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FACED WITH the results of special relativity, we should in prin-
ciple rewrite all our mechanics accordingly. But we know that
this is not necessary. The Newtonian scheme, although it is
strictly correct only in the limit of vanishingly small velocities,
works beautifully in an enormous variety of situations. This, as
we have seen, is because the greatest velocities that we encounter
in the dynamics of ordinary macroscopic objects are still minute
compared to the velocity of light (v < 107%). There is, how-
ever, one area in which the use of special relativity is clearly
called for—in problems involving velocities that are nos negligible
compared with the velocity of light. And this means, primarily,
ihe world of atomic and nuclear particles. It is with such prob-
lems, therefore, that this chapter will be largely concerned.

We shall not attempt in this chapter to consider in detail the
motions of particles under the action of specified forces. Our
goal will be a more modest one. What we shall do is to show the
kinds of calculations one can do with the help of just two prin-
ciples: (1) conservation of linear momentum, and (2) conserva-
tion of energy. No. (1) will, as in the familiar Newtonian prob-
lems, be applicable to each of the three separate components of
linear momentum or to the total momentum treated as a single

167




vector, No. (2) is used with the understanding that the tota]
energy in all forms, including mass, is the conserved quantity,
We shall take it as basic that these two principles apply to any
self-contained system, and we shall concentrate on situations i
which an interaction is over and done with in some limited span
of time. In other words, we shall fix our attention on collisions
or analogous processes, and our cnly concern will be to relate
“before™ and “‘after.”

Before being able to apply these conservation principles,
however, we must consider how to formulate and justify them in
relativistic terms. In Chapter 1 we developed expressions for the
mass, momentum, and total energy of a single particle of rest
mass mg moving at speed v relative to the laboratory:

mlo) = Ymo
p = Yoy (6-1)
E = ¥mgc?

with Y(©) = (1 — p%/c¢®)~Y2,  The derivation of these results
made explicit use of the relation between energy and momentum
for photons {p = E/c). Furthermore, if you consider the argu-
ments in detail, you will see that, in fact, we assumed that conser-
vation of momentum and energy held good—and then inferred
the appropriate formulas for momentum and energy required
by this assumption. Thus in-considering the pressure of light
experiment, we could not have inferred anything about the
momentum of photons without assuming that this momentum
was fully transferred to the illuminated surface. In the Einstein
bex calculation, also, the conservation of momentum is explicitly
assumed. In discussing the ultimate speed experiment, we took
it for granted that a calorimetric measurement would, through
energy conservation, give us an exact knowledge of the kinetic
energy brought in by electrons traveling at speeds close to the
speed of light.

At this stage, therefore, we are not discovering these grand
conservation principles of dynamics; we are, instead, asserfing
them, on the grounds that the use of such principles has already
been amply justified in classical dynamics. And then, in going
from Newtonian to Einsteinian dynamics, we are simply ex-
tending the range of problems that can be handled according 10
a single set of rules. In the process we arrive at new prescriptions
for calculating such quantities as momentum and kinetic energy
in terms of the velocity and an inertial parameter (the mass).
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The transition to relativistic dynamics is not, however, an
arbitrary one. Given the relativistic kinematics, and a Imowledge
of the Newtonian laws, one is led quite naturally to the rela-
tivistic formulation. We were not in a position to do this in
Chapter 1, and our arguments there were, as we pointed out,
more suggestive than convincing. But at this point we cafl offer
a much cleaner approach, based upon readily visualizable situa-
tions which we shall now discuss. The course of the argument
illustrates, once again, the very intimate connection between the
particular formulation of kinematics and the dynamics appro-
priate to it.

TWO VIEWS OF AN ELASTIC COLLISION

We are going to consider a very simple type of collision process—
a perfectly elastic collision between two identical particles. It
will be a collision in which the whole motion takes place in one
plane, and we shall analyze it in terms of momentum conservation.

By way of background, consider for a moment the Newtonian
version of this process. Bodies 4 and B, with initial velocities
u; and ug, respectively, collide with one another and afterwards
have velocities v, and v5. In any individual collision of this type,
it is always possible to find a set of four scalar multipliers (@)
that permit one to write an equation of the form

aiuz | ooz = @3Vl -- o4ve

This as it-stands is a quite uninteresting statement. But experi-
ments for all sorts of values of u; and u, reveal the remarkable
result that in every such collision, for two given objects, we can
obtain a vector identity by putting a; = a3z = myx (a scalar
property of body 4) and a; = o, = fthe correans &

o Ke &g u»ﬁ LR vux;boyunul

scalar property of body B). In other words, the purely kinematic
observations on a collision process lead us to introduce the
parameters that we call the inertial masses of the two bodies, and
permit us to write the familiar equation for conservation of
linear momentum.

