
f(x, y) = sin(3x) sin y with the same boundary

conditions as in part (a).

3. Solve the heat equation in 1d with a source: Ṫ = α∂2xT + S(x) for T (x, t) where

S(x) =

{
0 for x < L/3 or x > 2L/3

Φ for L/3 < x < 2L/3

using insulating boundary conditions: ∂xT (0, t) = ∂xT (L, t) = 0 and a zero initial condition
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T (x, 0) = 0. The physical solution has a continuous, differentiable temperature with a

continuous derivative in the x direction (the derivative is proportional to the rate of heat

flow along the x direction).
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Lec 20
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Solve the heat equation in 1d with a source:

Ṫ (x, t) = α∂2xT (x, t) + S(x)

S(x) =

{
0 for x < L/3 or x > 2L/3

Φ for L/3 < x < 2L/3

Use insulating boundary conditions: ∂xT (0, t) = ∂xT (L, t) = 0

and a zero initial condition T (x, 0) = 0.

The physical solution has a continuous, differentiable tem-

perature with a continuous derivative in the x direction (the

derivative is proportional to the rate of heat flow along the x

direction).

Solve the heat equation in 1d with a source: Ṫ = α∂2xT + S(x) for T (x, t) where

S(x) =

{
0 for x < L/3 or x > 2L/3

Φ for L/3 < x < 2L/3

using insulating boundary conditions: ∂xT (0, t) = ∂xT (L, t) = 0 and a zero initial condition

T (x, 0) = 0. The physical solution has a continuous, differentiable temperature with a con-

tinuous derivative in the x direction (the derivative is proportional to the rate of heat flow

along the x direction).
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Lec 21
In the problems we have solved so far in the course, we always had a symmetric operator

with a complete basis of orthogonal eigenfunctions to base our solutions on.

There are, however, other (still physical) problems where the domain of the problem is

infinite, there are no boundaries and the derivative operators are not symmetric in the sense

in which we have understood it so far.

Consider the following pairs of examples:

(A) Solve the Laplace equation

∇2u = 0

where

A1: In polar coordinates r, θ, let u(R, θ) = f(θ). Solve for u(r, θ),

r < R.

A2: In rectilinear coordinates x, y, v(x, 0) = g(x), v → 0 for

y →∞. Solve for v(x, y), y > 0.

(B) Solve the equation

∂2xu(x) = S(x)

where

B1: u(x) and S(x) are defined on an interval from 0 to L with

u(0) = u(L) = 0.

B2: u(x) and S(x) are defined on the entire real axis, and

limx→±∞ S(x) = 0.a

aThe real convergence condition will turn out to be somewhat different,
but let’s leave it like this for now.
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(C) Solve the wave equation

ü− u′′ = F (t)

where

u(0, t) = u(L, t) = 0

u(x, 0) = 0 ∂tu(x, 0) = 0

and where

C1: F (t) = cosωt

C2: F (t) is an arbitrary function with F (t) = 0 for t < 0.

(D) Solve the wave equation

ü− u′′ = 0

where

u(0, t) = 0

u(L, t) = F (t)

u(x, 0) = 0 ∂tu(x, 0) = 0

and where

D1: F (t) = cosωt

D2: F (t) is an arbitrary function with F (t) = 0 for t < 0.

For A1, we would consider the eigenvectors of ∂2θ with periodic boundary conditions, eimθ to

expand f(θ) in. How to expand g(x) in eigenvectors of ∂2x the entire real line? Formally, eikx

is an eigenvector of this: ∂2xe
ikx = −k2eikx, but what do we do with the continuous label k?

For B1, we can expand the inhomogeneous term S(x) as a linear combination of sin(nπx/L).

The coefficients can be found using inner products. Can we do the same in B2, write S(x)

as a linear combination of eikx somehow? how do we find the coefficients?

For C1, we can be clever and try a solution of the form u(x, t) = f(x) cosωt. You saw

that this works in HW5B, question 2. But for C2, an arbitrary function is not an eigenvector

of ∂2t the way cosωt is, so that won’t work. Can we write F (t) as a linear combination of

eiωt for various ωs? How, again, do we find the relevant coefficients?

