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Abstract

The recent torsional oscillator results of Kim and Chan seem to suggest a super-

solid phase transition in solid 4He, at 200 mK, confined in Vycor. We have used a

capacitive technique to directly monitor density changes for 4He confined in Vycor

at low temperature and have used a piezoelectrically driven diaphragm to study the

pressure-induced flow of solid 4He into the Vycor pores. Our measurements showed

no indication of a mass redistribution in the Vycor that could mimic supersolid de-

coupling and put an upper limit of about 3 nm/s on any pressure-induced supersolid

flow in the pores of Vycor.

Torsional oscillator results later revealed that the effect also exists in the bulk

solid, at 200 mK. We have (again) used a piezoelectrically driven diaphragm to study

the flow of bulk solid 4He through an array of capillaries. Our measurements showed

no indication of low temperature flow, placing stringent restrictions on supersolid

flow in response to a pressure difference. Any supersolid fraction present in the 4He

moves at a velocity less than 1.2 x 10−12 m/s, a value which is at least seven orders

of magnitude smaller than the critical velocities inferred from the torsional oscillator

measurements.

Contemporary experiments and theory now indicate that extended defects are

somehow involved in the torsional oscillator results. Such defects should also affect

the solids mechanical behaviour. Lastly, we report on a measurement of the shear

modulus of solid 4He at low frequencies and strains. We observe large increases

below 200 mK, with the same dependence on measurement amplitude, 3He impu-

rity concentration and annealing as the decoupling seen in the torsional oscillator

experiments. This unusual elastic behaviour is explained in terms of a dislocation

network that is pinned by 3He at the lowest temperatures but becomes mobile above

about 100 mK. The frequency changes in the torsional oscillator experiments appear

to be related to the motion of these dislocations, perhaps by disrupting a possible

supersolid state.
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Chapter 1

Introduction

For almost a century, physicists have wrestled with the baffling character of helium.

Every other element embraces the solid phase at ambient pressure and the zero of

temperature with the exception of helium. Below 2.17 K, 4He undergoes the weirdest

and most wonderful of transitions: it becomes a superfluid and flows with perfect

ease. This occurs for quantum mechanical reasons as its atoms, especially compared

to those of other elements, behave less like particles and more like quantum waves.

At sufficiently low temperatures, many collapse into a single quantum wave in a

process known as Bose-Einstein condensation; in this condition, the atoms don’t

simply perform as a whole, they become whole.

Since the late 1960s, theorists have speculated that something similar might

happen in solid 4He, made by pressurizing the low temperature liquid to twenty-

five times atmospheric pressure. It was anticipated that such a transition would

effectively cause the solid to possess superfluid-like properties; for that reason, the

state was dubbed as ‘supersolid’. Perhaps vacancies within the crystal could Bose-

Einstein condense to form a free-flowing fluid of their own, which would mimic the

flow of atoms through the liquid, or maybe even some of the atoms themselves

undergo Bose-Einstein condensation. The counter-intuitive notion of supersolidity

was breath-taking and mind-blowing. Unfortunately, no one had ever seen any hint

of a flowing solid. Until recently, that is.

In 2004, results were published in support of a supersolid phase in 4He. The

concept of supersolidity was poised to become an empirical reality. Somehow, 4He

was proving to be more peculiar than we already knew it to be. The experiment

which caused the stir was one in which solid 4He was witnessed not to rotate as

a solid body should (an effect observed and understood in the superfluid state).
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Great science has since ensued, as the observation has been independently confirmed

and other signatures of the remarkable behaviour have been sought. After all,

extraordinary claims require extraordinary evidence.

The dilemma facing helium physicists today is multifaceted and far from cut-

and-dry. While it could be argued that the key query is the nature of the supersolid

mechanism, many physicists continue to reserve judgment about the supersolid in-

terpretation until more evidence comes in. This dissertation should assist both

camps, as the fundamental aim of this thesis is to provide a few more pieces of

objective evidence to the puzzle.

Direction was provided through recognition of the limitations of and gaps in

previous research, as well as the unresolved conflicts in the field that still require

investigation. A torsional oscillator was the probe from which the supersolid inter-

pretation sprang, based on inferential changes in density below 200 mK of the solid
4He within; however, torsional oscillators are probes of both a sample’s inertial and

elastic properties. The ambition of our work was to rule out inertial-mimics and to

directly probe the elastic properties of solid 4He alone.

Thusly motivated, our experiments were intended to test the robustness of the

supersolid claim and to provide scrutiny to some of the more obvious alternate ex-

planations. With these aims, polycrystalline samples of 4He were grown and studied.

First, solidification under confinement was examined over a range of pressures as

density changes associated with freezing and subsequent cooling in nanometer-sized

pores was investigated between 30 mK and melting temperatures. Second, pressure-

induced flow of solid 4He was studied, both for 4He confined to nanometer-sized

pores and in bulk, and again at temperatures between 30 mK and melting. Finally,

an investigation of the elastic properties was performed, as a direct measure of the

shear modulus of bulk solid 4He was made, as a function of temperature and fre-

quency. The effects of 3He isotopic impurity concentration, as well as measurement

amplitude and thermodynamic history were also studied.

This dissertation is organized as follows. Chapter 2 presents background material

covering a brief history of helium physics and an introduction to superfluidity and

supersolidity (the motivating force behind this thesis). Chapter 3 is a description

of the experimental techniques common to all experiments presented. Chapters 4,

5, 6, and 7 report and discuss our experimental results on solid 4He. The essential

results are summarized in Chapter 8.
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Chapter 2

Background

Helium is an exceptional thing; this chapter is written to provide support for that

claim and context for the research upon which this thesis is developed. We begin

with a very brief history of helium physics. A whirligig tour through superfluidity is

then provided, serving as a warm-up to the concepts and terminology encountered

in the subsequent sections on quantum solids and supersolidity. The work presented

here is discussed largely in chronological order, and touches on both theoretical

and experimental studies. A comprehensive discussion is beyond the scope of this

thesis, and the reviews by Meisel [1] and Prokof’ev [2] are brought to the attention

of the interested reader. After having established the state of the field, the chapter

concludes by introducing the questions broached by this thesis.

2.1 A brief history of helium

Helium was first created roughly 13.7 billion years ago, in the moments following

the Big Bang. About 13.7 billion years later, in 1868 during a solar eclipse in India,

French astronomer Pierre Jules César Janssen took careful examination of the solar

chromospheric spectrum and, among many other bright lines, helium (from the

Greek word “Helios”, for Sun) was discovered. Over a quarter century elapsed before

helium was found on Earth, in a sample of uranium ore by Sir William Ramsey, in

1895.

The story begins in earnest in the Netherlands. With the establishment of a

cryogenic laboratory at the University of Leiden in the mid 1900s, Heike Kamer-

lingh Onnes was preparing to verify the van der Waals law of corresponding states

over a large range of temperatures. His efforts to reach extremely low temperatures

culminated in the liquefaction of 4He in 1908. Using the Joule-Thomson effect,
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Kamerlingh Onnes lowered the temperature of the 4He down to 0.9 K, the coldest

temperature ever achieved on earth at the time. It was on account of these low

temperature studies that he was awarded the Nobel Prize in 1913 [3]. Kamerlingh

Onnes pursued an extremely diverse program of investigations, including: thermody-

namics; radioactivity; observations on optical, magnetic and electrical phenomena,

such as the study of fluorescence and phosphorescence; the magnetic rotation of the

polarization plane; absorption spectra of crystals in a magnetic field; the Hall ef-

fect; dielectric constants; and especially the resistance of metals. In 1911, following

the observation of persistent electrical currents, Kamerlingh Onnes uncovered the

superconducting nature of pure metals such as mercury, tin and lead at very low

temperatures. Essentially all of his work gradually gained importance and interna-

tional fame; pertinent to this thesis, it was breaking the 1 K barrier that allowed

for the birth of helium physics.

Three decades passed before the superfluid properties of 4He were concomitantly

discovered in 1938 by John Allen and Don Misener [4], publishing experimental

evidence that the hydrodynamics of liquid helium were not classical below 2.2 K,

and by Pyotr Kapitza [5] (in the same issue of Nature) observing frictionless flow and

through introduction of the term “superfluid” to qualify this anomalous behaviour.

The 30 year gap between the liquefaction of 4He and the discovery of superfluidity

was likely due in combination to the great interest generated by superconductivity

and the relatively small number of researchers actually working on low temperature

studies at the time. Kapitza was awarded the Nobel Prize in Physics in 1978 for his

low temperature research [3], shared with Penzias and Wilson (who won for their

discovery of the cosmic microwave background radiation). Although they made

essentially the same discovery as Kapitza, Allen and Misener did not receive a Nobel

Prize: Kapitza is generally the one credited with the discovery of superfluidity.

As the empirical evidence supporting a superfluid state began to grow, theoret-

ical work began in an effort to (best) explain and understand this new and highly

unusual state of matter. Later in 1938, Fritz London [6] worked out the theory

of an ideal Bose-Einstein gas, explaining the phenomenon of superfluidity in terms

of Bose-Einstein condensation (BEC). (Almost 70 years later, the connection be-

tween superfluidity and BEC is still a matter of debate and study.) Laszlo Tisza [7]

carried the argument further by suggesting a phenomenological representation of

superfluidity, the “two-fluid model” for liquid 4He. This particular suggestion was
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also made independently and worked out in considerable detail by Lev Landau [8]

three years later, in 1941. Landau was awarded the 1962 Nobel Prize for Physics for

his pioneering theories for condensed matter, especially liquid helium [3]. Without

a doubt, 4He was weird and worth studying.

Countless experiments on 4He followed over the next half century. Studies on

the liquid state consistently provided results which astounded researchers with their

counterintuitive character. Beyond its zero-viscosity state, other notable features

include: persistent mass currents; superfluid film flow and self-emptying beakers;

high thermal conductivity (tending to infinity for small heat currents); thermo-

mechanical effects; second-, third- and fourth-sound; quantized vortices; and irrota-

tional flow.

Compared to its liquid counterpart, solid 4He seemed to be a relatively normal

substance, although it had been shown to possess some unique characteristics and

interesting features. For example, it is the only element which requires substantial

pressures to solidify, even at absolute zero. Additionally, solid 4He has a large molar

volume and is accompanied by an exceptionally high compressibility. It wasn’t

until 2004 that Eun-Seong Kim and Moses Chan of Pennsylvania State University

observed phenomena [9, 10] in solid 4He that got scientists wondering if helium

physics was on the verge of capturing yet another Nobel Prize.

2.2 Superfluidity in liquid 4He

Before diving deep into the subject of superfluidity in solids, it is helpful to first

wade through some of the basics of superfluidity in liquids (a somewhat less coun-

terintuitive phenomenon). This section does just that, identifying the necessary

concepts and terminology, and providing a roller-coaster introduction to superflu-

idity in liquid 4He; those seeking for depth with breadth are directed to standard

reference books [11, 12, 13].

Immediately below its boiling point, 4He behaves as an ordinary liquid with

a small viscosity. However, at 2.17 K it undergoes an unusual transition. This

transition is signalled by a specific heat anomaly, whose characteristic shape has

led to the name “λ-point” being given to the temperature (Tλ) at which it occurs.

Observation of the liquid through this transition reveals a remarkable alteration in

its appearance. Above Tλ, vapour bubbles form within the liquid in the customary

way and the whole liquid is violently agitated (simple boiling at reduced pressures).
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Once the transition point is reached, however, the liquid becomes absolutely still

and no more bubbles are formed. We infer that Tλ marks the transition between

two different forms of liquid, as shown in Figure 2.1, conventionally referred to as

He I (the normal fluid) above Tλ and He II (the superfluid) below it. He I behaves

in the normal fashion of a low-viscosity low-density liquid, but the properties of

He II are strikingly different. The quantum nature of He II is unarguably bizarre

and many of the phenomena it displays are aptly described as “super”.

Figure 2.1: Phase diagram of 4He [11].

One of its most unusual properties is revealed when its viscosity is measured.

Experiments to determine the viscosity of He II can be divided into two classes:

those designed to measure viscous resistance to flow, and those which detect the

viscous drag on a body moving through the liquid.

Results typical of the former method come from flow viscometry experiments

which measure the flow velocity of He II through narrow channels of varying widths

(a flow viscometer). In experiments of this sort, the flow rate is found to be almost

independent of the pressure along the channel [14]. In fact, the flow is found to be

6



very much larger than that expected from measurements above Tλ. And not only is

it not proportional to applied pressure, but the flow becomes large at the smallest

applied pressure difference and then saturates, staying effectively constant when

further pressure is applied. Of course, the flow is clearly limited by other effects,

which we will discuss shortly. Clearly, though, this suggests that the viscosity of

He II is virtually zero. This zero-viscosity conclusion is supported by persistent

current measurements [15]. In these, a liquid 4He-filled torus-shaped vessel was set

into rotation; when the vessel was brought to rest, the He II continued to flow,

showing no reduction in angular velocity over a twelve-hour period, and indicating

that He II can flow without dissipation.

Results typical of the latter method involve rotation viscometers. In these, a solid

cylinder is made to rotate while submerged in a bath He II, the torque applied to the

cylinder providing a measure of the viscosity of the fluid in which it is submerged.

Experiments of this sort demonstrate the existence of a viscous drag [16]. Somehow,

strangely, He II is capable of being both viscous and non-viscous at the same time.

This apparent contradiction is the essence of the two-fluid model [7], in terms of

which many of the properties of He II can be explained. According to this model,

He II behaves as if it were a mixture of two liquids: one, the normal fluid, possessing

an ordinary viscosity (ηn 6= 0); the other, the superfluid, being capable of frictionless

flow past obstacles and through narrow channels (ηs = 0). Each have their own

effective density, such that the total density of the fluid is constant (ρ = ρn + ρs),

and the normal fraction is the fluid component which carries entropy (Sn 6= 0 and

Ss = 0). He II is also capable of two different motions at the same instant. Each have

their own distinct local velocity, so that the total current density is given by the sum

of the products of the density and velocity of each fraction (j = ρnvn + ρsvs). (This

approach, in which the two fluids are treated independently, is most useful when the

velocities are small. At higher velocities, the superfluid flow becomes dissipative, the

normal fluid exhibits turbulence, and there is the possibility of interaction between

the two. When these factors are allowed for, the two-fluid equations become rather

complicated. But, for small velocities, these hold.) To avoid any misunderstanding,

however, it must be clearly stated that the two fluids cannot be physically separated;

it is not permissible even to regard some of the atoms as belonging to the normal

fluid and the remainder to the superfluid. 4He atoms are bosons, and therefore are

all identical.
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In the light of the two-fluid model, the seemingly discrepant results from the

viscosity measurements described above make sense. In any mixture of two fluids,

the viscosity as measured by the flow viscometer must be dominated by the smaller

of the two viscosities, since the “thinner” fluid can find its way through the narrow

tube much more readily than the “thicker” one. On the other hand, the viscosity

as measured by the rotation viscometer will be dominated by the larger of the two

viscosities, since the large drag force exerted by the “thicker” fluid will prevail over

the smaller force of the “thinner” one.

The validity of the two-fluid model is most strikingly demonstrated in the exper-

iment devised by Andronikashvili [17], in which a pile of closely- and equally-spaced

thin metal discs were suspended by a torsion fibre and made to perform oscillations

in liquid helium. The period of the oscillations in such a torsional pendulum is given

by P = 2π(I/κ)1/2, where I is the moment of inertia of the system and κ is the tor-

sion constant of the fibre. The moment of inertia has a component that comes from

the pendulum itself, Iosc, and a component that comes from whatever helium mass

is being dragged with it, IHe (i.e., I = Iosc + IHe). The two-fluid model predicts

that only the normal fluid fraction can contribute to the moment of inertia of the

pendulum (IHe ∝ ρn = ρHe - ρs). As the low temperature density of liquid helium

is essentially constant, any observed change in the period of oscillations is equal to a

change in the density of the normal fluid component, and therefore to the negative

change in the density of the superfluid component (∆P ∝ -∆ρs). The disc spacing

was sufficiently small to ensure that above Tλ all the fluid between the discs was

dragged with them. However, below Tλ the period of oscillation decreased sharply,

indicating that not all the fluid in the spaces was being entrained by the discs. This

result confirmed the prediction that the superfluid fraction would have no effect

on the torsion pendulum. The experiment gives a direct method of measuring the

variation of ρn with temperature and, by inference, ρs, as shown in Figure 2.2. Note

that He II is almost entirely superfluid below 1 K.

Early experiments designed to measure the thermal conductivity of He II showed

that it is very high, tending to infinity for small heat currents. In fact, it is not

possible to establish a temperature gradient in bulk superfluid helium (a result

which explains the sudden cessation of boiling as the liquid is cooled through Tλ).

In an ordinary liquid (like the normal fluid phase of helium), a bubble forms when

the local temperature is sufficiently greater than that at the free surface. In He II,
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Figure 2.2: Normal and superfluid density of He II according to the two-fluid
model, as inferred from period changes in a torsional oscillator experiment. Modified
from [11]

supposing that a large enough temperature fluctuation were to occur, it would decay

so quickly that a bubble would not appear. Therefore, evaporation of He II takes

place only at the free surface.

A temperature gradient can be set up between two volumes of bulk He II provided

that they are connected only by a superleak (i.e., a channel through which only the

superfluid component can flow). A common form of superleak is a tube packed

tightly with fine powder: the spaces between the particles form winding channels

of varying width (typically about 100 nm) which allow the superfluid to pass but

clamp the normal fluid in place. If heat is supplied to one side of the superleak, a

pressure head is set up as well as a temperature difference. This happens because

the superfluid fraction flows from the low temperature side to the high temperature

side of the superleak. Since ρs/ρ increases with decreasing temperature, we infer

that the superfluid moves to the region of higher temperature in order to reduce the

temperature gradient.

Such manifestation of the thermo-mechanical effect shows clearly that heat trans-

fer and mass transfer in He II are inseparable. The steady supply of heat to the bulk

liquid, achieved, for example, by passing a direct current through a resistor, and its

9



removal elsewhere into a constant-temperature reservoir cause internal convection.