When we introduce the relativistic kinematics, the relation-
ship between initial and final velocities for two colliding objects
is no longer expressible in quite such a simple form. Nevertheless,
we keep as close to it as we can, and we do this by asking what is
implied by the kinematics of such a collision if we assert con-
servation of linear momentum in the following extended sense.
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In the elastic collision of two bodies, 4 and B, as described
from the standpoint of a particular frame of reference, the initial
and final velocities are related by the equation

ma(uuy + mpluzhuz = mawvs + mp(pz)ve (6-2)

where m is a scalar inertial property of 4 depending only on its
speed and mp is the corresponding scalar property of B. We
know that in Newtonian mechanics this equation is satisfied by
values of m4 and my that are quite independent of speed. Let
us now see how the relativistic kinematics implies the dependence
of m on v as given in Eq. (6-1).

We imagine two experimenters, one in the inertial frame §
and the other in $’. They use identical types of instruments for
measuring times and distances, and’ they agree to produce a
completely symmetrical collision between two identical particles. !
The experimenter in S will project one particle (4) along his y axis
with a speed uo (as measured in S), and the experimenter in §
will project the other particle (B) along his 3’ axis with 2 speed
—uy (as measured in S”). The speed ug is small, but S and S' have
a very large relative velocity v along x. The experimenters are so
skillful that the particles collide when their centers lie along the
y axis. The collision as observed in S and & thus takes the forms
shown in Fig. 6-1. The y {or »') component of velocity of each

1A gedanken experiment of this type was first introduced by G. N. Lewis
and R. C. Tolman, Phil. Mag., 18, 510 (1909}.

Fig. 6-1 Elastic
coflision between two
identical objects,
observed from two
reference frames
related by a velocity
v along x.
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particle is exactly reversed, and .its velocity along x (or x') is
unchanged. This corresponds to complete reversibility in time
for the collision as a whole.

In analyzing this process, we note the following points:

1. As observed in S, the y component of velocity of A4 is
initially uq, and dfterward —uo. The y component of velocity of
B is initially —u, and afterward u. The relation between v and
u is given by the transformation equation [Eq. (5-3)] for velocity
components transverse to the direction of relative motion of two
reference frames:

/Y
1+ vu,'/c2

Hy =

Since in the frame $’ the velocity component u;’ of B is zero,
this reduces to

u = ug/Y = up(l — v2/e?Ht/2 -3

2. As observed in 5’, the roles of 4 and B are interchanged
and the sign of ¢ is reversed. The complete symmetry can be
clearly recognized if Fig. 6-1(b) is rotated through 180° in its
own plane; it then matches Fig. 6-1(a) in every respect.

3. As observed in either reference frame, the speed of each
particle remains unchanged by the collision, and is either u or
(w? + ©?)Y2. Because of this, and the identity of the particles,
we are concerned with only two possible values of m—m(itg) and
m(V), where ¥ = (u? + vHY2

The conservation of linear momentum in the y direction as
observed in § is then described by the following statement:

py = m{ugiuy — m(Pu = —mlugduo + m(¥u

Therefore,
mVy _uo : .
mlug)  u e

Now we have postulated that ug is small—as small as we choose
to imagine. Hence the inertial quantity m(u,) can be taken to be
just the Newtonian inertial mass my. Also, given that ug < v,
it follows (a fortiori) from Eq. (6-3) that v <C v, and hence that
V = p. Thus, by imagining a limiting collision of this type, with
o — 0, we conclude from Eq. (6—4) that

A
mL) = Ymp = (1_402%2—)@ ! (6-5)

Two views of an elastic collision
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and hence that p = Ymgv is an appropriate definition of the
linear momentum for a particle of rest mass m, traveling a:
velocity v.

The above discussion is limited strictly to the gquestion of
momentum. Is the definition of mass that emerges from this
analysis—i.e., as given by Eq. (6-5)—also applicable to cal-
culations involving the energy of the system? We have of course
already argued in Chapter 1 that this is indeed so, but an analysis
based upon another hypothetical collision process will perhaps
lend further conviction to the result.

TWO VIEWS OF AN INELASTIC COLLISION

Again we shall consider the impact of two identical particles,
but this time we shall suppose that the collision is completely
inelastic. There will be a frame S’ in which the particles approach
each other along a straight line with equal and opposite velocities
of magnitude u [Fig. 6-2(a)]. There will then exist another frame
S, relative to which S” has velocity u, in which one of the particles
is initially stationary [Fig. 6-2(b)].

