
Tutorial #Llz Wavepackets

ln order to explain how an electron can "go through both

slits" ¡n a double slit experiment, we introduced the idea that a
single electron can be in a state that is a quantum

superposition of electron states with definite positions (the

POSITION EIGENSTATES). For example, if we have a state

$ t*,1 * þt",t
the electron does not have a definite location before we

measure it, but it we measure the position, we will either find

xl ot x2, each with probability t/Z = (t/{7)2.

ln reality, electron states will never be superpositions of
just a few position eigenstates. lnstead, they will be

combinations of an infinite number of them, with the

superposition described by a wavefunction rl,r(x) that tells us the

relative amount of the lx) eigenstate in the superposition. ln

this case, the probability of measuring the electron at some

exact location x will be zero (since there are an infinite number

of possible locations), but | ü(x)12 tells us the probability

density of finding the electron near x.

The x in the wavefunction usually represents coordinates

(x,y,z) (i.e. the wavefunction is a function of three-dimensional

space), but we will often discuss situations, such as a thin wire,

where the electron is only allowed to move in one direction. ln
this case, $(x) is just a function of one variable.



Question 1

a)The plot at the left shows the

wavefunction for an electron in a thin
wire. On another graph, sketch the
probability density for finding the

electron.

b) For this wavefunction, what is the probability that we will
find the electron between 1,nm and 2nm in a measurement?

What is the probability that we'll find it between 3nm and
5nm? (Hint: how can we figure out the value of o?)

c) On the original diagram, sketch a possible wavefunction for
the electron immediately after we make a measurement of
position.



Question 2

The wavefunction for an electron is allowed to be any complex function

such that the integral of lü l2 is equal to 1. But in order to explain the

diffraction patterns that are observed with electrons having a definite

momentum, we expect that the wavefunction for a travelling electron

with momentum p should look and behave like a wave with wavelength

À = h/p. As we discussed in class, real-world waves always have finite

extent (and our intuition tells us that the wavefunction for a real

electron wouldn't be infinitely spread out). Thus, the wavefunction for
a real travelling electron might look something like this:
ß"(,lr)l = a' '

.\
/\ - "/YWe call this shape a WAVEPACKET, and we c'an see that it is

characterized by a wavelength À and a spread Ax which can be varied

independently.

ln this question, we will discover that wavepackets are actually

built from a superposition (i.e. a sum) of mathematical pure waves (like

cos(2nx/À)) with a range of wavelengths near À. This range becomes

larger and larger for smaller Âx, so the narrower the wavepacket, the

less precisely we can say what the wavelength (or in turn the
momentum is). ln other words, the more accurately that we know the

position of on electron, the less accurately we know its momentum.

To begin, open up the Fourier: Making Waves simulation, which

may be found here:

http://phet.colorado.edu/simulations/sims.php?sim=Fourier_Ma king_Waves



a) The top panel has some parameters At Az, etc... that can be varied

either by typing in a value or dragging the coloured bars up and down.
What is the function displayed in the second panel when.4¿ is nonzero and

all but one of the As are zero (write a precise formula in terms of k and

A¡,)? Hint: first do it for A1, then A2, etc...until you can guess the general

formula. Remember thot sin(2nx/À) is a sine function with wavelength À .

b) For your function in a), what is the wavelength (in terms of k)?

c) When more than one of the As is non-zero, the second panel shows the
different functions separately, while the third panel adds up all the
contributions. You might want to use the +/- buttons to adjust the vertical

scale. Leave the horizontal axis to go from -0.5 to 0.5 for now. Try setting
As = O.5, Aa = I, and A7 = 0.5. What is a mathematical equation for the
function shown in the third panel?

d) Hopefully, this looks something like the wavepacket that we drew

above. What are À and Ax in this case? For the contributing waves, what
range of values does 1-/À take?
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e) Now let's try building a wavepacket with a broader range of wavelengths. ln

the tab at the top right (just under "Preset Functions"), pick "wavepacket" (and

adjust the vertical scale so it doesn't go out of the box). What range of values

for L/-lt are in the superposition now? What are À and Ax for the new

wavepacket?

f) Qualitatively, how does the new wavepacket with a broader range of
wavelengths (but the same central wavelength) differ from the wavepacket of
parts c) and d)?

Your observations point to a mathematical fact about adding up pure waves. ln

order to get a packet that appears more localized, we need to add waves with
a broader range of wavelengths. This has a dramatic physical interpretation.
The pure waves have a single definite wavelength, and thus represent the
wavefunctions for particles with a single definite momentum. These are

MOMENTUM EIGENSTATES. Since a wavepacket is a superposition of these, it
represents a particle without a definite momentum (i.e. there is some

uncertainty in momentum). But we know that such particle also has some

uncertainty in position, determined by how spread out the wavepacket is. So

physically, our conclusion is that in order to decrease the uncertointy in

position, we need to increase the uncertointy in momentum. This can be turned

into a precise physical law known as the HEISENBERG UNCERTAINTY PRINCIPLE.



Question 3

The functions that we built in the previous question are actually not
true wavepackets. To see why, start again by choosing "wavepacket"

from the "Function:" tab in the "Preset Functions" box. Now expand

the horizontal scale to go from -2to 2. You should see that the
wavepacket shape actually repeats itself. ln a real wavepacket, the
should be only one "packet," so we need to figure out how to get rid of
the others.

O.fu" D I" L. +u'
a) What is the distance D between the wavepackets here? 
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b) Starting from the preset wavepacket, what happens if you set all the
odd A's (At.As,...)to zero? What are D, \ and Ax now?

c) The sketch below shows the amplitudes for waves of various inverse

wavelengths (proportional to momenta) which sum up to a set of
repeated wavepackets. Based on your observations in part b), sketch a

similar graph that would represent a set of waves adding up to
repeated wavepackets with the same À, and Ax, but twice the distance

D between the packets.
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d) lf we wanted the distance between the wavepackets to go to infinity
(so that we really just have one single wavepacket), what superposition

of pure waves would we need? How can you represent that in a

diagram similar to the ones in part c?

To check your answer, click on the "Discrete to Continuous" tab at the

top of the simulation. The three panels have the same interpretation as

before, but now we can add more wavelengths. Expand the horizontal

scale as far as it will go (from -8 to 8). Describe what happens in the top
and bottom panels as you move the slider in the top right box. Does

this agree with what you expected in d?



b) Now that we understand the physical implications of the top and

bottom pictures (the momentum and position wavefunctions), it should be

clear that the more spread out the position wavefunction is, the more

uncertainty there will be in a measurement of position. Similarly, the more

spread out the momentum wavefunction (top picture) is, the more

uncertainty there will be in a measurement of momentum.

We saw earlier that to decrease position uncertainty, we need to
increase momentum uncertainty. To make this more precise, compare the

widths of the top and bottom pictures when the top "Wave packet width"
slider is set to r vs 2 n: 
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To reduce the position uncertainty (spread in bottom picture) by half,

what do we have to do to the momentum uncertainty?

c) Finally, let's see what happens when we change the "Wave packet

center" slider.

As you move the slider, look at the top picture. How do the central value

of momentum and the range Âp of momenta in the superposition change

as you move the slider (recall that k=2n/À is proportional to p)?

How do À and Ax for the position wavefunction in the bottom picture

change ?



Question 5

Tying everything together now, suppose the graph below describes the

superposition of momentum eigenstates for the electron wavepacket

shown on the right. Fill in the bottom graph to show what combination of
momentum eigenstates we need to make the wavepacket shown at the

bottom right.
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