Notes on complex numbers

A complex number is defined as a + bi where a and b are real numbers. The symbol i has the (defining) property that $i \times i = -1$. Ordinary rules of algebra apply to complex numbers: you can treat i as any other 'variable' as long as you use $i^2 = -1$ to simplify expressions.

a is called the real part of the complex number a+ib. This is often written as $a = \Re(a+ib)$ or $a = \operatorname{Re}(a+ib)$. *b* is called the imaginary part of a+ib, with notation $b = \Im(a+ib)$ or $a = \operatorname{Im}(a+ib)$.

An extremely useful fact (proven briefly in Tutorial 8) is the following:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

[Aside: this is true even if θ itself is a complex number.]

Often it is useful to represent complex numbers in the so-called polar form, $re^{i\theta}$, where r is real and non-negative and θ is real. r is called the magnitude of the complex number and θ its phase. Using that $e^{i\theta} = \cos \theta + i \sin \theta$, we get the following relationships:

If
$$a + ib = re^{i\theta}$$
, then :
 $a = r\cos\theta$
 $b = r\sin\theta$
 $r = \sqrt{a^2 + b^2}$
 $\theta = \tan^{-1}(b/a)$ (make sure you get the right quadrant!)

The above relationships are usefully pictured by plotting a complex number in the complex plane: a two-dimensional plane with the real part of the number on the horizontal axis and the imaginary part on the vertical axis.

Practice problems

Simplify (write in the form a + ib) the following complex numbers (no calculators):
 i¹⁰⁰¹ =
 e^{iπ/4+ln(3)} + (3 + 2i)³ - (e^{iπ} + 1)¹⁰⁰ =
 (sin(π/100) + i cos(π/100))¹⁰⁰ =
 √i = (hint: write i in polar form)
 Compute the magnitude and the phase of (still no calculators)

- $(\sqrt{3}+i)^{10}$ (hint: convert to polar form before taking the power) $(5e^{i\pi/4}-5i/\sqrt{2})^3$
- 3. Challenge question: what is $\cos(\pi/3 + i\pi/4)$?