Last time we talked about the properties of wavepackets: these are wavefunctions for electrons which have
a fairly well defined (but not perfectly defined) position and momentum. We can think of a wavepacket in two ways:

As a sum of well-defined position eigenstates...
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The narrower wavepacket you want, the wider the required momentum amplitude function. /L}/( X) _ L I’\ f
The narrower the momentum amplitude function, the wider the wavepacket. =) Q

Perfectly well defined momentum (momentum eigenstate) = planewave, spread over all positions equally }’lf' ( x) / 2 = '

Perfectly well defined position (position eigenstate) = superposition of all momentum eigenstates with / Q’P ( ) / Z_
equal weight. P - ’
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Polarizer at 0°

Polarizer at 45°
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The better we can predict the outcome for one polarizer, the
less we know about the outcome for the other polarizer.
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The better we can predict the outcome of a position
measurement, the worse we can predict the outcome of a
momentum measurement, and vice versa.