Normal fluid flows from the source to the sink of heat, whilst superfluid flows in

the opposite direction, under the constraint that the total density remains constant

everywhere (i.e., counterflow of ρs and ρn). Thus heat is not transferred in He II by

the ordinary process of conduction and simple convection of the whole fluid. Only

the normal fluid fraction carries heat; superfluid flow by itself cannot transport heat.

When the heat supply is made to vary periodically, by passing alternating cur-

rent through the resistor, the two fluids can be made to oscillate in anti-phase with

one another. Once more, this has no effect on the total density ρ which remains

constant throughout. The result is that the local value of ρs/ρ (and, consequently,

the local temperature) undergoes oscillations. In this way, He II is able to prop-

agate temperature waves, called second-sound (distinguished from first-sound, the

ordinary longitudinal pressure waves involving fluctuations in the total density at

constant temperature).

In addition to first- and second-sound in He II, two other unattenuated modes

of wave propagation in this liquid are possible. Both are characterized by the fact

that the normal component of the fluid is locked in place and only the superfluid

component oscillates in the wave propagation. Third-sound occurs in the film ad-

sorbed on a surface and is an oscillation of the thickness of the film (in which the

temperature and pressure variations are small). Fourth-sound is a bulk effect and

is a compressional wave of only the superfluid component in a superleak material.

More fundamental than the absence of dissipation, however, is the behavior

of a superfluid under rotation. If we consider a rotating vessel, the normal fluid

behaves in the expected way, undergoing solid-body rotation. The superfluid, on

the other hand, experiences vortex motion: a series of vortex lines threads the fluid

in the rotating vessel. Superfluid rotates around each vortex line and the angular

momentum associated with each vortex is quantized.

Another rotation-related phenomena, and most apposite to this thesis, is non-

classical rotational inertia (NCRI). NCRI is (essentially) the failure of a superfluid

to rotate with its container. However, there is more to it than simply that. The

phenomenon of NCRI is, by definition, characteristic of the equilibrium state of the

system, and is quantum-mechanical in origin; it should be carefully distinguished

from the apparently similar phenomenon of persistent currents, which is a metastable

effect [18]. To help understand some of the subtleties involved, we consider some of
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the rotational properties of a superfluid. We will begin by performing some thought

experiments with a narrow annular channel; if the annulus is filled with 4He, then

we can observe two conceptually distinct (though related) phenomena.

The first is true NCRI (i.e., the Hess-Fairbank effect [19]) and occurs when the

system appears to come out of equilibrium with its container. To better illuminate

this definition, imagine taking an annulus filled with water and setting it on an

old-fashioned turntable, which is then set into rotation. After some relatively short

period of time, the water will come into rotation with the annulus and will thereafter

rotate with it, as long as the turntable continues to rotate. When the rotation is

halted, the water will also then gradually come to rest.

Imagine now that we do the same experiment with liquid 4He, starting above

Tλ and rotating very slowly. The 4He behaves in exactly the same way as the

water, gradually coming into rotation with its container. Now suppose that, while

still rotating with this very low angular velocity, we cool the system through Tλ.

At first, the liquid 4He appears to come out of equilibrium with the container as

we cross the lambda line (i.e., to cease to rotate even though the container is still

rotating). In fact, as we reduce the temperature of our system to zero, the liquid
4He appears to come completely to rest in the frame of reference of the laboratory.

It is clear that this behaviour cannot simply reflect very long relaxation times, since

it is the liquid which has come out of equilibrium from the container: the “non-

rotating” state must be the true thermodynamic state. This is the exact analogue

of the Meissner-Ochsenfeld effect in a superconductor [20], in which magnetic field

lines are excluded from the superconductor when it is cooled to below its critical

temperature. It becomes convenient to define the superfluid fraction fs of liquid
4He in terms of the experimentally observed value of the temperature dependent

moment of inertia, relative to its classical value, I(T) = Iclassical[1 - fs(T)].

The second phenomenon is the following. Again, imagine an annulus filled with

liquid 4He and at a temperature above Tλ. The system is once more set into rotation,

but this time at a significantly greater angular velocity. As we cool through Tλ, we

now see very little change: for all intents and purposes, the liquid continues to rotate

with its container. The difference arises when we then stop rotating our container:

the liquid 4He within continues to rotate, apparently indefinitely. It can be shown

that for the container stationary the rotating state cannot be the thermodynamic

equilibrium one, so what we are seeing here is an example of an extremely long-lived
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metastable state, sometimes referred to as metastability of superflow.

A phenomenological understanding of both the Hess-Fairbank effect and the

metastability of superflow may be obtained if two separate assumption are made.

First, that the atoms in a condensate can have only integral values `~ of their

angular momentum, corresponding in the annular geometry to an angular velocity

of rotation `~/mR2 = `ωc. Second, that the passage of an atom from one value of `

to another is impeded by a high free-energy barrier. Then it is intuitively plausible

that on cooling through Tλ with ω ¿ ωc the condensate will prefer to come to

rest. On the other hand, if the angular velocity of the container is À ωc, say nωc,

where n is not necessarily an integer, then on cooling through Tλ the condensate will

simply “choose” the value of ` that most closely matches its angular velocity to the

container; in particular, if the latter isÀ ωc/2, the condensate will simply choose the

integer ` closest to n, and the difference between ` and n will be barely observable,

so that the liquid appears to continue to rotate with the container. However, when

the rotation stops the free-energy barrier prevents relaxation back down to ` = 0.

Superfluidity is a quantum mechanical effect and it is clear that the pure super-

fluid constitutes the ground state of He II. The 4He atom has a resultant spin of zero,

and is therefore a boson; an assembly of 4He atoms is governed by Bose-Einstein

statistics. As is well-known, an ideal boson gas of particles with non-zero rest mass

exhibits the phenomena of BEC. At low temperatures, the particles crowd into the

same quantum state, corresponding to the lowest single-particle energy level of the

system, forming a condensate. The crucial distinguishing feature of a Bose-Einstein

condensate is that the many parts that make up an ordered system not only behave

as a whole, they become whole; their identities merge or overlap in such a way that

they lose their individuality entirely. The condensation begins at the critical tem-

perature and is complete at absolute zero. Liquid 4He behaves in the same way, in

that Tλ is the temperature which marks the onset of condensation and the conden-

sate is associated with the superfluid fraction of He II. The existence of a condensate

and its correlation with the occurrence of superfluidity is something to be kept in

mind. It is also worth noting that many of the effects described above are also seen

in BEC of gases.

So far, however, we have really just considered the particles in the ground state

of a superfluid system (i.e., the condensate) and it seems plausible that a superfluid

current is to be equated with motion of the condensate. While the existence of a
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condensate is a necessary condition for superfluidity to occur, it is not a sufficient

condition. Whether or not superflow can happen depends additionally on the nature

of the thermally excited states. The excitation spectrum of He II, commonly referred

to as the Landau curve, is shown in Figure 2.3 (as obtained from neutron-scattering

experiments [21], and as suggested by Landau [8]).

The excitation spectrum is sharply defined, indicating that the excitations are

long-lived (however, as the temperature is increased above 1.2 K, the spectrum

develops a width and becomes progressively less well-defined, a consequence of the

rapid growth of the number of excitations and the frequency of collisions between

them). The existence of the finite energy gap for these excitations at ∼ 2 Å−1, called

rotons, is crucial for the occurrence of superfluidity. At temperatures well below Tλ,

this excitation spectrum is sufficient to account for the thermal properties of He II.

In particular, it implies that there are no other excitations in He II with a spectrum

lying below the Landau curve; this specifically excludes free-particle motion. With

that, it is possible to derive what is known as the Landau criterion for superfluidity

and apply it the excitation spectrum of He II.

Imagine a body of large mass M moving at velocity Vi through a volume of

He II, at a low enough temperature so that it is effectively pure superfluid. So long

as Vi is low enough, the body will experience no drag from the superfluid. This

will change only when Vi reaches a critical value vLandau at which it is possible

for an excitation to be created out of the superfluid. This will cause a loss in the

kinetic energy of the body, which is dissipated in the form of thermal excitation

energy, that is as heat. Thus, as soon as it reaches vLandau, the body begins to

suffer drag. In order to determine vLandau, we need to find the minimum value of

Vi at which an excitation can appear. Suppose that the creation of one excitation

with energy ε(p) and momentum p causes the body’s velocity to decrease from Vi

to Vf. Conservation of energy and of momentum imply

1
2
MVi

2 =
1
2
MVf

2 + ε(p) (2.1)

and

MVi = MVf + p. (2.2)
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∆

Figure 2.3: Dispersion curve for liquid 4He at 1.12 K, under it normal vapour
pressure [21]. The parabolic curve rising from the origin represents the theoretically
calculated dispersion curve for free helium atoms at absolute zero. The open circles
correspond to the energy and momentum of the measured excitations. A smooth
curve has been drawn through the points as a guide to the eye. The broken curve
rising linearly from the origin is the theoretical phonon branch calculated from a
velocity of sound of 237 m/s. The dotted curve drawn through the point 2.27 Å−1

has been drawn with a slope equal to the velocity of sound.
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Together, Equations 2.1 and 2.2 give

ε(p)− p ·Vi + p2/2M = 0. (2.3)

If we then assume that M is large enough that the last term in Equation 2.3 can be

neglected, and with θ as the angle between p and Vi, we then have

p Vi cos θ = ε(p) (2.4)

and since cos θ ≤ 1, the condition

Vi ≥ ε(p)
p

(2.5)

must be satisfied in order for an excitation to be created. Thus, the critical velocity,

vc = vLandau, is given by

vLandau =
[
ε(p)
p

]

min

. (2.6)

Superfluidity can therefore occur if

vLandau > 0, (2.7)

a condition which is known as the Landau criterion for superfluidity [8]. Minimum

values of ε(p)/p are found when

dε(p)
dp

=
ε(p)
p

. (2.8)

There are two solutions for Equation 2.8 on the He II excitation curve. One occurs

at the origin (and at all points of the linear part of the spectrum). In this region

vLandau =
ε(p)
p

= 239 m/s (phonons), (2.9)

which indicates that the critical velocity for the creation of phonons is the velocity

of first sound. The second solution occurs when the straight line passing from the
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origin to the curve near the roton minimum touches the excitation spectrum. From

this we obtain

vLandau ' ∆
p

= 58 m/s (rotons). (2.10)

If we apply this treatment to the excitation spectrum of the free particle (a parabola),

the condition of Equation 2.8 is satisfied only at the origin, giving

vLandau = 0 m/s (free particles). (2.11)

A Landau velocity of zero means that superfluidity is impossible in any system where

free particle motion can take place. Thus it is the energy gap ∆, together with the

lack of any other thermal excitations below the Landau curve, which ensures a finite

value of vLandau in He II.

2.3 Solid helium - some basics

With the necessary concepts and terminology for superfluids now in place, we will

shift our focus to the solid phase.

Solid helium is also a rather unusual thing. It behaves quite differently from the

heavier inert gas solids (Ne, Ar, Kr, Xe) and solid helium is a uniquely ‘quantum’

(as opposed to ‘classical’) solid. Its inimitable nature can be recognized without

looking beyond the phase diagram, as presented back in Figure 2.1.

A key feature of the phase diagram is that liquid 4He does not freeze when

cooled under its vapour pressure (the helium isotopes are unique in this regard). In

fact, solid 4He is only stable under a pressure of at least 25 bar. This reluctance

to solidify results from a combination of two factors: weak binding forces between

helium atoms and significant non-thermal energy of helium atoms.
4He atoms possess filled, spherically-symmetric electronic shells and, as a result,

the van der Waals attraction between atoms is weak. Moreover, 4He atoms are

subject to two distinct forces in the limiting cases of large and short distance, as are

all neutral atoms. At long range there exists an attractive force (the van der Waals

attraction), and at short range there exists a repulsive force (the result of overlapping

electron orbitals, referred to as Pauli repulsion). The Lennard-Jones potential is a
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simple mathematical model that represents this behavior and effectively captures

the essential features of the 4He atom interaction:

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(2.12)

where r is the interatomic separation. For accurate calculations, more realistic

potentials are required. All the same, the Lennard-Jones parameters provide an

easy way to characterize the strength, ε, and range, σ, of the interaction. Table 2.1

compares these parameters of the inert gas solids. As can readily be seen, 4He

occupies the shallowest of potential wells by a considerable measure.

gas ε (K) σ (nm) m (amu) Λ
Xe 230.4 0.392 131.30 0.064
Kr 164.0 0.362 83.80 0.103
Ar 119.8 0.340 39.944 0.186
Ne 36.7 0.279 20.183 0.577
4He 10.2 0.262 4.004 2.61
3He 10.2 0.262 3.017 3.01

Table 2.1: Basic quantum parameters for the inert gas solids [22].

4He atoms also are light and the effect of low atomic mass is to ensure a high

value of zero-point energy. A 4He atom occupies a certain volume, bounded by

the atoms immediately surrounding it, and on average is contained within a sphere

of volume equal to the atomic volume Va (and that sphere has radius R ∼ V1/3
a ).

By the Heisenberg Uncertainty Principle, a particle confined to such a cavity has

an uncertainty in its momentum, ∆p ∼ ~/R. Consequently, it must possess some

kinetic energy of localization (i.e., zero-point energy) E0 ∼ (∆p2)/2m4 ∼ ~2/2m4R2,

where m4 is the mass of a 4He atom. In terms of the atomic volume, the zero-point

energy may be written as E0 ∼ ~2/2m4V
2/3
a . When this effect is coupled to weak

interatomic attractive forces, it becomes clear why 4He refuses to solidify without

the help of significant external pressures. Even once frozen, this zero-point energy

leads to a greatly increased molar volume, and to unusually large displacements of

the atoms in their oscillations about their equilibrium positions. In addition, the

large molar volume is accompanied by an exceptionally high compressibility, so it is
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possible to study the properties of a simple lattice over a great range of densities.

Correspondingly, solid 4He also possesses a weak shear modulus (i.e., small elastic

constants) and relatively low sound speeds.

The basic character of solid 4He may be revealed in the phonon (p) specific heat

Cp
V (that which arises from the vibration of the atoms about their lattice points).

At low temperature, the heat capacity is well-described by the Debye model

Cp
V =

12π4

5
NAk

(
T

θD

)3

, (2.13)

where NA is Avagadro’s number, k is Boltzmann’s constant, and θD is the Debye

temperature. θD is obtained by fitting to the observed Cp
V and is roughly the tem-

perature of a crystal’s highest normal mode of vibration (the characteristic energy

of the phonons).

As shown in Table 2.2, θD is significantly larger than the melting temperatures

of 4He (i.e., the zero-point energy is much greater than the thermal energy). For

example, at absolute zero, solid 4He with a molar volume of 20 cm3 has about 225 J

of zero-point energy, but the addition of less than 1 J of thermal energy is enough to

cause melting. Table 2.2 also shows the ratio r/R0, of the mean square amplitude of

vibration of the atoms to the distance between nearest neighbours, again determined

via the Debye model. According to the Lindemann criterion of melting, a solid melts

once r/R0 ∼ 0.15: a clear indication that solid 4He is not inherently stable.

Molar Melting Debye Zero-point Thermal
volume temp. TM temp. θD TM/θD energy energy r/R0

(cm3) (K) (K) (J mol−1) (J mol−1)
20.0 2.12 24.0 0.088 224.4 0.71 0.303
18.0 3.40 31.5 0.108 294.8 2.05 0.277
16.0 5.35 42.5 0.126 397.7 4.98 0.251
14.0 8.65 57.0 0.152 531.7 13.31 0.228

Table 2.2: Estimates of the thermodynamic functions of solid 4He along the melting
curve [23].

A classical treatment is clearly inadequate for helium, as quantum effects are

simply too significant. The degree of ‘quantumness’ of a solid can be characterized
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by the de Boer [24] parameter, which is essentially the ratio of zero-point energy to

potential energy

Λ =
h

σ
√

mε
, (2.14)

where h is Planck’s constant and m is the mass of the atom in atomic mass units.

A sizeable Λ, shown in Table 2.1, means that the large wave functions (WFs) of

neighboring atoms in the lattice will overlap, leading to direct nuclear exchange

integrals and tunnelling between sites. (In solid 3He, which has a nuclear spin of 1
2 ,

this exchange can be observed through nuclear magnetic resonance experiments and

in thermodynamic properties.) This can manifest itself in the non-thermal motion

of defects through the crystal, such as vacancies, impurities, and even dislocations.

Due to the periodic potential presented by the lattice (the Peierls potential), this

tunnelling may become coherent under certain conditions and allow defects to prop-

agate through the crystal.

Quantum effects play an important role in the fluid phase, as superfluidity ex-

emplifies, and are likewise significant in the solid phase; consequently, it is both

important and interesting to study the fundamental properties of quantum solid
4He.

2.4 (Super)solid 4He

Theorists have long speculated that something similar to the superfluidity that oc-

curs in the liquid phase might also happen in the solid phase. This section reviews

the theoretical and experimental work that has addressed the question of the pos-

sibility of a superfluid phase in solid 4He, although a comprehensive discussion is

beyond the scope of this thesis. The excellent reviews by Meisel [1] and Prokof’ev [2]

are again recommended to the interested reader.

2.4.1 The early years

The first fundamental work was carried out by Penrose and Onsager [25], who

generalized the mathematical description of BEC, making it applicable to a system

of interacting particles. A first-principles argument was presented, indicating that

superfluid 4He in equilibrium shows BEC. (Conversely, they also showed why one

would not expect BEC to occur in a solid.) Landau and Lifshitz [26] extended on this
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effort and with a generalized mathematical description of BEC in place, theorists

were free to consider the possibility of observing BEC in a solid.

As an interesting aside that receives scant attention, a second ‘type’ of superso-

lidity has been identified [27]. Using a modified procedure to derive hydrodynamics,

it has been argued that a certain class of crystal will be able to sustain a persis-

tent entropy flux rather than a persistent mass current and has a propagating mode

connected to temperature fluctuations.

