
Photons and Polarization

Now that we’ve understood the classical picture of polarized light, it will
be very enlightening to think about what is going on with the individual
photons in some polarization experiments. This simple example will reveal
many features common to all quantum mechanical systems.

Classical polarizer experiments

Let’s imagine that we have a beam of light polarized in the vertical di-
rection, which could be produced by passing an unpolarized beam of light
through a vertically oriented polarizer. If we now place a second vertically
oriented polarizer in the path of the beam, we know that all the light should
pass through (assuming reflection is negligible). On the other hand, if the
second polarizer is oriented at 90 degrees to the first, none of the light will
pass through. Finally, if the second polarizer is oriented at 45 degrees to the
first (or some general angle θ) then the intensity of the transmitted beam
will be half (or generally cos2(θ) times) the intensity of the original polarized
beam. If we insert a third polarizer with the same orientation as the second
polarizer, there is no further reduction in intensity, so the reduced intensity
beam is completely polarized in the direction of the second polarizer.

Photon interpretation of polarization experiments

The results we have mentioned do not depend on what the original in-
tensity of the light is. In particular, if we turn down the intensity so much
that the individual photons are observable (e.g. with a photomultiplier), we
get the same results.1 We must then conclude that each photon carries in-
formation about the polarization of the light. For example, in the first two
cases above, all of the photons pass through when the second polarizer is
aligned with the first, but none of the photons pass through if the second
polarizer is perpendicular to the first. So each photon must “know” that it
is part of a vertically polarized light beam. In other words, it must be that
polarization is a property of the individual photons, rather than a property
(like intensity) that requires us to know about many photons at once.

Now let’s try to understand what is going on when the second polarizer is
oriented at 45 degrees to the first one. In this case, the transmitted intensity

1In the case where the intensity is so low that the photons arrive sporadically, intensity
is defined as the average over a long period of time of the energy per unit time.
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is half the intensity of the original polarized light. In terms of the photon
picture, intensity is proportional to the number of photons passing in a given
amount of time times the energy of each photon. But since the polarizers
do not change the wavelength of light passing through, the energy of the
photons passing through the polarizer are the same as the ones incident on
the polarizer. So the only way to explain the 50 percent reduction in intensity
is to say that only half of the vertically polarized photons pass through the
polarizer oriented at 45 degrees. Furthermore, the photons that do pass
through will all pass another polarizer at 45 degrees, so the polarization
state of the original photons is also changed to 45 degree polarization.

Our conclusion sounds innocent enough, but it is dramatically different
what we are used to in classical physics. What we are saying is that with
a stream of identical vertically polarized photons, half of the photons pass
through the polarizer and half do not. Further investigation reveals that the
distribution of photons that pass through and photons that are absorbed is
random in time, just like the results of a series of coin flips. So we can say that
each photon has a 50 percent probability of passing through the polarizer and
a 50 percent probability of being absorbed. It is only these probabilities, and
not the actual results of the experiment that are determined by the initial
conditions.2

It is easy to generalize our conclusions to the case where the second
polarizer is at some angle θ to the first one. In this case, the transmitted
intensity is cos2(θ) times the incident intensity. To reproduce this using the
photon picture, we must assume that the photons are transmitted with a
probability cos2(θ) and absorbed with a probability sin2(θ).

Mathematical model for classical polarization experiments

How can we come up with a model to explain these results? Let’s first go
back and think about the classical explanation of why the intensity is reduced.
For definiteness, let’s say we have light propagating in the ẑ direction, so the
allowed polarizations are in the plane formed by x̂ and ŷ. We’ll assume that
we have a polarizer oriented so that light polarized in the x̂ direction (call
this vertical) passes through and light oriented in the ŷ direction (call this

2Note that in the coin flip example, knowing the precise initial configuration and ve-
locity of the coin would allow us to predict whether we’ll get heads or tails. For the
photons, we are claiming that the results could be different even if the initial conditions
are identical.
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horizontal) is absorbed.
Now, in the classical picture, light with some general polarization may

be written as a SUPERPOSITION of light polarized parallel to the polarizer
and light polarized perpendicular to the polarizer. For example, if we have
a wave with amplitude E0 polarized at an angle θ to the vertical direction,
this is a linear combination of a vertically polarized wave with amplitude
E0 cos(θ) and a horizontally polarized wave with amplitude E0 sin(θ). In
terms of the maximum electric field vector, we have

~E0 = E0 cos(θ)x̂ + E0 sin(θ)ŷ; .

