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FAcED vr'rrH the results of special relativity, we should in prin-
ciple rewrite all ou¡ mechanics accordingly. But we know that
this is not necessa¡y. The Newtonian scheme, although it is
strictly correct only in the limit of vanishingly small veÌocities,
works beautifully in an eno¡mous variety ol situations. This, as
we have seen, is because the greatest velocities that r,ve encounter
in the dynamics of ordinary macroscopic objects a¡e still minute
compared to the yelocity of light (u < 10 5c). The¡e is, how_
ever, one area in which the use of special relativity is clearly
called for-in problems involving velocities that are nol negligible
compared with the velocity of light. Arìd this means, primarily,
iirc worici oiaLomic anci nuciear particies. it is with such prob-
lems, therefore, that this chapter will be largely concerned.

We shall not attempt in this chapter to consider in detail the
notions of particles under the action of specified forces. Our
goal will be a more modest one. \{hat we shalt do is to show the
kinds of calculations one can do with the help ofjust two prin-
ciples: (l) conservation of linea¡ momentum, and (2) conserva-
tion of energy. No. (l) will, as in the familia¡ Ne\À/tonian prob-
lems, be applicable to each of the three separate components of
linear momentum or to the total momentum treated as a single
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vector. No. (2) is used ' ith the understanding that the total
energy in all forms, including mass, is the conserved quantìty.

We shall take it as basic that these two principles apply to any

self-contained system, and we shall concentrate on situations in
which an inte¡action is over and done with in some limited span

of time. In other words, we shall fix our attention on collisions

or analogous processes, and our only concern will be to relate

"before" and "afte¡,"
Before being able to apply these conservation principles,

however, we must consider how to formulate and justify them ìn

relativistic terms. In Chapter 1 we developed expressions for the

mass, momentum, and total energy of a single particle of resl

mass mo moving at speed u relative to the laboratory:

m(o) : "tmo

P : amov (G'Ð

\¡/ith 'y(D) : (l - D2/c2)-112. The derivation of these results

made explicit use of the relation between energy and momentum

for photons (p : E/c). Furthermore, if you consider the argu-

ments in detail, you will see that, in fact, we assumed that conser-

vation of momentum and energy held good-and then inferred

the appropriate formulas fo¡ momentum and energy required

by this assumption. Thus in considering the pressure of light

experiment, we could not have inferred anything about the

momentum of photons without assuming that this momentum

was fully transfcrred to the illuminated surface. In the Einstein

box calculation, also, the conseruation of momentum is explicitly

assumed. In discussing the ultimate speed experiment, we took

it for glanted that a calorimetric measurement would, through

energy conservation. give us an exact knowledge ol the kinelic

energy brought in by electrons travelihg at speeds close to the

speed of light.
At this stage, therefore, we are not discouering these grand

conservation principles of dynamics; we ale, ieslead,, asserting

them, on the grounds that the use of such principles has already

been amply justified in classical dynamics. And then, in going

from Newtonian to Einsteinian dynamics, we are simply ex-

tendìng the range of problems that can be handled accordìng to

a single set of rules. In the process we arrive at new prescriptions

for calculating such quantities as momentum and kinetic energy

in terms of the velocity and an inertial parameter (the mass).
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The transition to relativistic dynamics is not, however, an
arbitrary one. Given the relativistic kinematics, and a knowledge
of the Newtonian laws, one is led quite naturalJy to the rela_
tivistic formulation. We were not in a position to do this in
Chapter l, and our arguments there were, as \rye pointed out,
more suggestive than convincing. But at this point we cai offer
a much cleaner approach, based upon readily visualizable situa_
tions which we shall now discuss. The course of the argument
illustrates, once again, the very intimate conDection between the
particular lormulation of kinemadcs and rhe dynamics appro_
priate to it.