2.4.1.1 Theory

Some of the earliest work came from Andréev and Lifshitz [28], whose theoretical

efforts led them to the conclusion that, at sufficiently low temperatures, localized

defects or impurities within a crystal will transform into excitations that move freely

through the lattice. Instead of the ordinary diffusion of defects, there arises a fluid

flow consisting of these excitations (“defectons” and “impuritons”). At absolute

zero, and in crystals with large zero-point energy (such as solid 4He), zero-point

defects may exist and the number of sites in an ideal crystal lattice may not coincide

with the number of atoms. This is not surprising since for finite values of Λ an atom

is not localized at a definite site, and therefore the requirement that the number of

sites be equal to the number of atoms is not compulsory. Such a crystal would be

neither a solid nor a liquid and within it two kinds of motion would be possible;

one with the properties of motion in an elastic solid, the second with the properties

of motion in a liquid. Most important, under certain conditions the liquid type of

crystal motion would possess the property of superfluidity. In other words, they

conclude that the supersolid state exists.

Chester [29] would also speculate on the topic, concluding that BEC can occur

in a state which exhibits crystalline ordering, in contrast to the claims of Penrose

and Onsager [25]. It is added that a quantum crystal can only have a Bose-Einstein

condensate if it has a finite fraction of vacancies. However, it is stated with certainty

that crystalline ordering would prevent the appearance of anything like normal su-

perfluid properties, in contrast to the claims of Andréev and Lifshitz [28], although

the point is conceded that the physical implications of the argument put fourth rely

on how accurately the states used actually represent real physical systems.

Following this proposal, Leggett [30] suggested (and Saslow later concurred [31])

that NCRI very probably occurs if the solid is Bose-Einstein condensed (although
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the associated superfluid fraction is shown to be very small, probably ≤ 10−4).

Anomalous macroscopic effects are then predicted and direct tests are proposed.

The first test advocated is to rotate the solid in the form of an annulus below its

transition temperature; then the apparent moment of inertia should be slightly less

than the classical value (and, more relevantly, temperature dependent). A second

test would be to rotate the solid above its presumed critical angular velocity and

then bring the container to rest; if it is assumed that the NCRI is associated with

the metastability of flow states as in other superfluid systems, a persistent residual

angular momentum should be expected.

Shortly thereafter, Guyer [32] describes the essential physical content of the

previous three works and scrutinizes them in light of the large body of data on

quantum crystals. Two possible mechanisms by which particles in solid 4He can

acquire the mobility necessary to permit the kinds of motions that would lead to

BEC and superfluid phenomena are distinguished. These mechanisms are a motion

of the single-particle density due to the presence of ground-state vacancies, and

motion of the single-particle density due to the cooperative tunnelling of pairs of

particles. Contemporary nuclear magnetic resonance data on solid 3He [33] and 3He-
4He [34] mixtures is then provided as strong evidence for there being no ground-state

vacancies in solid 4He. Thus, BEC due to the presence of ground-state vacancies is

ruled out. If BEC due to cooperative tunnelling occurs, the density of the superfluid

component is estimated to be on the order of 10−6 of the bulk density, and close to

the edge of observational range.

(Modern x-ray diffraction measurements [35] of thermal vacancies place an upper

limit of xvac ∼ 0.1% for single crystals of hcp 4He (grown at constant pressure)

and even more recent experiments [36] still do not give evidence for vacancies at

low temperature (but new measurements seem needed to put a stringent bound on

groundstate vacancies). Presumably, xvac would increase in disordered 4He solids

(grown at constant volume or quench-cooled), unfortunately no such information

exists for samples of this sort.)

2.4.1.2 Experiment

While the theoretical works are free to speculate on what exactly is going inside

of quantum solid 4He, it will be experiment that ultimately gives us the definitive

answer. With that, considerable effort has been undertaken by the experimental
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community to solve the mystery of solid 4He. This is no easy task, however, as

the number of variables to control for are many, and the specific effects for which

physicists are looking are largely unknown.

This section describes some of the major experimental searches for the supersolid

phase of the 20th century.

Of course, there are several systems which potentially might possess a supersolid

state under the proper conditions (e.g., BEC of vacancies in a pure 4He crystal;

BEC of interstitial or substitutional 4He impurities in a 3He crystal; a Cooper-

paired superfluid state of 3He impurities in solid 4He; or even a transition arising

from tunnelling and particle exchange in a pure 4He crystal). For reasons hinted

at above, however, there are a variety of reasons why nominally pure 4He seems to

be the system of choice (i.e., non-helium quantum crystals have smaller zero-point

oscillations and are therefore less likely candidates for observing a supersolid state).

Some of the initial attempts to observe a supersolid 4He phase involved the study

of plastic flow in crystals through which physical objects were moved. Examples of

these objects include: a magnetized sphere [37], a steel ball on a wire [38], a solid

plate [39], and a porous membrane [40]. Techniques more reminiscent of super-

fluid helium studies were also employed. In one, it was attempted to detect mass

flow through a weak link which was subjected to a chemical potential difference

(∆P ∼ 1 bar) between two mass reservoirs [41]. In another, a sensitive torsional

oscillator searched for a change of the moment of inertia of the system [42]. Yet

another searched for mass flow in a cylindric “U”-tube experiment [43]. None of

these investigations resulted in a positive identification of the supersolid state.

Thermodynamic measurements possess a strong historical success rate for the

discovery of new phases at low temperature, notably the discovery of superfluid
4He [44], superfluid 3He [45], and nuclear magnetic ordering in solid 3He [46]. Tak-

ing a hint from the historical record, the principal idea of the thermodynamic mea-

surements is to measure, for example, the entropy or pressure of the system as a

function of temperature. Experiments of this sort [47, 48] also did not result in a

positive identification of the supersolid state.

Finally, ultrasonic studies have been performed in solid 4He at higher purity, low

density, and low acoustic power [49]. Their results are rather complicated, but the

authors argue that their data is consistent with the presence of a zero-point vacancy

induced supersolid state. They also concede that their possible identification of the
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supersolid requires additional work to solidify the validity of their arguments and

interpretations.

With roughly a dozen experimental null results in the history books and theo-

retical uncertainty in the existence of the supersolid state, dedicated experimental

searches quickly became significantly fewer and further between. Things picked up,

though, in 2004.

2.4.2 The Kim and Chan renaissance

In 2004, Kim and Chan reported on a torsional oscillator technique to study solid
4He confined in the pores of Vycor glass as a function of temperature [10]. As

described above, a torsional oscillator is a mechanical resonator which is used as a

very sensitive micro-balance. As they say at Cornell, “if you’ve got it, oscillate it”.

With their high quality factors (Q is 2π times the ratio of the total energy stored

divided by the energy lost in a single cycle) at low temperatures (Q ∼ 106), torsional

oscillators have a low noise bandwidth and, consequently, a very high period and

amplitude stability (δP/P ∼10−9 and δθ/θ ∼10−4, respectively).

The basic experimental configuration, shown in Figure 2.4, is a torsion rod with

some sample cell attached to one end of it. Torsional oscillators typically differ from

one another primarily in the design of the sample cell, but the one used by Kim and

Chan to study solid helium in Vycor was cylindrical in shape (with the Vycor sample

sitting snugly within), shown in Figure 2.5. The oscillator was driven by a capacitive

transducer and its response was detected by another capacitive transducer.

Ideally (and to re-iterate some of what was covered earlier), torsional oscilla-

tors are modelled as simple harmonic oscillators, with a resonant period given by

P = 2π(I/κ)1/2. Here, I is the moment of inertia and κ is the torsional spring con-

stant of the torsional oscillator, with its amplitude given by θ = Qτ/κ, where τ is

the amplitude of the sinusoidal drive torque.

The central result of the Kim and Chan experiment is a drop in the period (∆P)

of their torsional oscillator that begins at 175 mK, shown in Figures 2.6 and 2.7.

Their system fails to undergo rotation as classically predicted; specifically, they

observe NCRI. Kim and Chan state that the most likely interpretation of the inertia

drop is an entry of solid 4He into a supersolid phase; namely, that there exists a

superfluid-like phase in the solid state. (Leggett’s proposal [30] to probe for NCRI

is very similar to the experiments performed by Kim and Chan, but with one clear
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Icylinder Iannulus

Figure 2.4: Schematic of a torsional oscillator. The cartoon on the left shows a
cylindrical cavity, on the right an annular cavity. Other internal geometries may be
used, giving each torsional oscillator its own unique moment of inertia I.

distinction: Kim and Chan oscillated, rather than rotated, the solid sample.)

Later that same year, Kim and Chan reported on the observation of NCRI in bulk

solid 4He confined to an annular channel in a sample cell under torsional motion [9].

As in their previous experiment, the effect shows up as a drop in the resonant

oscillation period as the sample cell is cooled, this time to below 230 mK. Clearly,

the effect is not connected to restricted geometries. They performed measurements

on 17 solid samples, allowing them to map out the boundary of this superfluid-like

solid or supersolid phase from the melting line up to 66 bar, as in Figure 2.8. With

that, they conclude that superfluid behavior is found in all three phases of matter.

And what a conclusion that is!

While they have since studied literally hundreds of samples, the principle results

from Kim and Chan may be summarized by a few general statements:

• The inferred fractional supersolid density is ρs/ρ ∼ 0.01.

• The transition temperature is Tc ∼ 200 mK, with a gradual onset.

• The inferred critical velocity is vc ∼ 10 µm/s.

• The effect is non-existent in the bcc phase of 3He, and is suppressed (in magni-

tude and to higher temperature) with increasing 3He impurity concentrations.

• The effect is non-existent in a blocked annulus, strongly suggesting that the

effect is not local.
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Figure 2.5: Torsional oscillator used with Vycor disk used by Kim and Chan [10].
The Vycor glass disk has a diameter of 15 mm and a thickness of 4 mm. The cylin-
drical drive and detection electrodes are aligned off-centre from, and are capacitively
coupled to, the central electrode attached to the torsion bob. The signal from the
detection electrode (proportional to the amplitude) is sent to the lock-in amplifier
through a current preamplifier. The lock-in provides a driving voltage, which con-
trols the amplitude of oscillation, to complete the phase-locked loop and keep the
oscillator in resonance.
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Figure 2.6: Torsional oscillator resonant period as a function of temperature of solid
4He in Vycor glass [10]. The resonant period for different oscillation amplitudes
(and hence different velocities of the rim of the Vycor disk, v rim) is shown. A drop
in the period (∆P), signifying the transition into the supersolid phase, is seen below
175 mK. Although the magnitude of ∆P depends strongly on the rim velocity,
no such dependence of the period is seen above the transition temperature. For
comparison, the empty (without helium) cell period, and the period of an atomically
thin liquid film adsorbed on the walls of the internal pore space of Vycor, are also
shown. The film measurement, showing a superfluid transition at 250 mK, is carried
out with the same torsion cell. Data has been shifted for clarity.
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Figure 2.7: Torsional oscillator resonant periods as a function of temperature for a
variety of solid helium samples [10]. The period scale shown corresponds to that
for solid hcp 4He and the period data for other samples are shifted for clarity and
easy comparisons. All measurements were made with the rim velocity of the Vycor
disk near 30 µ/s. The plots show that the period drop effect is not related to the
stiffening of bulk solid helium in the torsion rod. The effect is not seen in pure
bcc 3He, and is not seen in solid mixtures with 3He concentration exceeding 0.1%,
nor is it seen in empty or dummy cells. A period drop is found for mixtures with
10, 30 and 100 ppm of 3He. As in pure hcp 4He, the size of the drop in these
samples with low 3He concentrations is also rim-velocity dependent. The dotted
lines extrapolated smoothly from high temperature are the expected background
period in the absence of period drops. The vertical arrows mark the transition
temperatures of these samples.
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Figure 2.8: Newly proposed phase diagram of liquid and solid 4He [9]. A supersolid
phase is added, based on observations of NCRI in torsional oscillator experiments.
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2.4.3 The later years

With the observation of NCRI in solid 4He by Kim and Chan in 2004, the pace of

theory and experiment quickened. Experiments were devised and executed at an

accelerated pace, and theory papers were published at a near furious rate.

2.4.3.1 Other torsional oscillator measurements

One of the most important types of experiment remained the torsional oscillator,

largely because a torsional experiment two decades earlier had yielded a null re-

sult [42]. It was important to first duplicate the Kim and Chan results.

Kim and Chan performed the original torsional oscillator experiments which

motivates the work presented in this thesis. As a summary, NCRI was observed

in solid 4He in their torsional oscillator experiment. The phenomenon was first re-

ported for solid 4He embedded in a porous matrix [10], and was extended to the

system embedded in a matrix of porous gold [50] (with a characteristic pore size

two orders of magnitude greater than in Vycor), and also in the bulk crystal [9].

The bulk experiments were extended to high pressures [51] and to low 3He impurity

concentrations [52]. In all cases, the observed NCRI at low temperature was identi-

fied as the onset of supersolidity in 4He. Upon discovering that the NCRI was not

a confinement effect, all subsequent torsional oscillator studies were performed on

bulk crystals.

The torsional oscillator findings by Kim and Chan are noteworthy not simply

because of their supersolid interpretation, but also because an essentially identical

experiment was performed 23 years earlier and obtained a null result [42]. Because

of this discrepancy, it was quickly agreed upon by the low temperature community

that the experiment needed to be triplicated. NCRI has since been observed in

commercially pure (0.3 ppm 3He) solid 4He by four other groups [53, 54, 55, 56].

Qualitatively, all five groups observe reproducible phenomena; specifically, NCRI

with a temperature dependence characterized by saturation in the low temperature

limit and a gradual decay to zero at higher temperature. Quantitatively, however,

these experiments do not quite agree on the onset temperature of NCRI (which

varies between ∼ 200 mK and ∼ 400 mK), nor do they agree on the magnitude of

the NCRI (which varies between ∼ 0.1% and ∼ 1.5%). It should be noted that these

variations exist not only between groups, but also from sample to sample within

the same cell. Of all groups that have studied NCRI in solid 4He with torsional
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oscillators, the group led by Moses Chan has studied hundreds more than anyone

else (quite literally).

While there are many details within the torsional oscillator results that could be

discussed, only those most pertinent to this thesis will be touched upon:

• The normalized NCRI fraction is unity when the speed of the torsional oscil-

lator annulus is ≤ 10 µm/s, and decreases monotonically to zero as the speed

of the torsional oscillator annulus approaches ∼ 500 µm/s [51].

• The NCRI fraction at low and high temperature of the identical cylindrical

solid 4He was studied at 496 and 1173 Hz by a double resonance torsional oscil-

lator and was found to be frequency independent [56]. However, the crossover

(transition) is frequency dependent; this is the most direct evidence in torsional

oscillator experiments that the transition shifts/sharpens at low frequency.

• The effect is limited by a critical velocity vc (rather than a critical stress σc)

in the torsional oscillator probes [56].

• The magnitude of the NCRI displays relative insensitivity to pressure [51].

• There exists “zero-field cooled” versus “field cooled” hysteresis. If the sample

is cooled while under high amplitude drive, then the observed NCRI will be

relatively small. If the sample is cooled while under low amplitude drive, then

the observed NCRI will be relatively large; however, subsequently increasing

the amplitude of the drive will not decrease the magnitude of the NCRI.

• The magnitude of the NCRI fraction and the onset temperature are highly

sensitive to the 3He isotopic impurity concentration (at the ppb level) in the

solid 4He sample [10, 52]. Specifically, the onset of NCRI is broadened and

shifts monotonically to higher temperature with increasing 3He concentration.

• There exists a dissipation peak in the torsional oscillators in the vicinity of

where the NCRI fraction is changing most rapidly [9, 51, 54, 57].

• Annealing and disorder in the solid sample also appear to play a significant

role in the NCRI fraction. In one study, annealing was found to essentially

eliminate the NCRI signal [54], reducing it from ∼ 0.5% to <0.05%. In another

study, annealing was found to increase the NCRI signal [55] by ∼ 10%. It has
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also been reported that quench cooling the solid sample, as opposed to slow

freezing, and which results in a highly disordered solid sample, gives a greatly

increased NCRI fraction [57], upwards of 20%.

• The effect persists even in single crystals grown at constant pressure [58].

• A wide range of NCRI (from order 0.1% to order 10% (and almost order

100%) has been observed in different cells (e.g., cylinders versus annuli, of

various surface area to volume ratios, in narrow gaps, and even within the

same cell!)

2.4.3.2 Supersolid/solid 4He theory

This unexpected experimental result quickly caught the attention of theorists: solid
4He was, once again, worth devoting some effort to. The overview presented here is

far from comprehensive.

A natural starting point for theoretical endeavours would be to determine the

groundstate of solid 4He, to see if it explicitly displays superfluidity.

2.4.3.2.1 Questions on the groundstate In the earliest of theoretical treat-

ments, the variational method (an analytical approach) seemed to be the only tech-

nique capable of providing, from first principles, information on the groundstate

properties of liquid 4He. Understanding that the physical origin of the superfluid

properties of bulk 4He lay in the phenomena of Bose-Einstein conednsation (BEC),

it was soon after confirmed [59] that the trial pair-product wave functions (WFs)

used in these variational calculations for 4He - the Jastrow wave function (JWF) -

also possessed BEC (i.e., possessed off-diagonal long-range order (ODLRO) [60] -

ODLRO tells us whether atoms at one end of the solid are in phase with atoms at

the other end of the solid, and would supply a mechanism for NCRI).

On the heels of this theorem, it was conjectured [29] that, for a wide class of

potentials, the JWF will exhibit crystalline ordering at sufficiently high densities

(and fluid ordering at low densities). The combination of the above theorem with

this conjecture is that BEC can occur in a state which exhibits crystalline ordering

(i.e., that both diagonal and off-diagonal long-range order are possible in a single

system). It is also found, however, that a crystal will have BEC only if there exists

groundstate vacancies - an argument which has since been elaborated upon [61].
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It has recently been shown, however, that no JWF can describe solid 4He near

melting, nor can it describe a quantum crystal without an intrinsic population of

point defects [62]. A much better description of solid 4He is obtained by multiplying

the JWF by a localization term, centered around the lattice sites and summed

over a permutation of atoms to lattice sites. This new WF, the Jastrow-Nosanow

form [63], is very good description of the ground states, however the solid order

is put in by hand, rather than appearing spontaneously. This variational WF has

been considered in solid 4He calculations, and it has been shown that there is no

off-diagonal long-range order in these trial WFs, for both an infinite sample and

that confined in a cylindrical annulus [62].