The same considerations as in (C) apply to (D): you can try f(x) cos(ωt) in D1, but need

something more sophisticated in D2.
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Definition: Fourier transform f̂ of a function f is given by

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx

The Fourier inversion formula is

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky

You can think of this as writing the function f in the basis of eikx, which are eigenvectors of

−i∂x with real eigenvalues in the absense of any boundary conditions. The Fourier transform

allows you to compute the coefficient f̂(k) of the eigenvector of i∂x with eigenvalue k, ie eikx.

The Fourier inversion formula says that when the Fourier transform is used as coefficients is

the linear combination of these eigenvectors, the original function f(x) is recovered. This is

the Fourier inversion theorem, which holds when f(x) the relevant integrals are sufficiently

convergent (more about this later).

These should be compared as follows with an expansion in an

orthogonal set of eigenvectors gn

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky g(y) =
∑
n

cngn(y)

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx cn =
〈gn, g〉
〈gn, gn〉
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The similarity is even stronger when we take gn(x) = einx, ie x is

periodic with period 2π:

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky g(y) =
∑
n

cne
iny

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx cn =
〈einx, g(x)〉
〈einx, einx〉

=

=
1

2π

ˆ 2π

0

dx g(x)e−inx

We will now do the example (A) above, A1 to guide us and A2 to see how the Fourier

transform works.

In this question, we will be solving the Laplace equation ∇2u = 0 or ∇2v = 0 in two dimen-

sions, with nontrivial boundary conditions. f and g are some given functions. We will be

solving the following two problems:

A1 In polar coordinates r, θ, let u(R, θ) = f(θ). Solve for u(r, θ), r < R.

A2 In rectilinear coordinates x, y, v(x, 0) = g(x), v → 0 for y → ∞. Solve for v(x, y),

y > 0.

Start by solving the first problem below. Then, copy the key steps of your solution to

the next page, and use them as a guide to solving the second problem.
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Lec 22
Consider the wave equation with a time dependent boundary condition: ü = c2u′′, u =

u(x, t), u(0, t) = 0, u(L, t) = sin(ωt). We will be looking for a particular solution.

(a) Use an ansatz u(x, t) = f(x) sin(ωt). What is f(x)?

(b) Change the boundary condition at x = L to u(L, t) = A sin(ωt). What is the corre-

sponding solution?

(c) Change the boundary condition at x = L to u(L, t) = eiωt. What is the correspond-

ing solution?

(d) Change the boundary condition at x = L to u(L, t) = 1
1+et−T+e−t−T

eiωt, where T is a

positive constant. What is the corresponding solution?
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Consider a function f(x) for x from 0 to L. We can write

f(x) =
∞∑
n=1

cn sin
nπx

L
.

Consider a function f(x) for x from 0 to L. We can write

f(x) = d0 +
∞∑
n=1

dn cos
nπx

L
.

Consider a function f(x) for x from 0 to L. We can write

f(x) =
∞∑

n=−∞

ene
2πinx

L

As an example, I have computed the first 30 coefficients in these three series (sin, cos,

periodic), for a function on the interval 0 to L = π which is (x − π/4)(π/3 − x) between

π/4 and π/3 and 0 otherwise. All three series do pretty well approximating this function

between 0 and π:

When we extend the plots of the functions outside of this interval, what we get is determined

by the symmetries of each series:

• The cosine series is symmetric under reflection x → −x and periodic under x →
x+ 2L = x+ 2π. The extended graph is:
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• The sine series is anti-symmetric under reflection x → −x and periodic under x →
x+ 2L = x+ 2π, so half of the peaks are flipped over. The extended graph is:

• Finally, the periodic series is simply periodic under x→ x+L = x+π with no further

symmetries, therefore the extended graph is:

If we want to avoid having repeated peaks all together and simply have the function be zero

outside the ’primary’ peak, we need to have no periodic symmetry present at all. The only

way to do that is to use a continuous set of wavevectors, ie use a Fourier transform instead

of one of the periodic series. Last lecture, we saw that the fourier transform and its inverse

are analogs of the period series expansions:
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The cosine series is symmetric under reflection x → −x
and periodic under x→ x+ 2L = x+ 2π.

The sine series is anti-symmetric under reflection x → −x
and periodic under x→ x+ 2L = x+ 2π.