TWO VIEWS OF AN ELASTIC COLLISION

We are going to consider a very simple type of collision process_
a perfectly elastic collision between two identical particles. It
will be a collision in which the whole motion lakes place in one
plane. a nd we shall analyze it in terms of momenl um conservation,

By way ofbackground, consider for a moment the Newtonian
version of this process. Bodies A and B, with initial velocities
u1 and u2, respectively, collide with one another and afterwards
have velocities v' andv2. In any individual colision of this type,
it is always possible to find a set of four scala¡ multipliers (c)
that permit one to write an equation of the form

d!\t7 + ot2tt2 - a}vt + aavz

This as it.stands is a quiie uninteiesti¡g s-raiement. Eut experi_
ments for all sorts of values of u 1 and u2 reveal the remarkable
result that in every such collision, for two given objects, we can
obtain a vector identity by putting dl : ¿': ma (a. saalar
DroDertv of hodv À\ aî.I *^ /t:"- -^..^^^^-Àt^^,¡¡d rs¡! rvr Myu, ru¡¡¡Ë
scalar property ofbody B). In other words, the purely kinematic
observations on a collision process lead us to introduce t¡e
parameters that we call the inertial masses of the two bodies, and
permit us to write the familiar equation for conseryation of
linea¡ momentum.

When we introduce the relativistic kinematics, the relation_
ship between initial and final velocities for two colliding objects
is no longer expressible in quite such a simple form. Nevertheless,
we keep as close to it as lve can, and we do this by asking what is
implied by the kinematics of such a collision if we assert con_
se¡vation of linear momentum in the following extended sense.
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In t¡e elastic collision of two bodies, I and B, as described

from the standpoint of a particular frame of reference, the initial
and final velocities a¡e related by the equation

tnA(ur)lt + mt(uz)tz: m¡(uth t I m¡¡(az)v z (Ç2)

where m1 is a scalar inertial property oî I depending only on its
speed and rn¡ is the corresponding scalar property of -8, We

know that in Newtonian mechanics this equation is satisfied by
values of z_4 and mB fhal are quite independent o[ speed, Let
us now see how the relativistic kinematics implies the dependence

of m on u as given in Eq. (êl).
We imagine two expedmenters, one in the inertial frame S

and the other in .S'. They use identical types ol instruments for
measuring times and distances, and they agree to produce a

completely symmet¡ical collision between two identical particles.1
The experimenter in S will project one particle (,4) along hìs y axis

with a speed z6 (as measured in ,9), and the experimenter in S'
will project the other particle (B) along his y' axis with a speed

-ao (as measured in S'). The speeduois small, but S end S' haue

a uery large rek ize velocity Ð along x. The experimenters are so

skillful that the particles collide when their center's lie along the

¡., axis. The collision as observed in S and S'thus takes the fo¡ms
shown in Fig. 6_l. The y (or ¡') component of velocity of each

rA gcdanken expenmenl ol lhts type was first inLroduced by G. N. tæuis
and R. C. Tolman, P,r¡il. Mag.,1a,510 (1909).

Fig.6-1 Elastic
collisiott bet\teen lw,o

obserued frcm tþo

related by a ùelocity
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particle is exactly reversed, and its Yelocity along x (or x') is

unchanged. This corresponds to complete reversibility in time

for the collision as a whole.

In analyzing this procesg, we note the follou/ing points:

l. As observed in S, the l, component of velocity of I is

initially øe, and afterwa¡d -us. The y component of Yelocity of
B is initially -u, and aftefl ard.ø. The relation between ¿r0 and

u is giyen by the transformation equation [Eq. (5 3)] for v€locity

components transverse to the di¡ection of relative n]otion of two

reference f¡ames:

u"'/v
u 1 + Du,'/c2

Since in the fiame S' the velocity componenT u"' ol B is zero,

this reduces to

u: uo/'Y: uo(1 - u2/c2)1t2

2. As observed in ,S,, the roles of I and -B are interchanged

and the sign of u is reversed. The complete symmetry can be

clearly recognized if Fig. 6-l(b) is ¡otated through 180' in its
own plane; it then matches Fig. 6-l(a) in every respect.

3. As observed in either relerence frame. the speed o[ each

particle remains unchanged by the collision, and is pither a6 or
(u2 + þ2)t12. Because of this, and the identity of the particles,

we a¡e concerned with only two possible values of m-m(uo) and

m(V),where Y : (u2 + D2)tt2.

