
A brief (and possibly helpful) note on calculus

Consider a function of some thermodynamic quantities, say f(P, V, T ) = PV −NkT . Now,

consider a process where P , V and T are all changing. Let P change first and the change in

P be ∆P . This changes f by an amount equal to

∆f ≈ ∂f

∂P
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where I have indicated that V and T are to be treated as constants for the purpose of

differentiation (n and R are constants as well, of course). Taking a derivative, we easily get

that

∆f = V ∆P

Next, we allow V to change by ∆V while holding P and T constant. The change in f (do

it for yourself!) is now

∆f ≈ P∆V

Finally, change T by ∆T to get

∆f ≈ −Nk∆T

The total change in f , from these three steps one after another is

∆f ≈ V ∆P + P∆V −Nk∆T

However, the ideal gas law says that f is always zero: it cannot change at all. Thus, for a

substance that follows the ideal gas law, we obtain

V ∆P + P∆V −Nk∆T ≈ 0

We can also write it as

V dP + PdV −NkdT = 0

The notation dP implies an infinitesimal (very small) change in P , such that the linear ap-

proximations we used above are basically exact, so I replaced ≈ with =.

The equation V dP + PdV − NkdT = 0 is a relationship between changes in the ther-

modynamic variables T , P and V .

There are several ways in which this statement should be familiar to you. Let P , V and

T all be functions of some other variable, such as time, t. Then, I can divide by a small

increment in the time variable, dt, to get

V
dP

dt
+ P

dV

dt
−Nk

dT

dt
= 0

This is just ‘related rates,’ which you are familiar with from MATH 100. For example, if

you are given the values of T , V and P and the rate of change of V and T , you can compute

the rate of change of P .
dP

dt
= −P

V
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+
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V
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dt



We can also do this computation for the infinitesimal changes themselves: If you know the

change in, say, T and V , you can solve for a change in P :

dP = −P

V
dV +

Nk

V
dT = −NkT

V 2
dV +

Nk

V
dT

where on the last line I used the ideal gas law (P=NkT/V) to get rid of P . Now, we have

an equation that tells us how much P changes if we know T and V and their change. This

allows us to think of P as a function of T and V .

The equation V dP + PdV − NkdT = 0 can be thought of another way: since the ideal

gas law says, for example, that T is a function of V and P , I can ask questions like: holding

T constant, what is the derivative dP/dV . This, in MATH 100, was called implicit differ-

entiation. In V dP + PdV −NkdT = 0, I can set dT = 0 (since T is now a constant), then

divide by dV to get

V dP + PdV = 0 ⇒ V
dP

dV
+ P = 0 ⇒ dP

dV
= −P

V
if T = const.

Consider an adiabatic process (like in worksheet 3). We want no heat flow, so dU =

W + Q = W . Since U = (f/2)NkT , dU = (f/2)NkdT (f , k and N are all constants).

Together with W = −PdV , we have

(f/2)NkdT + PdV = 0

or

(f/2)NkdT = −PdV = −NkT

V
dV

so that
dT

dV
= − NkT

V (f/2)Nk
= − 2T

fV

This is the derivative of T w.r.t. V along the adiabatic curve, i.e., an example of implicit

differentiation in which the curve was only given to us in an infinitesimal form (Q = 0 so

(f/2)NkdT + PdV = 0) and not in a form of ‘this function is constant’ because heat is not

a function of state! This is why we need to get comfortable with differentials.

We already introduced two different things you can do with the infinitesimals such as dV

and dT : you can divide them by an infinitesimal change dt in an independent variable such

as time to obtain related rates from an equation of motion; you can divide them by each

other to obtain derivatives such as dT
dV

, along a path (such as the adiabatic curve above).

The last thing we can do with differentials is integrals. Separate the variables in the last

equation we wrote down:
f
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T
dT = − 1

V
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For a finite change, say from Vi to Vf , we need to sum up a large number of infinitesimal

changes. This is what an integral is, as you learned in MATH 101. We can write∫ T f

Ti

f
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Computing the integral yields an equation for the adiabatic curve.