The periodic series is simply periodic under x → x + L = x + π

with no further symmetries.
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These should be compared as follows with an expansion in an

orthogonal set of eigenvectors gn

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky g(y) =
∑
n

cngn(y)

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx cn =
〈gn, g〉
〈gn, gn〉

The similarity is even stronger when we take gn(x) = einx, ie x is

periodic with period 2π:

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky g(y) =
∑
n

cne
iny

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx cn =
〈einx, g(x)〉
〈einx, einx〉

=

=
1

2π

ˆ 2π

0

dx g(x)e−inx

The fourier transform and its inverse allow us to ‘expand’ functions of the entire real axis in

much the same way that we expanded functions on an interval using, say, the sine expansion.

There is, however, a missing element in the correspondence: the fourier series we have seen

(sine, cosine, periodic) are all based on orthogonal sets of (eigen)vectors. Is there a sense in

which the functions fk(x) = eikx with different values of k are orthogonal to each other?

Consider an inner product 〈f, g〉 =
´ L/2
−L/2 dx f(x)g(x). Then,

〈eikx, eipx〉 =

ˆ L/2

−L/2
dx e−ikxeipx =

ei(p−k)L/2 − e−i(p−k)L/2

i(p− k)
= L

sin
(

(p−k)L
2

)
(p−k)L

2



PHYS 312 notes by Joanna Karczmarek, 2022 version 92

If you squint hard enough, you might believe that at the large L limit, the result is zero

unless p = k. Of course, at L = ∞, the result is infinite. We get a weird sort of ‘function’.

This is the continuous analog of the Kronecker delta δij, called the (Dirac) delta function

and denoted with δ(p−k) (up to an overall factor of 2π that we will figure out in a moment).

δij =

{
1 if i = j

0 if i 6= j

δ(p− k) =

{
∞ if p = k

0 if p 6= q

Unfortunately, this is not really a definition we can work with. To be more precise, recall

that the main property of the Kronecker delta was that∑
i

aiδij = aj

for any sequence ai. The analogous property for the delta function is that, for any ‘test’

function f̂(p), ˆ
dp f̂(p)δ(p− k) = f̂(k)

In words, the function δ(p−k) is so sharply peaked around p = k that only the value of f̂ at

p = k contributes to the integral. The above formula is the definition of the delta function

(actually, it’s a distribution, which is a generalization of a function). The main takeaway

should be that a delta function only makes sense multiplied by a smooth function under an

integral.

Let’s see how this is compatible with our formulas for fourier transform:

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x)e−ikx =
1

2π

ˆ ∞
−∞

dx

(ˆ ∞
−∞

dp f̂(p) eipx
)
e−ikx =
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=

ˆ ∞
−∞

dp f̂(p)

(
1

2π

ˆ ∞
−∞

dx e−ikxeipx
)

So, by definition, we extract that

1

2π

ˆ ∞
−∞

dx e−ikxeipx = δ(p− k)

or ˆ ∞
−∞

dx e−ikxeipx = 2πδ(p− k)

By changing the variables around we also have

ˆ ∞
−∞

dp e−ipyeipx = 2πδ(x− y)

The first statement is orthogonality of the vectors eikx. The second can be thought of as

the statement that the fourier transform of eipx is 2πδ(x− y). A less rigorous way to derive

these statements is to consider that, from the definition of the delta function:

eikx =

ˆ ∞
−∞

dp δ(p− k)eipx

If we think about this equation as the inversion formula with f(x) = eikx and f̂(p) = δ(p−k),

then we have that

δ(p− k) =
1

2π

ˆ ∞
−∞

dx eipxe−ikx

As an example using the delta function, let’s consider a follow up question to the earlier

worksheet problem, and put the delta function on in the boundary condition. The resulting

solutions are sometimes called the impulse response.

Consider the question from Worksheet 22: we solved ∇2v = 0 for v(x, y) in rectilinear

coordinates x, y, with y > 0 and v(x, 0) = g(x). We were able to perform a sum and obtain

an answer in the form:

v(x, y) =
1

2π

ˆ ∞
−∞

dz g(z)
2y

(x− z)2 + y2

Now, let g(x) = δ(x−x0) for some x0. Find an explicit formula for v(x, y) (it should depend

on x0).