An alternate trial WF may be obtained by multiplying by a localization func-

tion which is independent of the lattice site, but still having lattice symmetry [64].

With this function, vacancies will be locally attracted to interstitials but they are

not bound as pairs; as a result the WF has both BEC and NCRI. (However, cal-

culations [65] and experiments [35] on solid 4He suggest that there are no unbound

vacancies or interstitials at low temperatures.)

The dilemma, then, is that a number of satisfactory trial functions exists, all of

them capable of good descriptions of solid 4He, but some give BEC and some do not.

A more direct, reliable method than such straight-forward analytical approaches is

required to determine whether the ground state of solid 4He will possess BEC.

Numerical methods might be the cure for what ails us.

Galli et al. [66] remind us that the variational theory is very useful to describe

strongly interacting systems, such as liquid 4He, but that it is always open to de-

bate how much the results depend on the ansatz on the WF, especially for quantities

other than the energy. They use an advanced variational theory (shadow wave func-

tion variational technique), the accuracy of which has been tested with a projector

method on the exact groundstate. This projector method is an exact computation

based on the projection algorithm SPIGS (shadow path integrated ground state), a

path integrated ground state method which uses a SWF as the starting point. They

show that solid 4He at T = 0 K has BEC at melting density and above, at least

up to 54 bar. The condensate fraction is quite small (5 x 10−6 at the melting den-

sity). The key process giving rise to off-diagonal long-range order is the formation

of vacancy-interstitial pairs. Such defects have a finite probability to be present in

the ground state of the system; they are not permanent excitation but simply rare
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fluctuations of the perfect crystal induced by the large zero-point motion. In other

words, the number of atoms is equal to the number of lattice sites (i.e., the crystal

is commensurate) and, at the same time, atoms are delocalized.

The nature of the ground state, whether commensurate or incommensurate, is

a very important point, and a phenomenological theory [67] has shown that the

low temperature properties of crystalline 4He would be strongly modified should

the ground state be incommensurate. There is no fundamental reason why crys-

tals should necessarily be commensurate (i.e., that the number of atoms equals the

number of lattice sites). With such a high degree of delocalization in its atoms, it

is possible that the groundstate of solid 4He be incommensurate. This issue is not

completely resolved, and is central to some theoretical efforts exploring the possi-

bility of a superfluid state within the solid phase (although, there now exists strong

theoretical [2] and experimental [1] evidence that 4He is indeed a commensurate

crystal).

Novel PIMC simulations have also been performed by Boninsegni and collab-

orators, in which a new worm algorithm [68] is employed, enabling the accurate

computation of thermodynamic properties of quantum many-body systems in con-

tinuous space, at finite temperature. The computational scheme allows for efficient

calculations of the superfluid fraction and off-diagonal correlations in space-time, for

system sizes which are orders of magnitude larger than those accessible to conven-

tional PIMC. Their consistent observation is of a commensurate hcp crystal, found

to be insulating [69].

In the language of path integrals, the question of whether supersolidity is possible

in a commensurate solid was addressed, as well as what the necessary conditions

are for this to happen [61]. It is proven that the necessary condition for a solid to

be also a superfluid is to have zero-point vacancies, or interstitial atoms, or both,

as an integral part of the groundstate. However, they also find that the supersolid

groundstate in commensurate solids have a zero probability to be found in nature,

because of the asymmetry that exists between the activation energies of vacancies

(15 K at the melting curve [65] and 30 K at 50 bars [70]) and interstitials (48 K [71]).

(Recall that for a solid to be commensurate, the number of vacancies must equal the

number of interstitials.) There is an overwhelming bulk of experimental work which

indicates that vacancies and interstitials are activated. They also conclude that

such crystals made of a single species of particles obeying Bose statistics (e.g., 4He
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atoms) are always insulating (more precisely, the commensurate supersolid phase

has zero probability of being observed).

Simulation computations of energy cannot (to date) be used to decide if the

groundstate of solid 4He has the number of lattice sites equal to the number of atoms

(commensurate state) or if it is different (incommensurate state). The best varia-

tional WF, a shadow wave function (SWF), gives an incommensurate state, but the

equilibrium concentration of vacancies remains to be determined. By means of an

exact groundstate projector method [72], researchers have computed the one-body

density matrix in solid 4He for the incommensurate state in which incommensura-

bility occurs spontaneously.

Returning to attempts to provide an unbiased answer (e.g., one that does not

rely on a starting WF), Clark and Ceperley [62] use path integral Monte Carlo

(PIMC) simulations, a numerical method that calculates integrals over the many

body density matrix. It is ideally suited for this calculation since it can be done

at finite temperature (under conditions where an experimental signature of NCRI

has been observed), and is, in principle, exact, and has been validated on many

properties of liquid and solid 4He [73]. Most importantly, it is independent of a

trial WF bias or any assumption of lattice. Only the He-He interaction enters:

a semi-empirical form [74] is known to be accurate; in any case, results suggest

that supersolid behaviour is a robust phenomena insensitive to fine details of the

interaction. One drawback of the PIMC technique is that finite size effects are

common since it is difficult to simulate large systems (eg., greater than several

hundred atoms). The results of these PIMC calculations are that off-diagonal long-

range order (equivalent to BEC) does not exist in a defect-free hcp 4He crystal at

the melting density. Recall that PIMC does not make a variational ansatz, and

has the sole assumption that the results at low temperature smoothly approach the

ground state values. They only performed PIMC calculations at the melting density

but do not expect different behavior at higher density, since difficulty of exchange

grows rapidly with density. Furthermore, they conclude that the solid 4He WF has

correlations which suppress both vacancies and BEC. This result, together with the

finding of zero superfluid density in a perfect 4He crystal (the superfluid fraction ρs

at T = 0.2 K is zero [71] and there is no off-diagonal long range order (off-diagonal

long-range order) at T = 0.2 and 0.5 K [75, 62]), suggests that the mechanism for

the observations of Kim and Chan involves more than equilibrium properties of a
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commensurate 4He crystal.

2.4.3.2.2 Possible supersolid mechanisms Some effort has gone into explor-

ing possible supersolid mechanisms involving lattice vacancies. Simulation compu-

tation, for example, can investigate whether there is a BEC induced by vacancies.

Based on variational Monte Carlo methods with SWFs [76], it was found that a

finite concentration of vacancies does induce BEC of the atoms in solid 4He at a

density close to the absolute zero melting where vacancies are delocalized. How-

ever, no BEC was present in the perfect crystal and in the defected solid at higher

densities.

Also within the framework of variational theory [72], vacancy induced BEC

has been confirmed, with a predicted onset temperature of Tc = 200 mK for

xvac = 0.23%. However, this does not explain the large range of NCRI fractions

associated with this single Tc. Moreover, xvac = 0.23% is beyond empirically im-

posed bounds.

Using quantum Monte Carlo methods [69], the subject of vacancy-induced su-

perflow has also been investigated. Results from this numerical technique show that

vacancies are unstable in a 4He crystal. Simulations were performed at 200 mK

with 800 and 2016 atoms in the crystal under different pressures up to 65 bar, with

vacancies created by explicitly removing a number of atoms. Various initial con-

figurations with randomly located, remote, and clustered vacancy positions were

considered, with vacancy concentrations ranging from 0.5% up to 6%. Specifically,

it was found that the vacancies form clusters and the system phase separates into

a vacancy-rich phase and a perfect, insulating crystal. (The annealing results of

Rittner and Reppy [54] are in good agreement with the conclusion that the ground-

state of solid 4He is a commensurate crystal.) Other recent efforts [77] on the

vacancy-vacancy interaction in solid hcp 4He, due to the mutual strain field of the

two vacancies, also conclude that the interaction between them is attractive (within

the basal plane). This provides strong evidence that a 4He crystal does not conform

to any standard supersolid scenario.

With theoretical arguments in place against the existence of commensurate su-

persolids [61] and the experimental fact of commensurability of the equilibrium solid
4He at T = 0 supported by extensive experimental work over the past several decades

(for review, see, e.g., [1]), as well as by the most recent experimental [78, 79] and
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numeric studies [71], consensus is emerging that the earlier microscopic depictions of

supersolidity involving vacancies are not practical to explain the increasing bulk of

experimental data; the commensurability of solid 4He seems to rule out NCRI based

on BEC of vacancies [28, 29]. It becomes reasonable, then, to consider whether the

NCRI might be due to quantum behaviour of some higher-dimensional defect.

The worm algorithm PIMC method has been used to study interfaces in quantum

solids and, less generally, grain boundaries in solids 4He. In the former, and on the

basis of the most simple model of quantum crystals - the checkerboard lattice solid

- it is shown [80] that the superfluidity of interfaces between solid domains can

exist over a wide range of parameters. In the latter, it is shown [81] that grain

boundaries in 4He crystals are generically superfluid at low temperature, with a

transition temperature of the order of about 0.5 K at the melting pressure. (Non-

superfluid grain boundaries are also found but only for special orientations of the

grains.) Furthermore, proximity to the melting curve is not a necessary condition for

superfluid grain boundaries, a grain boundary in direct contact with the superfluid

liquid at the melting curve is mechanically stable, and the observation of grain

boundary superfluidity [82] is not just a crack filled with superfluid.

While it is noted that the onset temperatures do not agree, it is even harder

to reconcile the amount of grain boundary surface area required to account for

a 1% NCRI effect with the experimentally quantified value. If superfluid grain

boundaries are the answer, then the average crystallite sizes in solid 4He are 2-3

orders of magnitude smaller in their characteristic dimension than experimentalists

would say. Grain boundaries aren’t the answer.

Again with the worm algorithm PIMC method, the cores of screw dislocations

have been studied [83], finding that the screw dislocation along the hexagonal axis

of an hcp 4He crystal features a superfluid (at T → 0) core.

The worm algorithm PIMC method has also been used to observe a metastable

disordered supersolid (a superglass phase of 4He) [75]. Specifically, the term glass is

taken to mean a spatially disordered (metastable) phase, indistinguishable from a

solid (by which is meant a state with broken translational symmetry, immediately

implying shear rigidity) on short enough time scales. The term superglass is the

term used for such a phase that also displays superfluidity. It is discovered that the

low temperature properties of the system crucially depend on the initial states. For

example, an ideal hcp crystal is a clear-cut insulator, while the disordered system
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freezes into a superglass (a metastable amorphous solid featuring off-diagonal long-

range order and superfluidity).

In any case, all of the above proposals suggest that the solid samples grown in

the laboratory contain these sorts of disordered regions (something experimentalists

already know). The existence of NCRI then depends on whether or not the defect-

rich, superfluid portions of the solid percolate throughout the sample.

2.4.3.2.3 Non-supersolid mechanisms An alternate explanation is that of

slippage of the solid [84], due to grain boundary pre-melting between the solid and

the dense adsorbed layers at the container wall (as opposed to between ordinary grain

boundaries). A range of film thickness is calculated, and a viscosity is determined

that accounts for the missing rotational inertia. However, mechanical effects are

neglected when the equation for the total excess interfacial free energy of the solid-

solid interface is written; as a result, their treatment relates to grain boundary pre-

melting along the melting curve, whereas the phenomena of NCRI happens deep

within the solid phase.

A dislocation-induced glass has also been proposed on more than one occasion.

Using a quantum lattice gas model to describe essential aspects of the motion of 4He

atoms and of 3He impurities in solid 4He, one of which suggests that 3He impurities

bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic

quantum disordered crystal into a metastable supersolid [85]. It is suggested that

defects and interstitials are produced during the solid 4He nucleation process where

the role of 3He impurities (in addition to the cooling rate) is known to be important

even at very small concentrations. It is also proposed that such defects can form a

glass phase during the 4He solid growth by rapid cooling.

Motivated by a recent entropy analysis of solid 4He [86], the possible role of a

dislocation-induced glass was again considered [87]. It was proposed that a glassy

state develops at low temperatures and is caused by a distribution of tunnelling sys-

tems in the crystal, produced by small scale dislocation loops. It was then argued

that the reported mass decoupling is consistent with an increase in the oscillator fre-

quency, as expected for a glasslike transition. This concept was subsequently more

fully developed [88], noting that the decrease in the rotation period is also consistent

with a solidification of a small liquid-like component into a low-temperature glass.

Such a solidification may occur by a low-temperature quench of topological defects
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(e.g., grain boundaries or dislocations), as explained above. The low-temperature

glass can account for not only a monotonic decrease in the rotation period as the

temperature is lowered but also explains the peak in the dissipation occurring near

the transition point. Unlike the non-classical rotational inertia scenario, which de-

pends on the supersolid fraction, the dependence of the rotational period on external

parameters, e.g., the oscillator velocity, provides an alternate interpretation of the

oscillator experiments.

Another recent model for the NCRI is one pertaining to dislocation vibra-

tions [89]. It is argued that a novel vibrational mode of edge dislocation in hcp
4He, excited by the shear stress in the torsional oscillator, can be the origin of the

NCRI; namely, that they can cause period shift and dissipation of torsional oscilla-

tion. Dislocation theory predicts that the dynamics of the dislocations in bcc crystals

differs from that of the dislocations in hcp crystals (the only structure probed by

torsional oscillators so far). Ultrasonic experiments on hcp 4He indicate that basal

dislocations are mobile so that they can cause sound attenuation and large velocity

change, whereas similar experiments on bcc 3He indicate that dislocations are not

mobile at low stress amplitude. In this respect, the absence of NCRI in 3He crys-

tals [10] may not be a result of the difference of quantum statistics between the two

isotopes. The author of Reference [89] rightly states that the decisive experiment

would be a torsional oscillator measurement on hcp 3He.

2.4.3.2.4 Others Several semi-phenomenological attempts have also been put

forward. These begin with the assumption that the supersolid phase exists, around

which a theory is then constructed. The microscopic origin of the supersolid state

seems to be almost anyone’s guess.

In one theory [90], rotons condense, expand, and fuse into an ordered hexagonal

lattice of vortex and anti-vortex filaments, described by a single macroscopic WF

and presented as a supersolid. In another [91], it is suggested that the atomistic

explanation involves a coherent translation of delocalized point defects which carry

the “missing” angular momentum in the torsional oscillator experiments. In yet

another [92], Leggett’s idea [30] of “phase flow” is strongly supported. In another,

zero-point vacancies condense and lead to the formation of a supersolid state [93].

This theory predicts that x-ray scattering intensity from the supersolid ought to

have an additional modulation over that of the normal solid, and that the modula-
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tion amplitude is proportional to the NCRI in the torsional oscillator experiments.

In others still [94, 95], no discussion of the microscopic origin of the supersolid be-

haviour is given, as the result is model-independent or robust and insensitive to

the details of a microscopic model for the supersolidity. In another [96], thermally

excited, fluctuating, quantized vortex tangles are the mechanism.

The microscopic mechanism will really truly only be confirmed through experi-

ment.

2.4.3.3 Other experiments

There is a need for other types of experiments to confirm (or not) the supersolid

interpretation of the torsional oscillator period shifts.

2.4.3.3.1 Thermodynamic measurements Initial measurements of the spe-

cific heat of solid 4He were performed [86] down to 80 mK, with no sharp feature

at the onset temperature of the NCRI observable to within 1%. These samples

were grown with the blocked capillary technique, were not annealed, and contained

0.3 ppm, 30 ppm, and 760 ppm 3He. A re-analysis [87] of this very same data, how-

ever, does indicate a departure from the conventional T3 specific heat behaviour

expected at low temperatures, and that the measured entropy excess is several or-

ders of magnitude smaller than the entropy expected from the BEC or λ transition of

a 1% superfluid fraction. This re-analysis also claims that the absence of the entropy

released at the claimed supersolid transition is puzzling, and that it is consistent

with their picture of a dislocation induced glassy state in 4He crystals.

These measurements were then followed by an extremely careful heat capacity

study [97] on solid 4He samples containing 1 ppb, 0.3 ppm, and 10 ppm 3He. These

samples were also grown by the blocked capillary technique but were treated with

substantial annealing. A broad peak in the specific heat was observed, centered near

75 mK. The authors understand this peak to be the thermodynamic signature of

the supersolid phase.

The pressure of the solid phase and of solid-liquid mixtures has also been re-

examined recently. High-precision pressure measurements in hcp solid 4He con-

taining 0.3 ppm of 3He, grown by the blocked-capillary technique, have been made

in temperatures range from 50 to 500 mK [98]. The temperature dependence of

pressure indicates that aside from the usual T4 phonon contribution, there is an
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additional contribution T2 which becomes dominant below 300 mK, and where an

abnormal behavior attributed to supersolidity has been observed. The authors take

the data to suggest the appearance of a glassy phase (that might be responsible for

the anomalous behaviors observed previously) which can be eliminated by substan-

tial annealing. Although, the wider temperature range and greater accuracy of the

Lin [97] measurements (who used an un-doped Si cell for its small heat capacity and

high thermal conductivity at low temperature) seems to rule out the existence of

such a phase.

Others have measured the melting curve of 4He (≤ 0.1 ppm 3He) in the temper-

ature range from 10 to 400 mK with the accuracy of about 0.5 µbar [99]. Crystals

of different quality (annealed and un-annealed) showed the expected T4 dependence

(due to phonons) in the range from 80 to 400 mK without any sign of the supersolid

transition. Below 80 mK, they observed a small deviation from T4 dependence, but

this was later found [100] to be an anomaly in the elastic modulus of Be-Cu, from

which their pressure gauge was made. Thus, the melting pressure of 4He follows

the T4 law in the whole temperature range from 10 mK to 400 mK without any

attribute of a supersolid transition.