The conservation of linear momentum in the I di¡ection as

observéd in S ìs then desc¡ibed by the following statement:

pu: m(us)ue - m(V)u: -m(us)us I m(lau

Therefore,

n(m üo

;6;:; (Ø)

Now we have postulated that ø¡ is small-as small as we choose

to imagine. Hence the ine¡tial quantity rz(46) can be taken to be

just the Neu,tonian inertial mass lr?0. Also, given that a0 << u,

it follows (a fortiori) from Eq. (G3) that u <<u, and hence that

V -u. Thus, by imagining a limiting collision of this t)?e, with
uo + 0, we conclude from Eq. (G4) that

(6 s)
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TWO VIEWS OF

and hence lhar. p : 1ao, is an appropriate defirition of the

linea¡ momentum for a particle of rest mass m¡ traveling at

velocity v.

The above discussion is.limited strictly to the question of

momentum. Is the definition of mass that emerges from this

analysis-i.e., as given by Eq. (6-5)-a1so applicable to caÌ-

culations involving fhe eneryy of the system? We have of cou¡se

already argued in Chapter 1 that this is indeed so, but an analysig

based upon another hypothetical collision process will perhaps

Iend lurther conviction to the result-

AN INELASTIC COLLISION

Again we shall consider the impact of two identical partìcles,

but this time we shall supposc that the collision is completely

¡¡elastic. There will be a f¡ame S' in which the particles approach

each other along a straight line with equal and opposite velocities

of magnitude zr [Fig. 6 2(a)]. There will then exist another frame

S, relative to which S' has velocity ø, in which one of the particles

is initially stationary IFig. 6 2(b)1.

As obse¡ved in frame S', the collision ¡esults in the formation

of a stationaly composite Particle. Hence in frame S this con]-

posite particle must be obse¡ved to hâve the velocity a. ln this

same f¡ame S the initially moving particle has a velocity U re-

lated to a through the velocity addition formula, Eq. (5-2):

uf .I u
u, : 1 -L, lruJ /c'

in wbich weputu" : tJ,u"'': u: ¡i Therefore,

Fí9.6-2 Com-

collísion between tvo

obserüed (a) it1 lhe

frane, (b) ín a franle
irl which one of the

objects is itritially

2u
" - 1¡ u'1"'

172 Relativistic dynanics -'coilisiorls, conserlatìon laws



ition of the
traveling at

question of
)s from this
able to cal-
.ve of course

t an analysis

will perhaps

:al particles,

; completely
les approach
ite velocities

Ìother frame
the particles

re fo¡mation
S this com-
y ø. In this
:locity U re-
(s-2):

Now let us write the statements of conse¡yation of momen-
tum and conseryation of mass, from the standpoint of f¡ame S,
(As in the previous section, \rye suppose that the mass is some
function of the speed):

Momentum:

m({J)U : Mu

Mass:

(6-7)

n(U) I nto: M (G8)

Eliminating M between these two equations we find

-(TD : "m¡ - g-u (6-9)

Now Eq. (6-6) gives the connection between U and r; thus we
can find the ntio m(lJ)/ms as an explicit function of U. From
Eq. (6 6) we have

u'-2(""/u')r*¿e:o
Therefore,

"" f /"'\' .l\t2,:z"l\a) -."1
2C . õ',.:7tl+(1 _ u-/c-t''-l

Since we nrust have u-U/2 for U<<c, we know that the
negatiye sign should be chosen. (Appeal to the fa_ct that the
radical is approxirnately equal to I - U2 /2c2 for U (( c.) Thus
we have

2
¿ôou. "¿U - ( - u2/c2lt'21

Therefo¡e,
2

u-u:f,1u2/""-1+(1 - u2 ¡cz¡rrz,
l.€.,

2__ cu-u. utl - u'/c,)'1,1 * tl _ u2/c2)tt2l (6_t0b)

Substituting from equations (6-10) into (6-9), we have

tn(U) 1

nn [- U\cr)uz:l(LD (Gll)

Trvo vieu's oI an inelastic collision

(ê6)

