+ 1. To get a better idea of how the binomial coefficients behave for large numbers, we need to obtain something called the Stirling Approximation. Start with

$$\ln N! = \sum_{i=1}^{N} \ln i \approx \int_{0}^{N} dx \ln x$$

and show that $\ln N! \approx N \ln N - N$. This is the lowest order Stirling approximation.

In
$$N! \simeq \int_0^N dx \ln x = x \ln x - x \Big|_0^N = N \ln N - N$$

SIME $\lim_{x \to 0} x \ln x = 0$

+ 2. Consider now $\ln \binom{N}{\alpha N}$ where α is between 0 and 1. Use the Stirling approximation to approximate this quantity when N is large.

$$\ln \binom{N}{\alpha N} = \ln N! - \ln (N)! - \ln ((1-\alpha)N)!$$

$$\stackrel{\sim}{=} N \ln N - N - \alpha N \ln (\alpha N) + \alpha N - (1-\alpha)N \ln ((1-\alpha)N) + (1-\alpha)N$$

$$= N \left(\ln N - \alpha \ln \alpha - \alpha \ln N - (1-\alpha) \ln (1-\alpha) - (1-\alpha) \ln N \right)$$

$$= -N \left(\alpha \ln \alpha + (1-\alpha) \ln (1-\alpha) - (1-\alpha) \ln N \right)$$

+ 3. Show that $\binom{N}{\alpha N}$ has a maximum for $\alpha = \frac{1}{2}$.

FOR
$$\alpha = 0$$
 AND $\alpha = 1$, $(2N)^2 = 1$

+ 4. Use the Taylor approximation to write $\ln \binom{N}{(\frac{1}{2}+x)N} \approx \ln \binom{N}{\frac{1}{2}N} + ax^2$ for small x and find a. Using this, show that the plots on the previous page are approximately gaussian and that their width is proportional to $1/\sqrt{N}$.

In
$$\binom{N}{(\frac{1}{2}+x)N} \approx -N \left(\left(\frac{1}{2}+x \right) \ln \left(\frac{1}{2}+x \right) + \left(\frac{1}{2}-x \right) \ln \left(\frac{1}{2}-x \right) \right)$$

$$= + N \ln 2 - N \left(\left(\frac{1}{2}+x \right) \ln \left(1+2x \right) + \left(\frac{1}{2}-x \right) \ln \left(1-2x \right) \right)$$

$$= N \ln 2 - N \left(\left(\frac{1}{2}+x \right) \left(2x \right) + \left(\frac{1}{2}-x \right) \left(-2x \right) \right) \xrightarrow{\text{anom.}}$$

$$= N \ln 2 - 2Nx^{2} \qquad a = -2N$$

$$= N \ln 2 - 2Nx^{2} \qquad a = -2Nx^{2} \qquad nom.$$

$$= N \ln 2 - 2Nx^{2} \qquad a = -2Nx^{2} \qquad nom.$$