2.4.3.3.2 Neutron scattering Neutron scattering measurements of the atomic

momentum distribution n(k) have been performed on solid 4He at temperatures

between 80 and 500 mK [101], the aim being to determine whether there is BEC

below the critical temperature, Tc = 200 mK, where a superfluid density has been

observed. Assuming BEC appears as a macroscopic occupation of the k = 0 state

below Tc, they find that there is a condensate fraction of n0 = (-0.10 ± 1.20)% at

T = 80 mK, and n0 = (0.08 ± 0.78)% at T = 120 mK, consistent with zero. The

shape of n(k) also does not change on crossing Tc within measurement precision.

The single atom kinetic energy of solid hcp 4He has also been measured by

neutron scattering [102], but no change was observed from 0.4 K down to 70 mK

(within statistical error of ∼2%). Furthermore, values of the single atom kinetic

energy were unaffected between single crystal and polycrystalline samples, and by

the addition of 3He impurities (from 0.3 ppm to 10 ppm). Additionally, the lattice

constant was also found to be independent of temperature to within 0.05%. These

results suggest that if the supersolid transition in 4He exists, it has a different

microscopic origin to the superfluid transition in the liquid.
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Other recent neutron diffraction experiments [103] have looked for traces of a

supersolid transition via the Debye-Waller factor. The principal result here is that

the mean-square atomic displacement in hcp solid 4He does not change between

1 K to 140 mK. Specifically, there is no indication that the supersolid transition,

if it exists, affects the crystalline lattice or zero-point fluctuations. Depending on

the model used to describe supersolidity, this quantity is liable to change in the

supersolid state.

2.4.3.3.3 First-sound It is expected that ultrasound should be sensitive to

mass decoupling caused by superfluid-like behaviour, and if a superfluid component

exists, the sound velocity of a porous material filled with solid 4He could increase.

Such ultrasonic measurements have been made for a porous Vycor glass filled with

solid 4He [104], in which they have adopted a continuous wave resonance technique

that realizes an oscillating velocity of less than 1 x 10−7 m/s (since the reported

critical velocity from torsional oscillator measurements is very low). The resolution

of their sound velocity is 10−5 for small oscillating velocities and is enough to detect

the expected mass decoupling, although no signature of supersolid was observed.

An investigation of the response of solid 4He to low-frequency, low-level me-

chanical excitation [105] has revealed several anomalous low frequency, non-linear

resonances with highly sample-dependent onset temperatures (all below ∼ 0.8 K).

Additionally, these features are absent in 3He. However, based on conversations

with the authors, it is uncertain whether these measurements are actually in the

solid phase or at coexistence.

2.4.3.3.4 Second-sound (heat pulse propagation) Heat pulse propagation

has also been studied in solid 4He between 40 and 500 mK [106]. According to

theoretical studies [27, 107, 28] of the hydrodynamics of a supersolid state, a fourth

sound-like mode emerges and the velocities of elastic propagating modes becomes

modified in the supersolid state. Crossover behaviour from second sound in normal

solid above 500 mK to ballistic propagation below 200 mK is observed. Detailed

study is made to search for possible modification of this propagation behaviour by

the appearance of supersolidity. It is found that the ballistic phonon propagation

velocity remains constant, within 0.3%, below 100 mK. The temporal evolution

of the detected pulse shape also does not reveal an anomaly below 200 mK. As
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possible reasons for a null result, the authors suggest that their bolometer might

have insufficient sensitivity, that the critical velocity is exceeded during heat pulse

drive, or that heat pulses simply do not couple well to fourth sound.

2.4.3.3.5 Flow In one experiment, a superflow of mass was observed through

a solid 4He sample at solid-liquid coexistence [82]. This superfluid flow was along

grain boundaries between solid faces, however, and not through the lattice of the

crystal. Of the thirteen samples studies, three showed this behaviour; two of these

samples were at 50 mK, but the third was at 1.13 K, suggesting that the phenomena

is likely not connected to NCRI in the solid.

2.4.3.3.6 Persistent currents Measuring persistent currents in a solid 4He

sample is the smoking-gun experiment. It is also, very likely, the most difficult

to perform. As of the writing of this thesis, two such experiments are under de-

velopment, but no results have yet been published [108, 109]. A measurement of

persistent currents in a solid 4He sample would undoubtedly end the supersolid

debate.

2.5 Current state of the field

Although much work has already been done in an attempt to unravel the mystery

associated with the torsional oscillator measurements, the puzzle is far from com-

plete. And, so, this is where we come in. In order to get to the bottom of things,

there are fundamental questions that still need to be asked. Those addressed in this

thesis may be divided into three categories.

First, there are questions relating to the solid 4He confined in Vycor. Could the

torsional oscillator NCRI be due to incomplete freezing or a mass re-arrangement

within the system (both of which could mimic superfluid-like behaviour)? Does

the solid 4He in Vycor flow when a pressure difference is applied (as it would with

confined superfluid 4He)?

Second, there are questions relating to bulk solid 4He. Does bulk solid 4He flow

when a pressure difference is applied (similarly, as it would with bulk superfluid
4He)? We concede that this question has been asked before, but felt that it was

imperative to answer it with a higher degree of sensitivity than previous measure-

ments (as in Reference [41]) and off of liquid-solid coexistence (as in Reference [43]).
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Furthermore, we were interested in probing the effects of extremely small pressure

gradients, in both the ac and dc sense.

Third, there are questions about what the elastic properties of solid 4He are doing

at low temperature. Any mechanical measurement, such as in a torsional oscillator

or an acoustic probe, involves mass/density/inertia effects and/or the elastic moduli.

Is the frequency change in torsional oscillator entirely due to ρs/ρ, as assumed? Does

ρs decouple from the lattice (i.e., from ρ) in acoustic/2nd/4th sound? There is great

need to directly measure , for example, the shear modulus of solid 4He in the same

temperature range, amplitude range, frequency range, 3He impurity concentration

range, etc., of the torsional oscillator experiments.
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Chapter 3

Experimental Methods

This chapter contains the relevant information on all of the equipment and proce-

dures used that are common to the set of experiments described in the following

chapters of this thesis.

3.1 Gas handling system

To admit clean gas to the experimental cells in a controlled manner and to the

desired pressure, a gas handling system was constructed (Figure 3.1). Its features

are described below.

Incoming gas from the cylinder to the cell may be run through a standard LN2

cold trap (27.1 cm3) filled with a molecular sieve (Union Carbide; Type 13X). The

molecular sieve is a synthetic, crystalline, activated alumino-silicate having a pre-

cisely controlled pore size of about 10 Å) and is used to remove condensable gases

before they reach the coldest parts of the fridge, blocking fill lines and wreaking

general havoc.

The gas handling system is also equipped with a room temperature pressure

gauge (Setra Model 205-2, 0-5000 psig). For pressures less than about 7 bar (e.g.,

measurements on liquid helium at saturated vapour pressure), gas may be admit-

ted to the cell in a controlled manner via a flow controller (MKS Instruments;

PR 4000), at rates as low as 0.2 sccm. This flow controller is on temporary loan

from Dr. Mark Freeman, as the one we initially planned on using (Sierra Instruments,

Inc.; Model 810C Mass-Trak Mass Flow Controller) gave us some unexpected prob-

lems. The model 810C is made with nylon components and is a few hundred dollars

less expensive than its 810S stainless steel counterpart. What you gain in monetary

savings, you apparently sacrifice in the outgassing from the nylon components of
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whatever chemicals were used by the manufacturer to clean the controller before

shipping.

Adjustable safety relief valves (R3A Relief Valves; Swagelok) were also installed

to protect the important parts of the system. The system also includes a 66.9 cm3

ballast volume, machined to accommodate pressures up to 200 bar.

3.2 Dilution refrigeration

Cooling power was provided to the cell by way of dilution refrigeration. The concept

of the dilution refrigerator is about 55 years old, and a detailed explanation of its

operation and physical basis may be found elsewhere (e.g., [11]). Here, I will simply

introduce the subject of dilution refrigeration, on account of its importance in all

aspects of this work.

Cooling from room temperature down to 4.2 K is easily achieved by keeping the

cryostat immersed in a bath of liquid helium, surrounded by an outer bath of liquid

nitrogen. Further cooling to about 1 K is achieved by pumping on a container (the

“1 K pot”) of liquid helium. As the helium refrigerant evaporates, it absorbs energy

from its surroundings, cooling the cryostat. Pumping on the 1 K pot removes the

gaseous helium, thereby allowing the liquid-gas phase transition to continue.

Cooling far below 1 K is not possible using conventional refrigeration techniques;

however, through dilution refrigeration one can cool as low as 2 mK in continuous

operation.

The underlying principle behind dilution refrigeration is that at sufficiently low

temperatures (about 0.8 K), a mixture of 3He and 4He will spontaneously phase

separate, as shown in Figure 3.2. The lighter, 3He-rich fraction (actually, pure 3He

at absolute zero) floats on top of the heavier, 4He-rich fraction (typically containing

roughly 94 % 4He and 6 % 3He).

All helium atoms are attracted to one another by van der Waals forces; how-

ever, as a 3He atom is much lighter than its 4He counterpart, it has a much more

rumbustious zero point motion. As a result, 3He atoms keep further apart from

each other than 4He atoms do; in fact, the molar volume of liquid 3He is about

26% greater than that of liquid 4He. As the atoms in the 4He-rich fraction can

pack together more closely, the forces between the atoms are greater. Accordingly,

all helium atoms prefer to be surrounded by 4He atoms. Conveniently, this means

that the heavier fraction will attract 3He atoms. These two fractions are generally

45



from gas cylinder #1 from gas cylinder #2

to pumpout

to pumpout

to pumpout

L
N

2
 t

ra
p

filter

         66.9 cc

ballast volume

flow meter

pressure

  gauge

relief

valve

relief

valve

relief

valve

relief

valve

to cell

    #1

to cell

    #2

to cell

    #3

to atmosphere

to atmosphere

to atmosphere

to atmosphere

bypass

bypass

Figure 3.1: Schematic diagram of the gas handling system used in all experiments.
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Figure 3.2: The phase diagram for a mixture of 3He-4He as a function of tempera-
ture [11].

referred to by their relative proportions of 3He atoms; specifically, the lighter, pure
3He fraction is known as the concentrated phase, while the heavier, 4He-rich mixture

is known as the dilute phase.

Now, if a 3He atom can be persuaded to move from a relatively weakly bound

state in the concentrated phase (surrounded only by other 3He atoms) across the

phase boundary to a more strongly bound state in the dilute phase (with few other
3He atoms), then it must absorb heat from its surroundings in the process (explicitly,

absorption of the latent heat of mixing). It is this very transport of 3He atoms

across the concentrated-dilute phase boundary that cools the dilution refrigerator

and provides accessibility to the millikelvin temperature range. This cooling process

dilutes the 4He-rich fraction, which is how the term dilution refrigeration gets its

name.

In order to take advantage of the latent heat of mixing of the two helium isotopes

and achieve these low temperatures for extended periods of time, it is necessary to
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continuously remove 3He atoms from dilute phase. Figure 3.3 demonstrates this

concept by showing the main components of a working dilution refrigerator and a

flow diagram for its liquids.

Figure 3.3: Schematic of a 3He-4He dilution refrigerator, with its main components
and a flow diagram for its liquids [11].

The 3He begins its tour at the exit of a room temperature pump by moving into

the refrigerator and through its first stage of pre-cooling, a bath of liquid 4He at

4.2 K. From there, the 3He is condensed as it moves through a second liquid 4He

bath, kept at about 1 K by evaporation of 4He (labelled “From 1.5 K condenser” in

Figure 3.3. Appropriate flow impedances are put in place here to establish sufficient

pressure for the incoming 3He to actually condense (and to prevent re-evaporation
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further down the line) at these temperatures. The now liquid 3He will flow through

heat exchangers (one of which is in thermal contact with the still, described below,

at 0.7 K) and into the upper, concentrated phase in the mixing chamber. Recall

from Figure 3.2 that the fluid is in a two-phase region at these temperatures. A

wider tube leaves the lower, dilute phase of the mixing chamber and passes through

the heat exchangers to pre-cool the incoming 3He. It flows into the dilute liquid

phase in the still, where the liquid 3He concentration is typically less than 1%,

while the vapour above this dilute liquid phase has a 3He concentration of about

90%. This is due to the high vapour pressure of 3He (as compared to 4He) at these

temperatures (as shown in Figure 3.4). The 3He concentration gradient between

the mixing chamber and the still results in an osmotic pressure that drives the fluid

along the line.

Figure 3.4: The vapour pressures of 3He and 4He as a function of temperature [11].

By pumping on the still and re-supplying this vapour to the condensation line

continuously with 3He, we achieve a closed circuit! 3He is forced down the conden-
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sation line, then, again, after liquefaction and pre-cooling, it enters the concentrated

phase in the mixing chamber. Here it will cross the phase boundary (because we

are preferentially removing 3He atoms at the phase liquid-vapour phase boundary in

the still), giving rise to cooling (the latent heat of mixing). It will eventually leave

the mixing chamber and be driven up to the still via osmotic pressures, where it will

be forced to evaporate. As mentioned before, the circulation of 3He is maintained

by a pumping system at room temperature.

3.3 Pressure measurements

In the study of solid (or liquid) helium, a knowledge of the pressure on the sample is

often desirable. Using the known relationship between the molar volume or density

and pressure, a measurement of pressure provides a rather convenient means for

determining the density of a sample. Furthermore, the pressure can provide key

fundamental information. Its usefulness in studying first-order transitions, such as

the melting curve or crystallographic phase transitions, is obvious. As the parti-

tion function Z contains all the thermodynamic information, and recalling that the

pressure is related to Z by

p = kT (∂lnZ/∂V )T , (3.1)

a study of the pressure versus temperature of a system at constant volume can

provide an abundance of knowledge.

When studying liquids, the pressure of the system can be measured readily by

some room temperature gauge in the external sample line. This is not possible in

solids, however, as the solid plug in the sample line fill results in a pressure inhomo-

geneity between the sample cell at low temperature and the rest of the experimental

system. In this case (and for constant volume measurements in the liquid) the

pressure must be measured in situ. To this end, the Straty-Adams [110] capacitive

pressure gauge was developed. The gauges are highly sensitive, extremely stable,

have essentially no hysteresis, and are affected very little by changes in temperature

below 4.2 K. Additionally, they have been operated at temperatures as low as about

10 mK, producing negligible heating at these low temperatures.

All of our in situ pressure measurements were made using homemade Straty-

Adams gauges.
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The body of the Straty-Adams gauge is constructed out of beryllium cooper

(BeCu) and consists of a thin diaphragm (usually between 0.2 - 0.4 mm thick,

depending on the pressures at which the gauge will be used) machined inside of

an otherwise hollow cylinder (typically 9.5 mm o.d. and ∼1 cm long), as shown

in Figure 3.5. The body of the gauge is soft-soldered into a seated hole in the cell

wall. The active part of the strain gauge faces the inside of the sample chamber,

whose pressure is to be determined; on the other side of the diaphragm, there is a

small post onto which a brass capacitor plate is fixed with epoxy. All epoxy used

was BIPAX Tra-Bond BA-2151 [111], which has proven to provide reliable contact,

even upon repeated thermal cycling between room and low temperatures. A second

capacitor plate, fixed to a brass lid with epoxy, sits above the first, forming a parallel

plate capacitor. As the pressure in the sample chamber is increased, the diaphragm

of the Straty-Adams gauge is forced upwards, decreasing the separation between

the capacitor plates and thereby changing their capacitance. Each capacitor plate

includes, of course, a wire which runs from the inside of the gauge to the outside,

so that we can measure the capacitance of the plates. Capacitances were measured

using an automatic bridge operating at 1 kHz (Andeen-Hagerling 2550 A). The

leads from the gauge to the bridge are coaxial cables. The plate separation is set by

pressurizing the cell to the absolute maximum working pressure of the cell (typically

about 100 bar) and then fixing the lid (with the affixed top capacitor plate) to the

outer circumference of the Straty-Adams gauge body with epoxy (in this scenario,

the plates are in contact and the capacitor is shorted). Once the epoxy has cured, the

pressure in the cell is reduced leaving a plate separation on the order of 0.01 mm. A

simple capacitance versus pressure calibration at 4.2 K against a room temperature

pressure gauge (e.g., we use a Mensor Model 4040 pressure gauge, for the 0-70 bar

range) is then all that remains to be done before we can use the gauge at low

temperatures.

Pressures may be reported with one of any of an overabundance of possible

units. At some point in their studies, a student of low temperature physics typi-

cally encounters the Pascal, the bar, the torr, the atmosphere, the p.s.i. (absolute,

differential, and gauge), the mmHg, and the kg/cm2. In this thesis, I will keep the

pressures I report in units of bars (which is the SI Pascal [N/m2] reduced by a factor

of 105) - the most sensible unit, in my opinion.
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Figure 3.5: Schematic of our homemade Straty-Adams pressure gauges.

3.4 Temperature measurements

Thermodynamically speaking, temperature is the quantity in two systems which

takes the same value in both systems when they are brought into thermal contact

and allowed to come to thermal equilibrium. The temperature of a system is related

to the average energy of microscopic motions in the system. This energy occurs

as, for example, the translational motion of a particle or as internal energy of a

particle, such as a molecular vibration or the excitation of an electron energy level.

The process of cooling, generally speaking, involves removing energy from a system.

When there is no more energy available to be removed, the system is said to be at

absolute zero: the point on the thermodynamic (absolute) temperature scale where

all kinetic motion in the particles comprising matter ceases and they are at complete

rest in the classical (i.e., non-quantum mechanical) sense. Emphasis must be put

on the word classical. By definition, absolute zero is a temperature of precisely 0 K

(-273.15 °C or -459.67 °F).

3.4.1 Thermometry

At the most basic level, a thermometer is a device with a measurable output that

changes with temperature in a reproducible manner. If an equation of state can

be written for a thermometer without introducing any unknown, temperature-

dependent quantities, then such a thermometer is called a primary thermometer.

