Last time: the Schrodinger equation for a free particle free = with no forces acting on it
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If you know the wavefunction /'fat some time t, you can compute the time derivative: )\ ’4/ -

and therefore compute the wavefunction at some slightly later time t+At from q‘"( t" At ) id ,v/( f) n At 5_
t

The Schrodinger equation is LINEAR: this means that if you have two solutions:
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Y = Q /l-h + é n"z solves the equation.

(a and b are any complex numbers)
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their superposition is also a solution:

To prove this, just look at the equation ax(1) + bX(2)\

-> clicker question
-> clicker question

-> clicker question
The Schrodinger equation tells us about the motion of a quantum particle with no forces acting on it.

It replaces Newton's first law. What about the second law?

Recall where we got this equation from: P [ A /VE
2
w
E ¥ = £ L4 d W Fy e

o

/ !
AN G R ¢
L It m  Ix?®

If a particle moves in a potential, its energy is the sum of the kinetic energy and the potential energy:
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So, let's replace the term corresponding to the kinetic energy above with the sum of kinetic and potential energies:

oy Y _( % 'Y
L iy m 7‘\/()() Ix2

oy Y _ R
ﬁf--g—n;z+wxw

This is the full form of the time-dependent Schrodinger equation.

In three dimensions, we have similarly: ’4/ = ’l.f/ ( X )l, Z- t )
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Let's make sure we remember what a potential is:
-> clicker question

In classical physics, total energy E is conserved and a particle can move in a potential, turning around at the points where
its potential energy is equal to the total energy (see figure 41.2 pg 1265 in the book if you need a refresher)
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corresponds to the energy (it's called the ENERGY OPERATOR). Ifthe wavefunction as a factor of e
iin it, the energy operator will just pull down a factor of E, indicating that we have a well defined

What is the equivalent state in QM? we want a state with a constant, well defined energy. Recall that

energy state:
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arbitrary x-dependence of the
wavefunction
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A wavefunction of the form ) ﬁ ’\{/f ( X ) is called a stationary state. Why?

-> clicker question
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A stationary state's time dependence is just a complex over-all phase: it barely changes anything. The probability density

is the same for all times, for example.

Next up: the time-independent Schrodinger equation.



