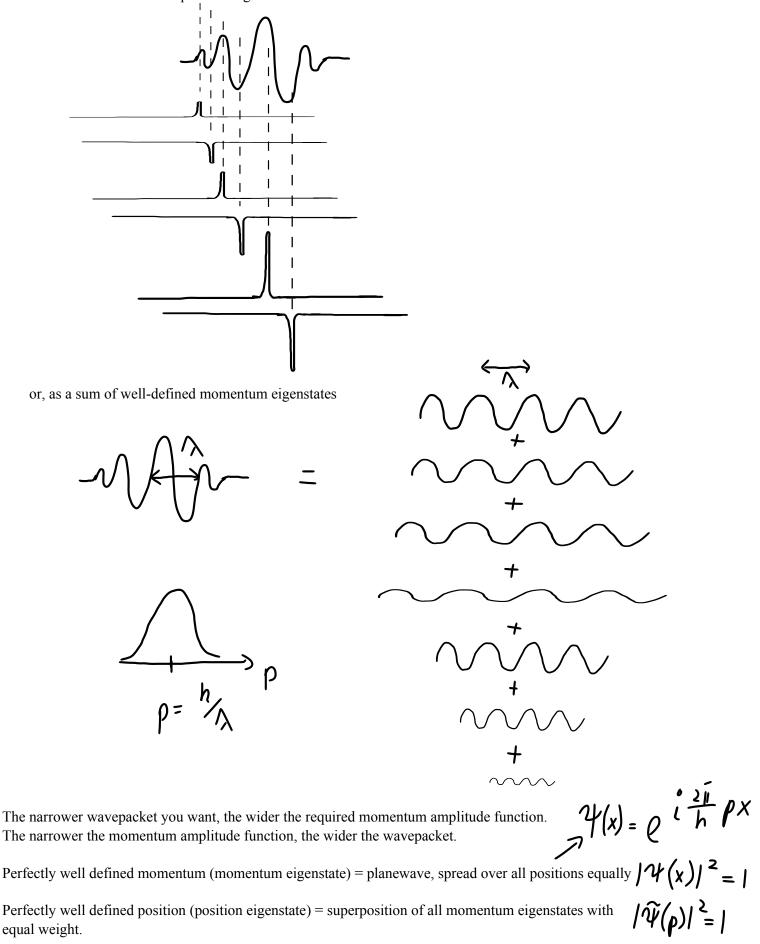
Last time we talked about the properties of wavepackets: these are wavefunctions for electrons which have a fairly well defined (but not perfectly defined) position and momentum. We can think of a wavepacket in two ways:

As a sum of well-defined position eigenstates...



-> clicker question -> slides -> 3 clicker questions

	Polarizer at 0°	Polarizer at 45°
eigenstates	$ 0^{\circ}\rangle, 90^{\circ}\rangle$	$ 45^{\circ}\rangle, -45^{\circ}\rangle$
general		
quantum	$a_0 0^\circ\rangle + a_{90} 90^\circ\rangle$	$a_{45} 45^{\circ} \rangle + a_{-45} -45^{\circ} \rangle$
state		
	$a_0 = \frac{a_{45} + a_{-45}}{\sqrt{2}}$	$a_{45} = \frac{a_0 + a_{90}}{\sqrt{2}}$
	$a_{90} = \frac{a_{45} - a_{-45}}{\sqrt{2}}$	$a_{-45} = \frac{a_0 - a_{90}}{\sqrt{2}}$

The better we can predict the outcome for one polarizer, the less we know about the outcome for the other polarizer.

	Position	Momentum
eigenstates	$ x\rangle$, for any x	$ p\rangle$, for any p
general		
quantum	$\int \Psi(x) x\rangle dx$	$\int \; ilde{\Psi}(p) \; \ket{p} \; dp$
state		
	$\Psi(x) =$	$\tilde{\Psi}(p) =$
	$\int \tilde{\Psi}(p) \ e^{i\frac{2\pi}{h}px} \ dp$	$\left \frac{1}{2\pi} \int \Psi(x) \ e^{-i\frac{2\pi}{h}px} \ dx \right $

The better we can predict the outcome of a position measurement, the worse we can predict the outcome of a momentum measurement, and vice versa.