These include gas thermometers, acoustic thermometers, noise thermometers, and

total radiation thermometers, to name but a few. A secondary thermometer is one

whose output must be calibrated against defined fixed temperature points.
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Primary thermometers are typically impractical (usually because of their size,

speed, and/or expense), and so secondary thermometers are used for most applica-

tions. The standard practice is to use secondary thermometers that have first been

calibrated to an internationally recognized temperature scale based on primary ther-

mometers and fixed points. The most recent efforts in defining a temperature scale

have resulted in the International Temperature Scale of 1990 (ITS-90) [112], whose

lower limit is 0.65 K, and the Provisional Low Temperature Scale of 2000 (PLTS-

2000) [113], which extends all the way down to 0.9 mK.

Even if a thermometer is properly calibrated, problems can arise for any number

of reasons; for example, if the thermometer is not in sufficient thermal contact with

the object whose temperature is to be measured, if the currents used to excite it

cause self-heating (which is exceedingly an easy thing to do at the lowest tempera-

tures, where even a few picowatts can cause a temperature error), or if its internal

thermal response time is inconveniently long. It is essential to choose appropriate

thermometers for the planned measurements, to mount and use them properly, and

to view the temperature they report with a hint of skepticism. Whenever possible,

more than one thermometer should be used so that you may check for consistency.

3.4.1.1 Germanium thermometers

Germanium resistance thermometers are the most convenient choice for measuring

temperatures above 100 mK. They are sensitive, they respond rapidly, their calibra-

tions are very stable, and they work directly with our digital temperature controllers

(Conductus LTC-21 and Neocera LTC-21). Temperature dependent semiconductor

resistance is exceptionally sensitive to doping during the manufacturing process, and

so germanium resistance thermometers are secondary thermometers which must al-

ways be individually calibrated. Sensor resistance varies from several ohms at its

upper useful temperature to several tens of kilo-ohms at its lower temperature.

Device sensitivity increases rapidly with decreasing temperature, meaning that a

high degree of resolution is achieved at lower temperatures: these resistors are very

useful for sub-millikelvin control at 4.2 K and below. The germanium resistance

thermometers sensors have excellent stability, ± 0.5 mK reproducibility at 4.2 K,

and 200 ms thermal response time at 4.2 K.

Germanium resistance thermometers are measured in a standard 4-terminal re-

sistance assembly, as the leads include part of the germanium chip itself and so
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have resistance and temperature dependence comparable to that of the actual ther-

mometer. Our germanium resistance thermometers are purchased commercially,

hermetically sealed into little copper cans with a small dose of 4He gas for thermal

contact (or 3He for the lowest temperature gauges). We customarily insert the sen-

sor into a cylindrical copper mounting block, with the chip’s electrical leads wrapped

around the circumference (which serve as the thermometer’s main thermal contact

below a few hundred millikelvin), as shown in Figure 3.6.

Copper mounting block

Figure 3.6: One of our germanium resistance thermometers, mounted into a cylin-
drical copper mounting block, next to a dime for scale.

In general, resistance thermometers are quite susceptible to self-heating and

electrical noise pick-up at temperatures below 1 K. At the lowest temperatures, the

sensor excitation is reduced to keep ohmic heating of the thermometer below about

10 fW. If we consider, for example, a 25 kΩ sensor (a typical resistance at 50 mK),

the excitation voltage should be kept below about 15 µV or the excitation current

kept below about 0.6 nA. Our temperature control bridges can operate at fW levels,

but electrical noise pickup (i.e., Joule heating, mostly radio frequency) often results

in substantially larger thermometer readings. To reduce this noise, we install an L-C

radio frequency filter box between the feedthrough at the top of our cryostat and the

cable to the temperature control bridge. Even with these precautions, germanium

resistance thermometers on their own should only really be trusted down to about

100 mK.
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3.4.1.2 3He melting curve thermometers

Possessing a pressure-temperature relation with high sensitivity down to millikelvin

temperatures, the 3He melting curve (Figure 3.7) provides an excellent low temper-

ature standard. Gauges can easily be constructed which very accurately measure

the melting pressure of 3He (as discussed in section 3.3), meaning that for accurate

temperature measurements much below 100 mK, the 3He melting curve thermome-

ter [114] is the way to go. It is the basis of the current PLTS-2000 [113] below

700 mK, has high sensitivity, operates down to 1 mK, and doesn’t suffer from self-

heating. The thermal response time can also be relatively short (although ours is

rather longer, at 10’s of minutes below 50 mK).

Figure 3.7: 3He pressure-temperature phase diagram [11].

It has the significant advantage of having several fixed points incorporated into

the scale: the temperature at the minimum of the melting pressure (Tmin); the su-

perfluid transition (TA); the A-B transition (TAB); and, the solid ordering transition

(TSO). The fixed points are given in Table 3.1. Of course, only Tmin is accessible

with our dilution refrigerator.

The polynomial which describes the 3He melting curve is given by

55



Pressure (bar) T2000 (mK)
Tmin 29.3113 315.24
TA 34.3407 2.444
TAB 34.3609 1.896
TSO 34.3934 0.902

Table 3.1: The fixed points of the 3He melting curve, used for the PLTS-2000.

Coefficient PLTS-2000
a−3 -1.3855442 x 10−12

a−2 4.5557026 x 10−9

a−1 -6.4430869 x 10−6

a0 3.4467434
a1 -4.4176438
a2 1.5417437 x 101

a3 -3.5789853 x 101

a4 7.1499125 x 101

a5 -1.0414379 x 102

a6 1.0518538 x 102

a7 -6.9443767 x 101

a8 2.6833087 x 101

a9 -4.5875709 x 100

Table 3.2: The fixed points of the 3He melting curve, used for the PLTS-2000.

P =
+9∑

n=−3

anTn (3.2)

where P is in MPa and T is in Kelvin. The coefficients, an, are given in Table 3.2.

To obtain temperature in terms of the measured pressure requires inversion of the

Equation 3.2. The simplest method, and the one we used, is to generate tables of

T(P) and use a standard fitting package (Microsoft Excel will suffice) to fit short

lengths of the curve.

With our digital capacitance bridge (Andeen-Hagerling 2550 A, operating at

1 kHz), using a 3He melting curve thermometer is quite convenient; although, the

thermometer must be calibrated against a room temperature pressure standard (we

used a room temperature Mensor Model 4040 pressure gauge, 0-100 bars) at the

beginning of each run (and it likely requires re-calibration if warmed above 700 mK).

For optimal operation, the 3He melting curve thermometer (like all thermometers)

must be well thermally anchored to the system of interest.

The initial pressure versus capacitance calibration can be conveniently done at
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around 1 K, before starting circulation in the dilution refrigerator. The gauge is first

filled to about 35 bar; starting circulation in the refrigerator causes the capillary

to block at about 0.75 K, with a suitable 3He density in the gauge (i.e., so that

it contains a solid/liquid mixture at all lower temperatures). During cooling, the

capacitance at the 3He melting curve minimum (315.24 mK) needs to be measured,

since the pressure calibration must be corrected for the hydrostatic head in the fill

capillary. With the pressure versus capacitance calibration available, the measured

capacitances can be converted into pressures and subsequently into temperatures

using the PLTS-2000 temperature scale.

Straty-Adams gauge

He  inlet3

Figure 3.8: Our (broken) 3He melting curve thermometer, next to a dime for scale.

3.4.1.3 60Co nuclear orientation thermometers

This technique relies on the magnetic ordering of nuclear spins and the general

theory of nuclear orientation has been formulated by several authors (see, for ex-

ample, [115]). The principle is that when a radioactive nucleus decays by emitting

a γ quantum (more specifically, β− decay feeds a short-lived excited state, which

then decays by emission of γ-rays) there is a certain anisotropic angular emission

probability depending on the initial nuclear spin direction and characteristic of the

decay (i.e., the emission is less probable along the axis of the spin). A collection

of nuclei also shows anisotropic properties in the intensity of radiation, provided
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that the nuclear spins are oriented (polarized or aligned). Assuming that a mag-

netic field is somehow applied (discussed below), the anisotropy of this radiation

is temperature dependent and the absolute temperature is thus a function of the

measured intensity. Specifically, the emission rate is lower in the directions parallel

and antiparallel to the field than in other directions. By warming up the spin sys-

tem, the overall emission becomes isotropic as the nuclear alignment/magnetization

is destroyed. Comparing the emission rate along the axis at low temperatures with

that at high temperatures (really, anything much over 50 mK) allows the low tem-

perature to be readily deduced. By taking this ratio many experimental factors

cancel and the result can be related directly to the temperature of the nuclei, thus

forming a primary thermometer.

The advantage of using γ emitters is that detection can be from outside the

cryostat with no wiring necessary inside the cryostat. In a typical setup (such as

ours) the radioactive nuclei are 60Co atoms, which have a half-life of 5.26 years.

These are arranged to be in a single crystal of ordinary ferromagnetic 59Co, so that

the macroscopic orientation axis does not have to be provided by an externally

applied field. Our sample is in the shape of a needle (parallel to the crystallographic

c-axis) so that domains are aligned in opposition. This provides a well-defined

orientation axis, but no net external field. The strength of this field defines the

temperature range within which the nuclei polarize, being roughly between 100 mK

and 1 mK.

The 60Co nuclear orientation thermometer provides a very reliable way to make

sure that other thermometers are reading correctly, since there is virtually noth-

ing that can go wrong with it. It is a primary thermometer, requires no electrical

or capillary connections, is immune to electrical noise, has negligible self-heating

at dilution refrigeration temperatures, and has maximum sensitivity at the fridge’s

base temperature. Also, the high-energy γ rays are very penetrating, so no spe-

cial windows are needed in the cryostat. On the downside, it requires the use of

a (relatively) large scintillator and associated counting electronics, is insensitive to

temperatures above about 50 mK, and requires long count times for accurate tem-

perature measurements.

Typical count rates are less than 100 γ/second, so about 100 seconds are re-

quired to get a 1% accuracy, which still corresponds to a fairly large temperature

uncertainty. We usually count for 1000 seconds at the most interesting spots in our
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experiments.

As a millikelvin thermometer, it requires a clean, flat mounting surface and

substantial clamping forces. Count rates must be measured along the cobalt crystal’s

c-axis. Our cobalt crystal is soft-soldered onto a copper wedge for easy mounting.

The direction of the cobalt needle is recorded (height and position) so that the

scintillator may be properly positioned once the dewar is raised. Given its simplicity

and compactness, it is a thermometer worth mounting whenever you might even

possibly consider cooling down to 50 mK.

Co  crystal

Figure 3.9: Our 60Co nuclear orientation, next to a dime for scale.

3.5 Computer control

Data transcription was all but fully automated for the experiments. Various Lab-

VIEW programs were either cannibalized from previous students and re-organized

into the desired format or plainly written from scratch. LabVIEW software was

also employed to communicate with the temperature bridge (for temperature con-

trol) and with the capacitance bridge (for example, to set the excitation voltage).

Lastly, a LabVIEW program was occasionally used simply to display real-time data

in chart format (which offers significant advantages over watching LED numbers

change when trying to determine when a signal has stabilized).
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Chapter 4

Dielectric Measurements of
Helium Freezing in Vycor

The observation of NCRI in solid 4He confined in porous Vycor was the first of the

NCRI papers published by Kim and Chan. The supersolid interpretation of these

results is quite extraordinary. Extraordinary claims require extraordinary evidence,

which is what Kim and Chan continue to work on; equally important, though, is that

the ordinary explanations be eliminated from the pool of possible solutions to the

problem if the extraordinary claim is to gain acceptance in the scientific community.

It is important to recall from Chapter 3 that a torsional oscillator measures the

moment of inertia of an added sample (and not simply the mass!). For example,

migration of solid 4He out of the porous glass would change the moment of inertia

of a torsional oscillator cell and mimic superfluid decoupling. This turned out to be

the case with molecular hydrogen [116].

A torsional oscillator technique was used to measure the H2 mass inside of porous

Vycor glass as a function of temperature and initial H2 filling. At a certain tempera-

ture Tc, the resonant frequency of the torsional oscillator began to increase sharply:

there seemed to be less H2 contributing to the moment of inertia of the torsional

oscillator at T ≤ Tc than was originally condensed into the Vycor, as shown in

Figure 4.1. In other words, below Tc some of the H2 seemed to no longer be par-

ticipating in the oscillations. Could it be that the hydrogen had undergone a phase

transition, becoming supersolid and thus unwilling to rotate with its container? In

short: no. The same group independently determined with a capacitor filled with

Vycor that H2 molecules once adsorbed in Vycor leave it when the temperature is

decreased. Their capacitance measurements indicate that at T ≤ Tc H2 starts to

leave the Vycor (apparently there is a de-wetting transition here that results in an

60



expulsion of mass from the Vycor sample), in good agreement with their torsional

oscillator experiment.

Figure 4.1: Frequency difference ∆f(T) (equal to the resonant frequency of the
empty oscillator minus the mass loaded frequency) in cooling (◦) and warming (•)
for n = 1.1 mmole H2. The inset shows the data near Tc = 12.2 K. No hysteresis
can be seen [116].

Structural transitions have also been seen in a number of adsorbates in Vycor.

For example, a de-layering was observed in an argon layer near the pore surface [117]

and crystallographic phase transitions exist for oxygen and argon at low tempera-

tures [118, 119]. Also, solid argon and krypton have been seen [120] to migrate

out of the pores well below their freezing temperatures. The well of alternative

explanations is deep.

When 4He is confined in the pores of Vycor, a number of measurements [121,

122, 123] have shown that the freezing curve is shifted upward by about 15 bar and

to the left by about 0.6 K, as is shown in Figure 4.2.

Adams et al. [121, 122] have performed a series of experiments on the freezing of
4He in Vycor and have inferred a density change substantially smaller than in bulk.

It is not expected that the first monolayer or two of adsorbed atoms would experience

an increase in density when freezing occurs in the pores (which is not unreasonable,
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0.6 K

15 bar

Figure 4.2: The pressure-temperature phase diagram of 4He confined in 60-�A Vycor
glass [122] and of bulk 4He. Points shown are: (+) λ transition; (◦) onset of freezing;
(•) completion of freezing; (4) completion of melting.

since the van der Waals force on the 4He near the surface will produce a liquid with

a density that is likely already near that of the solid). They assume that no change

in density occurs in a 6-�A-thick layer immediately next to the pores wall (i.e., does

not participate in freezing), resulting in a remaining effective volume of the pore

equal to roughly half that of the empty pore (i.e., only half of the pore volume is

involved in freezing). This reasoning is consistent with their observations of the

change in molar volume on freezing in the pores of Vycor, as shown in Figure 4.3.

The average latent heat of freezing in the pores was also determined by using

the time interval required for freezing to take place and the measured heat current

from the cell. The latent heat of freezing of the 4He confined in the Vycor is shown

in Figure 4.4, where that of bulk is included for comparison. The latent heat of the

pore 4He is greater than for bulk (and has a weaker temperature dependence). This

is not unreasonable, as most of the entropy in the bulk liquid has been removed by

the λ-transition at 1.8 K, while the superfluid transition in the freezing Vycor liquid

does not occur until the reduced temperature of 1.4 K.

If Figures 4.3 and 4.4 are a reflection of incomplete freezing in the pores, then the

decoupling seen in the torsional oscillator experiments could be occurring in a liquid
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Figure 4.3: Molar volume change on freezing in the pores of Vycor versus pressure.
The bulk volume change is shown for comparison [122].

Figure 4.4: Latent heat of freezing in the pores of Vycor versus temperature. Bulk
values are shown for comparison [122].
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layer up against the pore wall, rather than in the solid 4He. It is also important to

rule out explanations based on a redistribution of mass.

4.1 Experimental design

The motivation behind the experiment described below is that alternative expla-

nations to the NCRI observations exist and must be investigated. We have used a

capacitive technique to study the density changes associated with freezing of 4He in

Vycor and at lower temperatures where Kim and Chan observed NCRI.

4.1.1 Cell construction

The density, pressure, and temperature measurements were performed simultane-

ously in one cell. A schematic and true picture of the cell are shown in Figures 4.5

and 4.6, respectively. The sample was sealed into an oxygen-free high conductivity

copper pressure cell with a volume of 1.2 cm3, much larger than the 0.018 cm3 vol-

ume in the Vycor pores. The bulk 4He, therefore, acted as a reservoir which kept the

pressure essentially constant when 4He in the pores froze. Crystals were grown us-

ing the blocked capillary technique. The cell incorporated an in situ Straty-Adams

pressure gauge, soft-soldered into the side of the cell, and was mounted onto the

bottom of the mixing chamber of our dilution refrigerator. A 0.004” i.d. capillary,

thermally anchored at several points on the fridge, was used to introduce 4He to the

cell. Temperatures were measured with a calibrated germanium thermometer above

about 50 mK, with a 60Co nuclear orientation and/or 3He melting curve thermome-

ter for lower temperatures. A spring loaded clamp arrangement held the thin Vycor

parallel plate capacitor inside the cell.

4.1.2 Vycor sample

Vycor, a Corning product, is a porous glass that is mechanically hard and strong,

non-dusting, non-flaking, and chemically inert, distributed by BES Optics [124].

Vycor is 96% silica, but unlike pure fused silica it can be readily manufactured in a

variety of shapes.

Vycor products are made by a multi-step process. First, a relatively soft alkali-

borosilicate glass (75% SiO2, 20% B2O3, and 5% Na2O) is melted and formed by

typical glass-working techniques into the desired shape. Second, the glass is heat

treated, which causes a slow liquid-liquid diffusion to occur, resulting in separation
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Straty-Adams gauge

Vycor capacitor

fill capillary
cell body

solid helium

Figure 4.5: Schematic of the freezing cell.

Figure 4.6: Image of the freezing cell, next to a Canadian quarter for scale.
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into a SiO2-rich phase and a B2O3-alkali-oxide-rich phase. Third, after the glass

has been heat treated and annealed, it is then soaked in a hot acid solution, which

leaches away the soluble boron-rich phase, leaving an almost pure silica skeleton.

The resulting Vycor glass (code 7930) is an opalescent, open-cell, porous glass

which exhibits excellent absorbing properties. Due to its porosity, this material has

an internal surface area of approximately 200 m2/g. Even a small bead of “thirsty”

glass presents a very large adsorbing surface.