Now, if we think about these two components as two separate waves that are
superposed on one another, the first will pass through the polarizer while the
second will be absorbed. The transmitted wave will be a vertically polarized
wave with amplitude E0 cos(θ), with maximum electric field vector

~Et
0 = E0 cos(θ)x̂; .

Since intensity is proportional to the square of amplitude, we conclude that
the fraction of light transmitted is the square of transmitted amplitude over
incident amplitude, or equivalently, the squared length of the vertical com-
ponent of ~E0 over the squared length of the ~E0. This gives cos2(θ), thus
explaining the observed reduction in intensity.

Mathematical model for photon transmission probabilities

Armed with this understanding, let’s now try to come up with a mathe-
matical model for calculating the probabilities of photons being transmitted.
Since the results for the probabilities must be the same as the classical results
for the intensity fraction transmitted, we should be able to use essentially
the same mathematical model, but with a different interpretation. That is,
for a given photon polarization state, we will associate a vector ~e pointing
in the direction of the polarization. We can think of this as the electric field
vector for an individual photon. Then the probability that the photon passes
through a polarizer will be the ratio of the squared length of the component
of ~e in the direction of the polarizer and the squared length of ~e.

Now, one difference from the classical picture is that all the photon polar-
ization states have the same energy,3 so we can assume that all the vectors

3Here, we are just talking about different polarization states of photons of the same
wavelength.
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representing individual photons have the same length. If we choose this
length to be 1, so that ~e is a UNIT VECTOR, then the probability for trans-
mission is simply equal to the squared length of the component of ~e along
the polarizer direction.

A second difference from the classical picture is that when a photon is
transmitted, it is not a fraction of a photon, but rather the whole photon. So
the vector representing the final state is not just the component of ~e along
the polarizer direction (which has length less than one) but a unit vector in
the polarizer direction.

Useful notation for unit vectors

To write everything down mathematically, it is convenient to introduce a
notation for unit vectors where |θ〉 is the unit vector at an angle θ from the
x̂ direction towards the ŷ direction. So we have

x̂ ≡ |0◦〉 ŷ ≡ |90◦〉 |θ〉 = cos(θ)|0◦〉+ sin(θ)|90◦〉

Essential features of the model: the rudiments of quantum me-
chanics

The model we have come up for calculating transmission probabilities
was a simple reworking of the classical model for calculating transmitted
intensity. However, it turns out that this model displays most of the basic
principles of quantum mechanics. In the summary below, we highlight the
essential features that will turn out to be common to all quantum systems.

• The states (in this case, the polarization states of photons) are rep-
resented by unit vectors.

• For a given experiment or measurement,(in this case, sending
photons towards a polarizer with a fixed orientation) there are special
states whose fate is completely determined. These are called
the EIGENSTATES. For a given polarizer, the eigenstates are the
photons polarized in the direction of the polarizer (which definitely pass
through), and those polarized in the perpendicular direction (which are
definitely absorbed). For example, for a polarizer oriented at 0 degrees
(i.e. vertically), the eigenstates are |0◦〉 and |90◦〉.
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• Any general state can be written as a linear superposition
of the eigenstates. Mathematically this is the statement that the
eigenstates form a basis for all possible vectors. For example, for a
photon polarized in the direction 30 degrees from vertical, we have

|30◦〉 =

√
3

2
|0◦〉+

1

2
|90◦〉

• When the experiment or measurement takes place(in this case,
when the photons hit the polarizer) the state always behaves just
like one of the eigenstates. The probability that it behaves like
a given eigenstate is the squared length of the unit vector’s
component along the corresponding eigenstate unit vector. For
the photons, this means that a general photon state either completely
passes through and appears as a photon polarized in the polarizer di-
rection, or it is completely absorbed. For example, from the previous
equation, the photon in state |30◦〉 will have a 3/4 probability of being
transmitted and a 1/4 probability of being absorbed.

• The state is generally changed by the experiment/measurement.
That is, unless the photon is initially an eigenstate, the state of the
photon is changed by the polarizer to become one of the eigenstates.

We’ll see that a common feature in all quantum experiments is that what
we can predict is not the definite outcome of an experiment, but only the
probabilities for various possible outcomes. In our model, the fact that states
are represented by unit vectors and probabilities by the squared components
guarantees that the probabilities add up to 1. This simple idea turns out
to be the right mathematical framework for calculating probabilities in all
quantum systems, and this is the reason why so many of the features here
hold generally.

In the general case, the unit vectors representing states of quantum sys-
tems are not directly related to some classical vectors as they are here, and
in fact there are typically more than two (and often an infinite number) of
eigenstates.
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