;,i|.l:iç--.ã,]if
ì.j: :'_, i,. ..'ì

.'M"\ : - l_i
i:.¡.1iis;ì-ìiiìtdli

: :.4i,.
; -...]?iV ¡-.,1i

.. l':17
I : i-üì

tio¡. laws l'13

(6-10a)



which thus reproduces the form of the mass formula of Eq. (6_5).
This calculation involves more algebraic manipulation tha¡

the one in the previous section, but it is more satislactory in
several ways :

1. The collision considered is an extremely simple one, the
motion being entirely along a single straight line.

2. The calculation is exact. One ofthc particles is, by defini-
tion, conpletely stationary in f¡ame S belore the collision (not
just approximately so as it was in the previous case).

3. The explicit use of the mass-conse¡vation equation leads
naturally to the eqtivalence of mass and energy. We have, in
essence, already developed the connection in these terms in
Chapter l, so the chiefpurpose ofrestating it here is to emphasize
once again the intimate connection between the kinematics and
the dynamics. From Eq. (6-11) we have

m(U) :.ms(1 - IJ2/c2¡ rrz

: no + +mou2/c2 +
Therefoie,

m(U)c2 : mocz ¡ \nsIlz ¡
Noting that the second term or the dght of Eq. (6-12) corre-
sponds exaclly to the classical kinetic energy of a particle of
mass m6 and speed U, we come to.the familiar statement that the
lotal ener9y of a. pa icle of rest mass ¡fl¡ and speed U is given by

2

E : o=H/"r¡u": m(Ø"2

v/ith Eo : mocz defrnng the rest energy of the particle.
4- B¡,, co¡rsideririg ihe coiiision iurther, we can cjenonstratç

lhal Ihe consistenf use of a mass/velocity relation as given by
Eq. (Gll) involves no contradictions. In Eq. (6-ll) we have a

statement of the mass of that colliding particle which, as observed
in frame S, 'has speed U. ,Let us express this in terms of a,,using
Eq. (6-6); we have

.. 2,2-
l-IJ2/.2:t- 4Yllc t

(l F ltz /c2)2

- 
(l - u2 kz)2
(7 | uz/¿z)z

Thcrefore,

(t + u2 /c2 )m\U) : ;--- -- = -- 
mo

\t - uz /cz )

Relatir.'isiic clynamìcs- coilisicl-ls, consel.valion lâws
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(6 13)
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I _ Vz/Cz

Mo: M(l - u2/c2)r/2

Using Eq. (Gla), this would give us

2mo
,..u - {1 _ rr1.r¡r,,

Mo : 2m(u)

Substituting this value in Eq. (6-8), we find that the mass of the
composite particle, as measured in frame S, is given by

But in frame S this composite particle has speed a. On the basis

of Eq. (G11) we would infer that its rest mass should be M¡,
\vhere

(6 14)

(6-1s)

But now, consider the collision as desc¡ibed in the f¡ame S'.
Here the composite particle is indeed at rest, having beetr formed
from the collision of two particles; each of rest mass mo and
speed a. We are assuming that all the mechanical energy brought
in by the colliding particles is retained within the composite
particle. Thus we do not (and must not) assume that rly'o is equal
to 2rro. Using the statement of conseryation of mass as applied
in frame S', we have

(6-16)

which is identical with Eq. (6-15) if we accept t}le velocity depen-

dence of mass as given in Eq. (6-l l) and thus putm(u) : 'y(u)mo.

FURTHER REMARKS ON THE CONSERVATION LAWS

It should be very clear f¡om all the preceding discussion that the
momentum and energy conservation laws are not sacred; there
is nothing, however, in our experience so far tåat has required
tùeir abandonment. It has been a pretty near thing at times-as,
for instance, when the existence of the neutrino, a hitherto un-
observed particle, -was postulated by W. Pauli in 1930 to avoid
giving up conservation of energy in beta decay. It took over 20
years before the neutrino was detected-but it was,l and our
confidence in the conseryation laws was still further strengthened
thereby.

Clearly the conseryation laws are not going to tell us the

¡F. Reines, et al., Prlr. Ret.,92,830 (1953).
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