Figure 4.7 shows a TEM image of Vycor. In general, such images of Vycor

show a material with a homogeneous distribution of mass and a disordered network

of randomly and multiply interconnected cylindrical pores 3.5 nm in radius and

roughly 30 nm in length [125]. The pore interface roughness has an upper cutoff of

less than 2 nm. Our Vycor sample was a thin disc with a diameter of 12.7 mm and

a thickness of 0.52 mm. The porosity of the Vycor sample is φ = 0.28, defined as

the ratio of open spaces (pores) to the volume of solid matter.

Figure 4.7: TEM image of porous Vycor glass [126]. Pores are shown in black, glass
in shown in white.

4.2 Measurements in Vycor

The capacitor plates were copper thin films deposited directly onto the Vycor disc by

thermal evaporation, as shown in Figure 4.8 (deposited at ∼ 3-4 �A/sec to a thickness

of ∼ 100 nm) and a circular area of 0.71 cm2. Before depositing the electrodes, we
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dusted the Vycor with a 40 µm cobalt powder (held in place by a magnet placed

behind the sample).

Vycor

Al sample holder

Cu source

magnet

  sprinkling

of Co powder

Figure 4.8: Schematic of electrode deposition onto Vycor.

After deposition the powder was removed, leaving an electrically continuous

electrode with perforations (about 10 % of the area) to allow the 4He easy access

to the pores, as shown in Figure 4.9 and, schematically, in Figure 4.10. At 4.4 K

the empty sample had a capacitance Cvycor = 3.7257 pF, roughly what would be

expected from the manufacturer’s quoted dielectric constant for Vycor (εvycor = 3.1

at 25 µC and 100 Hz).

(For the sake of future students, it is well worth noting that the room temper-

ature capacitance of a Vycor-filled parallel-plate capacitor can change by as much

as a factor of two(!) due to the dielectric contribution of adsorbed water. Recall

that Vycor has hundreds of square meters of surface area per gram of mass. To be

confident with your capacitance measurement, the Vycor should first be baked and

under vacuum to minimize its moisture content.)

4.2.1 Capacitance as a measure of density

When 4He is admitted to the pores of Vycor, the capacitance increases due to

the change in dielectric constant (εHe - 1) within the pore volume. Note that the

dielectric constant of liquid 4He is quite small, ε(T=0) = 1.0572 [127]. The Clausius-

Mosotti equation relates the dielectric constant ε to the mass density ρ, the molar

mass M, and the molar polarizability α of a non-polar medium. The equation takes
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Figure 4.9: Image of the Vycor capacitor.

Vycor

Copper electrodes

Figure 4.10: Schematic image of the Vycor capacitor.

the form

(ε− 1)/(ε + 2) = (4π/3M)ρα. (4.1)

If the 4He acted as a uniform dielectric, we would expect the capacitance change

in our setup, ∆C, to simply be proportional to the porosity of the Vycor capacitor,

φ, as

∆C = φ(εHe − 1)Co, (4.2)

where

Co = εo
A

d
(4.3)

is the geometric capacitance of our Vycor capacitor. Given our sample thickness

(d ≈ 0.52 mm) and effective electrode area (A ≈ 0.78 cm2, which includes an addi-

tional 10 % effect from fringe fields), Co ≈ 1.33 pF. There will be a contribution to

the capacitance increase from compression (and density increase) of the solid 4He

surrounding the capacitor, but our Vycor sample extends well beyond the edge of

the capacitor electrodes and so this contribution is assumed to be zero. The inter-
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ested reader is directed to the thesis of Herman [128], who took a closer look at the

effect of fringe fields for a similar aerogel capacitor.

Using the dielectric constant of bulk liquid 4He at 4.4 K (εHe = 1.048, obtained

by extrapolating the data in [129] from 4.21 K out to 4.4 K) and the porosity of

Vycor (φ = 0.28), Equation 4.2 predicts ∆C = 0.018 pF. However, tightly bound

layers on the Vycor pore walls increase the average 4He density by about 25 % [130]

and so we expect a proportional increase in ∆C, to 0.022 pF. Also, the contribution

of a pore fluid to the dielectric constant depends on pore geometry through depo-

larization effects [131] and atoms on the surface of the glass likely have a different

polarizability. Measurements with Ar and CO in Vycor have shown [132] that this

can be accounted for by including a geometric parameter so that capacitance change

is still proportional to the change in adsorbate density, giving

∆C ≈ eP

(1− φ) + φeP
φ(εHe − 1)Co ≈ 1.21φ(εHe − 1)Co, (4.4)

where eP = 1.32 for spherical pores or a mixture of perpendicular cylindrical pores.

The Ar and CO measurements also showed that, except for the first monolayer, the

changes in the Vycor’s capacitance are directly proportional to the total density of

the adsorbate.

We have confirmed this linear dependence for liquid 4He via a 1.8 K adsorption

isotherm, shown in Figure 4.11: for fillings greater than the first monolayer, the Vy-

cor capacitance increased linearly with the amount of 4He adsorbed. The isotherm

measurements were made in the same cell shown in Figures. 4.5 and 4.6, attached

to the 1 K pot of a simple 4He cryostat. Temperatures were measured with a cal-

ibrated germanium thermometer and capacitances was measured using GR1615A

bridge operating at 1 kHz. Small amounts of gas (less than 50 mbar) were let into

the cell from a 66.9 cm3 ballast volume and allowed to equilibrate for tens of minutes

before a capacitance measurement was made and the process repeated.

The first six data points in grey in Figure 4.11 shows that the dielectric behavior

of the first monolayer is different from the rest of the pore filling. The dielectric

response attributed to the monolayer likely includes both the direct contribution of

the monolayer molecules as well as the changes of the response of the terminating

polar groups of the silica matrix brought forth by adsorption. The final three data

points in black in Figure 4.11 deviate from the linear trend at a filling fraction of 1.0,
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Figure 4.11: The 1.8 K 4He adsorption isotherm in Vycor, confirming that capaci-
tance change varies linearly with adsorbate density.

as expected. This is the point at which the pores of the Vycor are completely full

and any 4He further admitted to the cell will settle in the “dead volume” (outside of

the Vycor) and therefore not contribute to the capacitance across the Vycor sample.

Finally, the data wavers from perfect linearity in the [0.1 - 0.5] filling fraction regime

because of insufficient equilibration time between measurements.

Using Equation 4.4, and accounting for the tightly bound layers on the Vycor

pore walls which increase the average 4He density by about 25 %, we now expect a

capacitance increase ∆C = 0.027 pF. The capacitance of our evacuated Vycor was

3.7257 pF, which increased by 0.029 pF when it was filled at 4.4 K. This is in very

good agreement with the change calculated from Equation 4.4, confirming that our

capacitance measurements directly probe the 4He density in the pores.

(In the interest of being completely transparent, it should be noted that Equa-

tion 4.4 predicts a capacitance change ∆C = 0.032 pF for the 1.8 K isotherm,

whereas the observed change is actually 0.052 pF. This discrepancy cannot be ex-

plained.)
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4.2.2 Freezing and melting under confinement

It is well-known that 4He [133] in confined geometries remains liquid at temperatures

considerably below bulk freezing and at pressures considerably above bulk freezing

(for a very nice review on confinement effects on freezing and melting, see[134]).

It has also been well-established that freezing occurs at a lower temperature than

melting (i.e., there is a hysteresis) and that both freezing and melting are spread

over a range of temperatures.

When confined in pores, liquid 4He may be considered to form two components.

The first is a dense solid-like layer of a few atomic thickness that contacts the pore

wall. Strong van der Waals attraction with the amorphous glass make this film very

tightly bound and highly disordered. The second is what remains in the pore and it

acts nearly like a bulk fluid, not significantly influenced by the glass and with nearly

bulk density.

The usual interpretation of the depressed freezing temperature is based on the

homogeneous nucleation theory of droplet formation (i.e., the spontaneous solid

formation as a result of density fluctuations, without benefit of nucleation at contact

surfaces or impurities). It has been shown that the liquid phase preferentially wets

the surface of glass [135]; namely, that the solid-glass interfacial energy, σsg, is

greater than the liquid-glass interfacial energy, σlg. The mismatch between the

interatomic spacing of 4He adsorbed on the walls and that of the solid within the

pore is commonly invoked to explain non-wetting of the walls by the solid and the

subsequent lack of inhomogeneous nucleation.

Upon nucleation of a droplet of radius r, the change in the Gibbs free energy is

given by

∆G = 4πr2σls − 4πr3

3υs
(gl − gs), (4.5)

where the first term is the free energy of the surface of the droplet and the second

term is the change in free energy of the volume of the solid droplet. Here gl and

gs are the molar free energies of the liquid and the solid, respectively, and υs is the

solid molar volume. The general form of Equation (4.5) is shown in Figure 4.12.

The expression has a maximum at
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rb =
2σlsυs

(gl − gs)
, (4.6)

where droplets of r < rb are unstable and decrease in size, while droplets of r > rb

grow.

If the freezing is assumed to take place at constant pressure, there is a depression

of the freezing temperature, ∆T, from the bulk freezing temperature, TB, given by

(gl − gs) =
(

∂g

∂T

)

P

dT = −(sl − ss)∆T =
lF
TB

∆T, (4.7)

where sl and ss are the molar entropies of the liquid and solid, respectively, and lF

is the molar latent heat of freezing.

Substituting for (gl - gs) in Equation (4.6) allows us to write

∆T =
2σlsυsTB

rlF
, (4.8)

which further allows us to write Equation (4.5) as

∆G = 4πr2σls − 4πr3

3υs

lF ∆T

TB
. (4.9)

Now consider that inside the pores of Vycor, 4He nuclei of various radii are

continually forming via local density fluctuations in the liquid. In a bulk system,

nuclei with r > rb overcome the energy barrier and continue growing in size until the

entire sample is frozen. Under confinement, however, nuclei may form but obviously

cannot grow any larger than the confining pore. For a given undercooling, a pore-

sized droplet may overcome the energy barrier yet still be left with positive free

energy due to growth restriction imposed by the pore walls. Fluctuations similar to

those which initiated freezing will eventually drive the droplet back into the liquid

state. A critical radius, rc, for freezing in pores is defined as one with zero change

in Gibbs free energy,

rc =
3σlsυsTB

lF ∆T
. (4.10)

Stable solidification then occurs when the critical radius is equal to (or less than)
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the pore size, rp. So, a freezing point depression may be predicted if a pore size is

given by

∆T =
3σlsυsTB

rplF
. (4.11)

With 4He, it becomes equally useful to express solidification in pores in terms of

elevated pressures at constant temperature (rather than depressed temperatures at

constant pressures), as there exist a range of pressures in which the bulk 4He of a

system freezes while the confined 4He remains liquid down to 0 K. This is done by

writing

(gl − gs) =
(

∂g

∂P

)

T

dP = (υl − υs)∆P. (4.12)

Substituting for (gl - gs) in Equation (4.6) this time allows us to write

∆P =
2σlsυs

r

(
υs

υl − υs

)
. (4.13)

And by using the same line of reasoning above, we can say that solidification

in pores (which, in Vycor, are connected and not independent) requires a pressure

increase given by

∆P =
3σlsυs

rp(υl − υs)
. (4.14)

For the reasons discussed above, the melting curve is shifted from bulk values as

shown in Figure 4.13.
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Figure 4.13: Phase diagram of 4He confined in Vycor. Figure created from the data
of Reference [122]
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4.2.3 Typical thermodynamic path

Figure 4.14a shows the thermodynamic path during a typical measurement, as we

cool our cell from about 4 K to low temperature.

The cell and Vycor sample are initially filled with 4He to a high enough pressure

at 4.4 K to ensure that everything (bulk and confined 4He) solidifies at low tem-

perature. Recall that the fill line blocks at the 1 K pot on the dilution fridge (at

essentially the start - before any freezing in our cell takes place) and so the total

amount of 4He in the cell during a measurement is fixed (i.e., the thermodynamic

path we are following are isopycnals).

As we decrease the temperature of our cell, there is an associated decrease in

pressure within our sample. The decrease in pressure is a result of an increasing

fluid density of a fixed amount of 4He in a constant volume. As we reach point A

(2.8 K, 68.4 bar), the bulk 4He in the cell begins to freeze. Here, the pressure drops

more rapidly as bulk 4He around the Vycor sample begins to freeze. This time, the

decrease in pressure is a result of the solid’s greater density and the fixed amount

of 4He in a constant volume. The bulk melting curve is followed down until point B

(2.1 K, 41.6 bar), which indicates the conclusion of freezing of 4He in bulk. Below

point B the pressure is very nearly constant since the thermal expansion of solid 4He

is small (and the compressibility is large, to be precise). Note that the 4He confined

to the Vycor pores does not begin to freeze until sufficient undercooling is achieved,

as previously discussed in section 4.2.2, at point C (1.7 K, 40.8 bar). There is a small

decrease in pressure associated with the freezing in the pores, but it is too small to

be visible in Fig 4.14a. The bulk 4He in the cell and around the Vycor sample acts

as a reservoir so that freezing in the pores occurs essentially at constant pressure.

After the initial cool-down, the cell could be warmed and cooled, re-tracing the

thermodynamic path and confirming that the plug in the fill line had not slipped.

Once the 4He in the pores was frozen, the pressure in the cell is essentially constant

as we approach absolute zero.

Figure 4.14b shows the Vycor capacitance, Cvycor, corresponding to the pressure

of Figure 4.14a. Recall that the capacitance is a reflection of the 4He density in the

pores. The decrease between point A and point B is due to liquid 4He leaving the

pores as the pressure in the cell drops as the bulk 4He freezes. Below point B, the

pressure and the liquid density in the pores is nearly constant; the slope of Cvycor is
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Figure 4.14: a) the thermodynamic path followed during a typical measurement,
with b) the associated density capacitance. See text for meaning of letters. The
solid line is the accepted melting curve for 4He, taken from [151].
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just the background temperature dependence of the dielectric constant of the Vycor

glass itself (details in section 4.5). Freezing in the pores begins at point C, where

Cvycor rises suddenly due to the larger density of solid 4He. This requires that 4He

be drawn into the pores from the surrounding bulk solid bath (i.e., that pressure

equilibrium is maintained at melting on this time scale). Not all of the 4He in the

pores will freeze at once: there exists a narrow freezing band (because of the narrow

pore radius band in the Vycor) over which gradually more and more of the liquid

is converted into solid as the temperature is lowered. Once the 4He in the pores

has completely frozen, Cvycor follows the background temperature dependence of

the dielectric constant of the Vycor glass.

4.3 Onset of freezing

Despite the background temperature dependence of Cvycor (due to “two levels sys-

tems” in the glass, to be discussed in section 4.5), we can extract the jump in

capacitance, ∆Cf , associated with freezing.

The jumps in Fig 4.15a-f (∆Cf = 0.0011 pF) are about 2.8 % the total change

due to filling and pressurizing with liquid to 38.1 bar (∆C = 0.0395 pF). This is

significantly smaller than the 6 % density increase when bulk 4He freezes at this

temperature [136]. This could be due to a large fraction of the 4He (i.e., the dense

surface layer) which is already highly localized and so would not participate in

freezing and melting. However, it is also possible that some of the 4He simply

remains liquid at these pressures. We would expect the amount of liquid remaining

at low temperatures to decrease with increasing pressure, but Figure 4.15 shows

that this isn’t the case. The increases in capacitance associated with freezing are

essentially the same at all pressures in the 35-55 bar range, in contrast to what

would be expected if the 4He was only partially frozen at some lower pressures.

Figure 4.16 shows the density change ∆ρ for 4He in Vycor as we measure it, along

with the 4He in Vycor results obtained by Adams et al. [122]. In their experiment,

they are able to measure the pressure in the pores of a Vycor powder on freezing

and melting while simultaneously obtaining the volume change and latent heat on

freezing. The density change for bulk freezing [136, 137] in the same temperature

range is also included, for comparison.
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Figure 4.15: The sudden increase in density capacitance associated with the onset of
freezing in the pores of Vycor: a) δ1 = 0.00105 pF at 36.2 bar, b) δ2 = 0.00110 pF
at 36.8 bar, c)δ3 = 0.00107 pF at 39.3 bar, d) δ4 = 0.00108 pF at 48.3 bar, e)
δ5 = 0.00113 pF at 53.8 bar, f) δ6 = 0.00108 pF at 54.0 bar.
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Figure 4.16: Solid-liquid density change associated with freezing. ¤’s are for bulk
values, as measured by Grilly et al. [137, 136]; 4’s are for 4He confined in Vycor,
as measured by Adams et al. [122]; N’s are for 4He confined in Vycor, as reported
in this thesis. Solid lines are guides to the eye. The reason for the difference in the
data between that reported in this thesis and of [122] is not known.
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4.4 Hysteresis between freezing and melting

When the sample was later warmed, the 4He in the pores melted at higher tempera-

ture and over a narrow temperature range, as shown in Figure 4.17. The hysteresis

between freezing and melting is a common feature of adsorbates in small pores [134].

The hysteresis arises from the energy barrier associated with surface formation that

must be overcome to form disconnected blobs of solid within the pore network.
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Figure 4.17: Hysteresis between freezing and melting, at 39.3 bar. The •’s are
cooling and the ◦’s are warming.

4.5 At lower temperatures

While the goings-on near melting are interesting, it was an observation at low tem-

perature that motivated this study. Following solidification of the 4He within the

pores, we then cooled the solid 4He-filled Vycor sample to look for any changes in
4He density that might mimic superfluidity in a torsional oscillator. Possible scenar-

ios of mimicking behaviour could include de-wetting transitions or crystallographic
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phase transitions. For example, were the 4He to leave the hcp phase (assuming

that the 4He is indeed in the hcp phase), then the density of the solid within the

pores would change, thereby altering the system’s moment of inertia and showing

up as a period change in a torsional oscillator experiment. Figure 4.18 shows the

capacitance data over the full range of the temperatures investigated for a 36.6 bar

sample, where the letters A, B, and C were defined in subsection 4.2.3.

