A brief (and possibly helpful) note on calculus

Consider a function of some thermodynamic quantities, say $f(P, V, T)=P V-N k T$. Now, consider a process where P, V and T are all changing. Let P change first and the change in P be ΔP. This changes f by an amount equal to

$$
\left.\Delta f \approx \frac{\partial f}{\partial P}\right|_{V, T} \Delta P
$$

where I have indicated that V and T are to be treated as constants for the purpose of differentiation (n and R are constants as well, of course). Taking a derivative, we easily get that

$$
\Delta f=V \Delta P
$$

Next, we allow V to change by ΔV while holding P and T constant. The change in f (do it for yourself!) is now

$$
\Delta f \approx P \Delta V
$$

Finally, change T by ΔT to get

$$
\Delta f \approx-N k \Delta T
$$

The total change in f, from these three steps one after another is

$$
\Delta f \approx V \Delta P+P \Delta V-N k \Delta T
$$

However, the ideal gas law says that f is always zero: it cannot change at all. Thus, for a substance that follows the ideal gas law, we obtain

$$
V \Delta P+P \Delta V-N k \Delta T \approx 0
$$

We can also write it as

$$
V d P+P d V-N k d T=0
$$

The notation $d P$ implies an infinitesimal (very small) change in P, such that the linear approximations we used above are basically exact, so I replaced \approx with $=$.

The equation $V d P+P d V-N k d T=0$ is a relationship between changes in the thermodynamic variables T, P and V.

There are several ways in which this statement should be familiar to you. Let P, V and T all be functions of some other variable, such as time, t. Then, I can divide by a small increment in the time variable, $d t$, to get

$$
V \frac{d P}{d t}+P \frac{d V}{d t}-N k \frac{d T}{d t}=0
$$

This is just 'related rates,' which you are familiar with from MATH 100. For example, if you are given the values of T, V and P and the rate of change of V and T, you can compute the rate of change of P.

$$
\frac{d P}{d t}=-\frac{P}{V} \frac{d V}{d t}+\frac{N k}{V} \frac{d T}{d t}
$$

We can also do this computation for the infinitesimal changes themselves: If you know the change in, say, T and V, you can solve for a change in P :

$$
d P=-\frac{P}{V} d V+\frac{N k}{V} d T=-\frac{N k T}{V^{2}} d V+\frac{N k}{V} d T
$$

where on the last line I used the ideal gas law $(\mathrm{P}=\mathrm{NkT} / \mathrm{V})$ to get rid of P. Now, we have an equation that tells us how much P changes if we know T and V and their change. This allows us to think of P as a function of T and V.

The equation $V d P+P d V-N k d T=0$ can be thought of another way: since the ideal gas law says, for example, that T is a function of V and P, I can ask questions like: holding T constant, what is the derivative $d P / d V$. This, in MATH 100, was called implicit differentiation. In $V d P+P d V-N k d T=0$, I can set $d T=0$ (since T is now a constant), then divide by $d V$ to get

$$
V d P+P d V=0 \Rightarrow V \frac{d P}{d V}+P=0 \Rightarrow \frac{d P}{d V}=-\frac{P}{V} \text { if } T=\text { const. }
$$

Consider an adiabatic process (like in worksheet 3). We want no heat flow, so $d U=$ $W+Q=W$. Since $U=(f / 2) N k T, d U=(f / 2) N k d T(f, k$ and N are all constants). Together with $W=-P d V$, we have

$$
(f / 2) N k d T+P d V=0
$$

or

$$
(f / 2) N k d T=-P d V=-\frac{N k T}{V} d V
$$

so that

$$
\frac{d T}{d V}=-\frac{N k T}{V(f / 2) N k}=-\frac{2 T}{f V}
$$

This is the derivative of T w.r.t. V along the adiabatic curve, i.e., an example of implicit differentiation in which the curve was only given to us in an infinitesimal form ($Q=0$ so $(f / 2) N k d T+P d V=0)$ and not in a form of 'this function is constant' because heat is not a function of state! This is why we need to get comfortable with differentials.

We already introduced two different things you can do with the infinitesimals such as $d V$ and $d T$: you can divide them by an infinitesimal change $d t$ in an independent variable such as time to obtain related rates from an equation of motion; you can divide them by each other to obtain derivatives such as $\frac{d T}{d V}$, along a path (such as the adiabatic curve above).

The last thing we can do with differentials is integrals. Separate the variables in the last equation we wrote down:

$$
\frac{f}{2} \frac{1}{T} d T=-\frac{1}{V} d V
$$

For a finite change, say from V_{i} to V_{f}, we need to sum up a large number of infinitesimal changes. This is what an integral is, as you learned in MATH 101. We can write

$$
\int_{T_{i}}^{T^{f}} \frac{f}{2} \frac{1}{T} d T=-\int_{V_{i}}^{V^{f}} \frac{1}{V} d V
$$

Computing the integral yields an equation for the adiabatic curve.