Check that v(x, y) you obtain satisfies the differential equation and the boundary condi-

tion.
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Lec 23

Fourier transform is like a fourier series on an infinite interval.

Compare with the periodic series, where gn(x) = einx, x is

periodic with period 2π.

f(y) =

ˆ ∞
−∞

dk f̂(k) eiky g(y) =
∑
n

cne
iny

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x) e−ikx cn =
〈einx, g(x)〉
〈einx, einx〉

=

=
1

2π

ˆ 2π

0

dx g(x)e−inx

Let’s return to the example from lecture 21.

In this question, we were solving the Laplace equation ∇2u = 0 or ∇2v = 0 in two di-

mensions, with nontrivial boundary conditions. f and g are some given functions. We were

solving the following two problems:

A1 In polar coordinates r, θ, let u(R, θ) = f(θ). Solve for u(r, θ), r < R.

A2 In rectilinear coordinates x, y, v(x, 0) = g(x), v → 0 for y → ∞. Solve for v(x, y),

y > 0.

The equation in A2 is ∂2xv + ∂2yv = 0 and the boundary condition is v(x, 0) = g(x). Take

a fourier transform of both of these. Equation first.

1

2π

ˆ ∞
−∞

dx
(
∂2xv(x, y) + ∂2yv(x, y)

)
e−ikx = 0

Integration by parts moves the x partial derivative to the exponential:

1

2π

ˆ ∞
−∞

dx
(
v(x, y)∂2xe

−ikx + ∂2yv(x, y)e−ikx
)

= 0

1

2π

ˆ ∞
−∞

dx
(
−k2v(x, y) + ∂2yv(x, y)

)
e−ikx = 0

(
−k2 + ∂2y

)
frac12π

ˆ ∞
−∞

dx v(x, y)e−ikx = 0
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Introduce notation for the fourier transforms:

(−k2 + ∂2y)v̂(k, y) = 0

Now do the boundary condition

1

2π

ˆ ∞
−∞

dx (v(x, 0)) e−ikx =
1

2π

ˆ ∞
−∞

dx (g(x)) e−ikx

sot hat

v̂(k, 0) = ĝ(k)

k can now be treated like a fixed parameter, and we have an ODE in y. Easy to solve, the

solution is

v̂(x, y) = ĝ(k)e−|k|y

where we took care to keep only the solution that decays at y =∞, as instructed.

Before we finish, it’s instructive to consider the same path in question A1. The equation

is
1

r
∂r(r∂ru(r, θ)) +

1

r2
∂2θu(r, θ) = 0

and we can take inner products with a complete basis of periodic functions: einθ:〈
einθ,

1

r
∂r(r∂ru(r, θ)) +

1

r2
∂2θu(r, θ)

〉
= 0

ˆ 2π

0

dθeinθ
(

1

r
∂r(r∂ru(r, θ)) +

1

r2
∂2θu(r, θ)

)
= 0

Integrate by parts in the θ direction, assuming that u is periodic which kills the boundary

terms: ˆ 2π

0

dθ

(
1

r
∂r(r∂ru(r, θ))e−inθ +

1

r2
u(r, θ)∂2θe

−inθ
)

= 0

ˆ 2π

0

dθ

(
1

r
∂r(r∂ru(r, θ)) +

−n2

r2
u(r, θ)

)
e−inθ = 0(

1

r
∂r(r∂r − n2

) ˆ 2π

0

dθu(r, θ)e−inθ = 0

Introduce notation for the integral (ie, coefficients):(
1

r
∂r(r∂r − n2

)
ûn(r) = 0

Also take inner product in the boundary condition〈
einθ, u(R, θ)

〉
=
〈
einθ, f(θ)

〉
ûn(R) = f̂n
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Now, we can solve the ODE for ûn(r), with the result

un(r) = f̂n(r/R)n

It remains to sum this back up, as follows:

u(r, θ) =
∞∑
−∞

un(r)

