-> clicker question
-> clicker question

But, what is the wavefunction?
A: It's a complete description of the state of the particle.

To describe a particle in classical mechanics, we specify positions and velocities. These can change with time.
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To describe a particle in QM, we specify the wavefunction. The wavefunction changes with time, too!
(Schrodinger equation tells you how, we will get to this.)
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In QM, the wavefunction replaces positions and velocities in the description of a particle's evolution.
Given a wavefunction, we can predict the probabilities of detecting the particle at different positions, or
of measuring it to have a particular velocity.

Looking ahead: Schrodinger equation:

.4_ N _ _i 2
L HOat)- 2m 31)(1 ¥lxt) FV(x) ¥ (x¢)



Let's start by considering the motion of a free particle, an electron with momentum p. h
Diffraction experiments confirm de Broglie's guess that the wavelength of such an electron is />\ = F

At a given time, the wavefunction should be a wave with this wavelength. Assume complex:
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But, notice that the real part is the same for p and -p, so it cannot contain all the information about the electron
(in particular, it does not tell you which way the electron is going)
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To picture it, just draw the REAL part: |Z| cos ( 0‘
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So, the probability density is basically a constant: |Z|> This means the total probability is infinite:
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But, the wavefunction we wrote down is a bit unrealistic - it says that the particle is equally likely to be found anywhere
in the whole world. In practice, the particle's wavefunction has a finite extent

and you can normalize it.
We will use the unnormalized inifinite wave for convenience a lot, though. There are ways to make the math come out OK.

An electron sometimes behaves like a particle, with a pretty well defined position. This corresponds to a wavepacket
with a smaller extent:

It turns out that this wavepacket can be writen as a quantum superposition of a whole bunch of plain waves.
(DEMO) http://phet.colorado.edu/en/simulation/fourier

- show that you can make different shapes by combining different frequencies

- show the 'beat wavepacket' by combining a 4th and 5th harmonic

- show the pre-programmed wavepacket, and that there is a whole train of them

- show how you can make just one if you go to the continuum

- finally, show how the width of the wavepacket and the spacing of the fringes varies with the position and width
of the wavepacket in momentum-space

We can deﬁne /l‘]U ( ) to be the amount of wave with wavelength P in the superposition
’/W(P) ’ is then the probability densitity for finding a value p if we measure momentum
We have a new measurement (momentum), new eigenstates (the plane waves, which have definite momentum) and

we can write the state of the particle as a quantum superpositiono of these eigenstates, with coefficients giving us
probabilities of different measurement outcome. This is parallel to the situation with position.