As observed in frame S, the collision results in the formation
of a stationary composite particle. Hence in frame S this com-
posite particle must be observed to have the velocity #. In this
same frame S the initially moving particle has a velocity U re-
lated to u through the velocity addition formula, Eq. (5-2):

v s - v
U1 Loon/e2
in which we put u, = U, u,/.= v = u. Therefore,

T - (6-6)
14 u2jc?
Fig. 6-2 Com-
pletely inelastic
collision between fwo
similar objects,
observed (a) in the
zero-momentum
frame, (b) in a frame
in which one of the
objects is tritially
stationary.
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Now let us write the statements of conservation of momen-
tum, and conservation of mass, from the standpoint of frame S,
(As in the previous section, we suppose that the mass is some
function of the speed):

Momentum:

m(UYU = My -7
Mass:

m(Uy +mp =M (6-8)

Eliminating A between these two equations we find

m(U)= o

mo U—u

(6-9)

Now Eq. (6-6) gives the connection between I/ and u; thus we
can find the ratio m(¥U)/m; as an explicit function of /. From
Eq. (6-6) we have

u2—2(c2/U)u+c2 =0

Therefore,
2 2 2 172
=S ey 2
Ty KJ ]
2

:%nia—U%Wﬁ

Since we must have u— U/2 for U <« ¢, we know that the
negative sign should be chosen. (Appeal to the fact that the
radical is approximately equal to 1 — UZ2/2¢2 for U < ¢.} Thus

we have
2

u = %[1 — (- UYAHYY (6-102)
Therefore,

P
U—y= %[Uz/cz -1401 - U?/02)1{2]

2
U—u— %(1 — UH 1 - a — UV (6-10b)

Substituting from equations (6-10) into (6-9), we have

m(U) _ 1

o (0 — U2/e2)iiz ~ ()

(6-11)
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which thus reproduces the form of the mass formula of Eq. (6-5).

This calculation involves more algebraic manipulation thap
the one in the previous section, but it is more satisfactory in
several ways:

1. The collision considered is an extremely simple one, the
motion being entirely along a single straight line.

2. The calculation.is exact. One of the particles is, by defini-
tion, completely stationary in frame S before the collision {not
Jjust approximately so as it was in the previous case).

3. The explicit use of the mass-conservation equation leads
naturally io the eqbivalence of mass and energy. We have, in
essence, already developed the connection in these terms in
Chapter 1, so the chief purpose of restating it here is to emphasize
once-again the intimate connection between the kinematics and
the dynamics. From Egq. (6-11) we have

m(U) = mo(l — U2/e)—172
= mo + FmoU?/c? 4 - - -

Therefore,
m(Ue? = moe? + Fmol? + - - - (6-12)

- Noting that the second term on the right of Eq. (6-12) corre-
sponds exactly to the classical kinetic energy-of a particle of
mass #1, and speed U, we come to.the familiar statement that the
total energy of a particle of rest mass my and speed U is given by

2
moc

E = (1 — Uz/e)iz

= m(U)* (6-13)

with Eq = mgc® defining the rest energy of the particle.

4. By considering ihe collision furiher, we can demonstrate

that the consistens use of a mass/velocity relation as given by
Eq. (6-11) involves no contradictions. In Eq. (6-11) we have a
statement of the mass of that colliding particle which, as observed
in frame S, has speed U. "Let us express this in terms of u, using
Eq. (6-6); we have

2,2 40 /ey
1—-—U/c" =1 RENEE
A =S
(A w2/
Therefore,
2,.2
m(U) = (4w /é7)

A — w2/er) ™
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Substituting this value in Eq. (6-8), we find that the mass of the
composite particle, as measured in frame S, is given by

2mg

M= I — u2/c2

(6-14)
But in frame S this composite particle has speed u. On the basis
of Eq. (6-11) we would infer that its rest mass should be M,
where

My = M(l _ u2/c2)1"2
Using Eq. {6-14), this would give us

2mo

Mo = (A — uz/c2)l 72

(6-15)
But now, consider the collision as described in the frame S’.
Here the composite particle is indeed at rest, having been formed
from the collision of two particles, each of rest mass m, and
speed 1. 'We are assuming that all the mechanical energy brought
in by the colliding particles is retained within the composite
particle. Thus we do not (and must not) assume that Mg is equal
to Zmy. Using the statement of conservation of mass as applied
in frame §’, we have

Mg = 2m(u) (6-16)

which is identical with Eq. (6~15) if we accept the velocity depen-
dence of mass as given in Eq. (6-11) and thus put m{u) = v(w)m,.

FURTHER REMARKS ON THE CONSERVATION LAWS .

it should be very clear from all the preceding discussion that the
momentum and energy conservation laws are not sacred; there
is nothing, however, in our experience so far that has required
their abandonment. It has been a pretty near thing at times—as,
for mstance, when the existence of the neutrino, a hitherto un-
observed particle, 'was postulated by W. Pauli in 1930 to avoid
giving up conservation of energy in beta decay. It took over 20
years before the neutrino was detected—but it was,! and our
confidence in the conservation laws was still further strengthened
thereby.,

Clearly the conservation laws are not going to tell us the

'F. Reines, et al., Phys. Rec., 92, 830 (1953).