‖einθ‖2
einθ =

1

2π

∞∑
−∞

f̂n (r/R)n

What is the equivalent step in question A2? it’s the fourier inversion thm (which we cannot

prove): If v̂(k, y) = 1
2π

´∞
−∞ dx v(x, y)e−ikx, then

v(x, y) =

ˆ ∞
−∞

dk v̂(k, y)eikx

Putting it all together,

v(x, y) =
1

2π

ˆ ∞
−∞

dp

(ˆ ∞
−∞

dz g(z)e−ipz
)
eipxe−|p|y

We can reverse the order of integration and do the p integral (equivalent to doing the sum

in the other question):

v(x, y) =
1

2π

ˆ ∞
−∞

dz g(z)

(ˆ ∞
−∞

dp e−ipzeipxe−|p|y
)

We have
ˆ ∞
−∞

dp e−ipzeipxe−|p|y =

ˆ ∞
0

dp e−ipzeipxe−|p|y+

ˆ ∞
0

dp eipze−ipxe−|p|y = 2Re

ˆ ∞
0

dp e−ipzeipxe−py

= 2Re
1

i(z − x)− y
=

2y

(x− z)2 + y2

Therefore

v(x, y) =
1

2π

ˆ ∞
−∞

dz g(z)
2y

(x− z)2 + y2

Why is the fourier inversion theorem true, though? one way to view it is to accept the

existance of a delta ’function’:
ˆ
dp f̂(p)δ(p− k) = f̂(k)

In words, the function δ(p−k) is so sharply peaked around p = k that only the value of f̂ at

p = k contributes to the integral. The above formula is the definition of the delta function

(actually, it’s a distribution, which is a generalization of a function). The main takeaway

should be that a delta function only makes sense multiplied by a smooth function under an
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integral.

Let’s see how this is compatible with our formulas for fourier transform:

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x)e−ikx =
1

2π

ˆ ∞
−∞

dx

(ˆ ∞
−∞

dp f̂(p) eipx
)
e−ikx =

=

ˆ ∞
−∞

dp f̂(p)

(
1

2π

ˆ ∞
−∞

dx e−ikxeipx
)

So, by definition, we extract that

1

2π

ˆ ∞
−∞

dx e−ikxeipx = δ(p− k)

or ˆ ∞
−∞

dx e−ikxeipx = 2πδ(p− k)

By changing the variables around we also have

ˆ ∞
−∞

dp e−ipyeipx = 2πδ(x− y)

The first statement is orthogonality of the vectors eikx. The second can be thought of as

the statement that the fourier transform of eipx is 2πδ(x− y). A less rigorous way to derive

these statements is to consider that, from the definition of the delta function:

eikx =

ˆ ∞
−∞

dp δ(p− k)eipx

If we think about this equation as the inversion formula with f(x) = eikx and f̂(p) = δ(p−k),

then we have that

δ(p− k) =
1

2π

ˆ ∞
−∞

dx eipxe−ikx

We can also use the delta function to derive the inversion, as follows. Start with the

definition:

f̂(k) =
1

2π

ˆ ∞
−∞

dx f(x)e−ikx

Insert delta: ˆ ∞
−∞

dqδ(q − k)f̂(q) =
1

2π

ˆ ∞
−∞

dx f(x)e−ikx

CHange to inner prdocut

ˆ ∞
−∞

dq

(
1

2π

ˆ ∞
−∞

dxeipxe−ikx
)
f̂(q) =

1

2π

ˆ ∞
−∞

dx f(x)e−ikx

Rearrange:
1

2π

ˆ ∞
−∞

dx

(ˆ ∞
−∞

dqeiqxf̂(q)

)
e−ikx =

1

2π

ˆ ∞
−∞

dx f(x)e−ikx
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Conclude: ˆ ∞
−∞

dqeiqxf̂(q) = f(x)

And there it is!

As an example using the delta function, let’s consider a follow up question to the earlier

worksheet problem, and put the delta function on in the boundary condition. The resulting

solutions are sometimes called the impulse response.

Consider the question from Worksheet 22: we solved ∇2v = 0 for v(x, y) in rectilinear

coordinates x, y, with y > 0 and v(x, 0) = g(x). We were able to perform a sum and obtain

an answer in the form:

v(x, y) =
1

2π

ˆ ∞
−∞

dz g(z)
2y

(x− z)2 + y2

Now, let g(x) = δ(x−x0) for some x0. Find an explicit formula for v(x, y) (it should depend

on x0).

Check that v(x, y) you obtain satisfies the differential equation and the boundary condi-

tion.