The dielectric (and thermal and acoustic) properties of amorphous materials,

such as Vycor, exhibit different behaviours from those of crystalline substances at

very low temperatures and the smooth capacitance minimum, located at ∼85 mK in

Figure 4.18, is typical of dielectric glasses. The minimum reflects coupling to “two

level systems” and not changes in the 4He density (e.g., the effect would be present

in empty Vycor). For a nice short review of two level systems [138, 139], see chapter

3 of Mulders’ doctoral dissertation [140].
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Figure 4.18: Vycor capacitance, from 4 K to 30 mK.

Experimentally, such behaviour has been observed in various amorphous ma-
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terials. (In fact, the temperature dependence is sharp enough that several glasses

prove useful as a thermometer!) Figure 4.19, displaying measurements made on an

OH-doped vitreous silica called Suprasil, provides an example of how the dielectric

properties of amorphous glass change with temperature, as a function of frequency.

The minimum that we observe at ∼85 mK and with a 1 kHz measurement is not

inconsistent with the dielectric measurements shown in Figure 4.19.

Figure 4.19: Variation of the capacitance in Suprasil glass as a function of tempera-
ture [141]. The negative slope of ε(T) on the low temperature side of the minimum
is due to resonant interactions and is frequency independent provided ~ω ¿ kT.
At higher temperatures, where the slope is positive, relaxation interactions becomes
dominant.

To further confirm that the minimum in our capacitance was in no way related

to the solid 4He, we took an analogous measurement of liquid 4He at saturated

vapour pressure confined in the pores of Vycor, where the superfluid transition is

at around 2 K, at low temperature. As is shown in Figure 4.20, the minimum in

capacitance remains: it is an effect of the porous Vycor glass and not of the 4He.
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(Without question, capacitance measurements of our empty Vycor sample should

have been performed. Unfortunately, the significance of this measurement only

became apparent after 4He had been adsorbed onto the cold Vycor pores.)
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Figure 4.20: Vycor filled with liquid 4He at saturated vapour pressure.

Figures 4.21 and 4.22 show the capacitance data at low temperature and in the

region of greatest interest (i.e., where Kim and Chan observe NCRI). If there was a

low temperature transition which resulted in 4He being expelled from the pores of

the Vycor, then it would show up as a sudden decrease in capacitance, but we saw

no such change in the range below 200 mK where Kim and Chan saw decoupling in

their torsional oscillator. The arrow in Figures 4.21 and 4.22 show the magnitude

of the change that would be expected if 1% of the 4He were to leave the pores.

Since movement of 4He out of (or into) the pores might occur very slowly (Kim

and Chan observed time constants on the order of one hour for their oscillator

period to stabilize), we waited overnight at our lowest temperature (about 30 mK)

and then warmed up our sample. Figure 4.23 shows our density capacitance data on

cooling through the minimum at ∼85 mK down to base temperature and then on
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Figure 4.21: Density change of solid 4He in Vycor at low T and at 36.6 bar. The
arrow indicates the size of change we’d expect to see for a 1% density effect.
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Figure 4.22: Density change of solid 4He in Vycor at low T and at 53.6 bar. The
arrow indicates the size of change we’d expect to see for a 1% density effect.

84



warming back through the minimum, about 20 hours later. The measured difference

in density capacitance is about 5 ppm, which is a change in density equal to 0.05%.

Figure 4.24 shows the same measurement made in a different experimental cell. Here,

the measured difference in density capacitance after cooling to base temperature and

then waiting overnight is about 3 ppm, which is a change in density equal to 0.03%.

Both measurements support the claim that 4He does not move out of (or into) the

pores, even very slowly.
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Figure 4.23: Low temperature stability of the confined 4He density at 36.6 bar (i.e.,
the minimum from Figure 4.21). •’s show cooling and ◦’s show warming.
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Figure 4.24: Low temperature stability of the confined 4He density at 57 bar (the
data shown in this plot was taken in the Vycor squeezing cell, to be described in
Chapter 6, which did not have an in situ pressure gauge). •’s show cooling and ◦’s
show warming.
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4.6 Conclusions

Motivated by claims of a supersolid phase in 4He, we have taken some dielectric

measurements of 4He freezing in the pores of Vycor. We have confirmed that the

density change associated with freezing is substantially smaller than in bulk, telling

us that not all of the 4He in the pores is actually participating in solidification.

Or, although unlikely, that it all does freeze, but the volume change associated with

freezing is small in the pores of Vycor (for reasons unknown). If some of the confined
4He remained liquid (say, as some thin film that lines the pore), then it is entirely

possible that the superfluid-like behaviour observed by Kim and Chan in their tor-

sional oscillator experiment is actually superfluidity in that thin film. However, we

expect that the thickness of this film (i.e., the amount of 4He that remains liquid)

would be dependent on pressure. Our measurements, though, strongly suggest that

the amount of 4He that solidifies in the pores is independent of pressure. We cannot

rule out the presence of a persistent liquid layer. What we can say is that there

likely exists an amorphous 4He film strongly adsorbed to the pore wall, having a

density already near that of the solid phase and thereby not really contributing to

the change in density upon complete solidification. The properties of such a film

are unknown, but it is conceivable that it could display superfluid-like behaviour.

In fact, Path Integral Monte Carlo (PIMC) simulations [142] support the persistent

liquid layer model to explain the NCRI observations, as it is found that 4He forms

a distinct layered structure. The first layer is solid-like and highly localized; the

second layer is disordered (some atoms are not localized and they could give rise to

the observed superfluid response); higher layers are then nearly perfect crystals and

only participate in the superfluidity in so far as they are close to the second layer.

Variational Monte Carlo simulations [143] further support the persistent liquid layer

model. Those “experiments” conclude that the layer in contact with the pore is al-

ways solid. For their narrow pore radius (R = 1.3 nm, roughly half that of Vycor),

as the density is increased, solidification takes place layer by layer, starting from the

pore wall. Their pore radius is too small to allow a bulk-like solid to nucleate in the

liquid region at the center of the pore, and in order to have a complete crystalline

order in all the layers a pressure greater than 200 bar was required.

Figure 4.16 suggests that about 70% of the 4He confined in the pores of Vycor

does not participate in freezing. If this were the case, and taking a spherical pore
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radius of 3.5 nm, then it would be an outer shell 1.2 nm thick that remains “un-

frozen”. This thickness corresponds to 3-4 layers of adsorbed 4He not participating

in a phase change, which seems plausible and is not inconsistent with the theoretical

results mentioned above.

We also find no evidence of any sudden density changes, such as a crystallo-

graphic phase transition, nor any signs of the solid 4He leaving the Vycor, such

as a de-wetting transition, at low temperatures. Anything of this sort would have

altered the moment of inertia in a torsional oscillator and could have looked like

mass decoupling (or, perhaps, it would have increased the moment of inertia). Our

results leave no doubt that the 4He stays put at low temperatures.

This first set of measurements described rule out some of the most obvious alter-

native explanations to the NCRI observed for solid 4He in Vycor, thus strengthening

the supersolid claims. It then becomes interesting, however, to see whether solid 4He

exhibits any of the other unusual flow properties of a superfluid. If we näıvely as-

sume that a supersolid behaves in an analogous way to a superfluid, there are other

experiments one could do to help solve this mystery. Some of these experiments are

described in the following chapters.
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Chapter 5

Pressure Induced Flow of Solid
Helium (Vycor)

Other than the torsional oscillator experiments, there has not (yet) been a direct

observation of supersolid behavior of 4He, either in bulk or under confinement.

However, the small critical velocities implied and the apparent sensitivity to 3He

impurities may affect dc flow (or other properties) even more strongly than the

decoupling in the torsional oscillator measurements. It is important to recall that

solids have many properties not shared by liquids (e.g., a lattice with shear rigidity)

and a supersolid may not exhibit all of the effects we typically associate with super-

fluidity (e.g., superleaks, persistent currents, thermo-mechanical effects, quantized

vortices, second sound, etc.). Below we describe an experiment to look for one such

property in solid 4He in Vycor: superflow in response to applied pressure.

5.1 Vycor experimental design

Since the measurements discussed in the previous chapter essentially rule out what

we believe to be the most obvious alternate explanations of the decoupling observed

in solid 4He in Vycor, it became interesting to see whether or not solid 4He exhibited

any of the other unusual flow properties of a superfluid.

By suddenly increasing the pressure in a cell containing the same Vycor sam-

ple used in our freezing experiment, we were able to monitor the pressure induced

flow of solid 4He into the pores. It is known that thermally activated vacancies can

transport mass in a pressure gradient. Beamish et al. [144] reported on results of

ultrasonic attenuation and velocity measurements of helium freezing in Vycor, in

which they observed attenuation peaks whose dependence on frequency and temper-
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ature was characteristic of a thermally activated relaxation process. The mechanism

responsible was identified as the relaxation of ultrasonic stresses in the solid helium

via vacancy diffusion. The diffusion rates and activation energy for diffusion which

they extracted were consistent with those determined in other experiments on solid

helium [35]. They note that when interpreting other freezing experiments in Vycor

it is imperative to consider mass transport due to this vacancy-diffusion mechanism,

since it can allow for pressure equilibrium to be maintained between the helium in

the pores and bulk helium outside.

Therefore, we expected to see flow at temperatures near the melting point, and

further expected that this flow rate should decrease rapidly with temperature.

5.1.1 Cell construction

The density and temperature measurements were performed simultaneously in one

cell. The Vycor sample (the same one that was used in the freezing experiment

described in Chapter 4) was sealed into a beryllium copper pressure “squeezing”

cell, with a flexible diaphragm machined into one end and an external piezoelectric

actuator designed to compress the helium by up to 1%. A schematic and image

of the cell are shown in Figures 5.1 and 5.2, respectively. The internal volume of

the cell was 1.2 cm3, much larger than the 0.018 cm3 volume in the Vycor pores.

A spring loaded clamp arrangement held the thin Vycor parallel plate capacitor

inside the cell. Crystals were again grown using the blocked capillary technique.

A 0.004” i.d. capillary, thermally anchored at several points on the fridge, was

used to introduce helium to the cell. Temperatures were measured with a calibrated

germanium thermometer above about 50 mK, with a 60Co nuclear orientation and/or
3He melting curve thermometer for lower temperatures.

5.1.2 Piezo-mechanics

5.1.2.1 Generation of motion by piezo-electrical devices

Piezo-actuators make use of the deformation of electro-active PZT-ceramics (PZT:

lead (Pb) zirconia (Zr) titanate (Ti)) when subjected to an electrical field; the sub-

sequent deformation may be used to produce motions and/or forces. This is com-

plementary to the effect of piezo-electricity, where electrical charges are produced

upon application of mechanical stress to the ceramic.

In the simplest case, a single PZT layer is used for piezo-mechanical conversion.
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Figure 5.1: Schematic image of the Vycor squeezing cell.

Figure 5.2: Image of the Vycor squeezing cell, next to a quarter for scale.

91



Such a PZT monolayer structure, as shown in Figure 5.3, behaves as a capacitive

element (where the piezo-ceramic is a dielectric enclosed by two thin conductive

electrode coatings). When this “piezo-capacitor” is charged by applying a voltage,

a deformation is created.

electrode

electrode

PZT ceramic

d33

d31

Figure 5.3: Schematic of a piezo-electric single layer element.

Stacked piezo-actuators (i.e., stacking several single layers to increase the total

stroke, like the one shown in Figure 5.4) make use of the increase of the ceramic

thickness in direction of the applied electrical field, known as the d33 effect. In

practice, axial strain rates up to 2‰ of stack’s length can be achieved under certain

conditions. Similar to normal elastic deformation of a solid state body, the thickness

expansion (d33) of a PZT layer is accompanied by an in-plane shrinking, as shown

in Figure 5.3. This is called the d31 effect, which is complementary in motion to the

d33 effect while showing roughly half the linear strain.

5.1.2.2 Thermal properties

Piezo-actuators show self-heating proportional to the reactive power balance during

dynamic operation. The self-heating is increased with drive frequency and ampli-

tude, and is further enhanced by the poor internal heat sinking (the sole mechanical

contacts of the PZT stack are its end-faces). In order to avoid measurable heat-

ing at base temperatures (e.g., 0.1 mK at temperatures below 50 mK), frequency

limitations for the operation of piezo-actuators exist. In fact, normal low-voltage

actuators with mid-sized diameters, like the one we used, come with the warning

that they tend to overheat for frequencies in the range of about 200 Hz/full stroke
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Figure 5.4: Image of the lead (Pb) zirconium (Zr) titanate (Ti) (PZT) piezoelectric
stack, next to a quarter for scale. The black polymer coating around the PZT stack
protects the brittle ceramic against “less skillful” handling (e.g., mechanical impact,
chemical contamination) and exotic driving conditions (e.g., cryogenic temperatures,
vacuum). Polymers are much more flexible than PZT-ceramics and do therefore not
adversely affect the piezo-action.

operation, presumably causing irreparable damage to the stack. Near the lowest

temperatures of the dilution refrigerator, for example, a 150 Vdc stroke caused

noticeable transient heating (about 1 mK at 29 mK).

The piezo-mechanical (and electrical) properties of PZT ceramic are a function

of temperature. When piezo-actuators are cooled down towards absolute zero, they

suffer from a reduced piezo-elongation factor (d33). For example, the stroke of our

piezo-actuator at 4 K is about 6% its room temperature value (nominally 20 µm).

5.2 Measurements in Vycor

As discussed in Chapter 4, our measurement of capacitance across the helium-filled

Vycor glass is a direct probe of the density of the helium within the Vycor pores.

We started at a pressure high enough to completely freeze the helium in the pores

and cooled to a temperature between near melting and 30 mK. We then suddenly

(over about 10 seconds) compressed the helium by applying 150 Vdc (Regulated

Power Supply, Model 71, Lambda Electronics Corp.) to the piezoelectric actuator

while monitoring the helium density in the Vycor. By increasing the pressure in

the reservoir around the Vycor, helium is encouraged to flow into the Vycor to
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equilibrate the newly created pressure gradient.

5.3 High temperature squeezing

Figure 5.5 shows data representative of the results of such “squeezes” at five temper-

atures between 1.8 K and 0.5 K (TF = 2.05 K at 57 bar for this data). At 1.1 K and

warmer, the density capacitance responded to the pressure step in two stages. First,

there was an immediate capacitance jump (an elastic response) of about 0.133 fF,

which occurred within the measurement time of our capacitance bridge (i.e., during

the 10 seconds taken to increase the pressure). Second, there followed a slower,

temperature-dependent increase (a plastic response). The time constant associated

with the slower increase varied from less than 30 seconds at 1.8 K to well over an

hour at 1.1 K. At temperatures below 700 mK (e.g., the 500 mK data in Figure 5.5)

there was no measurable density capacitance change following the initial jump.
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Figure 5.5: Density capacitance response of helium-filled Vycor to a rapid com-
pression of the surrounding helium by 0.1 bar. From top to bottom, the curves
correspond to temperatures 1.8 K (¥), 1.5 K (4), 1.3 K (N), 1.1 K (◦), and 0.5 K
(•). Horizontal line through the 0.5 K data is a guide to the eye.
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5.3.1 Elastic response of Vycor to ∆P

The initial 0.133 fF jumps in Figure 5.5 are due to the elastic compression of the

Vycor capacitor. Even if no helium flows into the pores, a pressure change, ∆P, will

nonetheless elastically compress the capacitor and produce a geometric change in

the density capacitance, ∆Cvycor, relative to the initial density capacitance, Cvycor.

Such a change is temperature independent, immediate, and can be calculated from

Vycor’s dielectric and elastic constants. If subjected to a change in pressure, ∆P,

then our Vycor capacitor will experience a change in volume, ∆V, relative to its

uncompressed volume, V, the magnitude of which is a function of its bulk modulus,

Kvycor. This change may be written as

∆V

V
= − ∆P

Kvycor
. (5.1)

Strictly speaking, we require the bulk modulus of the Vycor/helium system, but for

all intents and purposes this is equal to the bulk modulus of the Vycor alone.

The volume of our Vycor capacitor (of radius r and thickness t) is given by

V = πr2t, (5.2)

and so it follows that

∆V

V
= 2

∆r

r
+

∆t

t
. (5.3)

Assuming isotropy (for the sake of simplicity), Equations 5.3 and 5.1 together imply

∆r

r
=

∆t

t
=
−1
3

∆P

Kvycor
. (5.4)

The capacitance of our Vycor capacitor (with dielectric constant εvycor) is given by

Cvycor = εvycor
πr2

t
, (5.5)

and so it follows that
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∆Cvycor

Cvycor
=

∆εvycor

εvycor
+ 2

∆r

r
− ∆t

t
. (5.6)

The change in the dielectric constant is due to the change in density of the helium-

filled Vycor system. Recalling the Clausius-Mosotti equation (Equation 4.1), it

follows that

∆ρ

ρ
=

∆(ε− 1)
(ε− 1)

− ∆(ε + 2)
(ε + 2)

=
∆ε

(ε− 1)
− ∆ε

(ε + 2)

=
3∆ε

(ε− 1)(ε + 2)
. (5.7)

So, for our Vycor sample,

∆εvycor

εvycor
=

∆ρvycor

ρvycor

(εvycor − 1)(εvycor + 2)
3εvycor

. (5.8)

And, as

∆ρvycor

ρvycor
= −∆V

V
=

∆P

Kvycor
, (5.9)

we may write

∆εvycor

εvycor
=

(εvycor − 1)(εvycor + 2)
3εvycor

∆P

K
. (5.10)

Inserting Equations 5.4 and 5.10 into Equation 5.6 yields

∆Cvycor

Cvycor
=

(
(εvycor − 1)(εvycor + 2)− εvycor

εvycor

)
∆P

3Kvycor
. (5.11)

If we then take Vycor’s dielectric constant (εvycor = 3.1) as well as its bulk modulus

(Kvycor = 1.0 x 1010 Pa), we expect ∆Cvycor/Cvycor = (8.2 x 10−11 Pa−1) ∆P. The

0.133 fF jump, therefore, implies a pressure increase of about 4.3 bar.
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5.3.2 Plastic response of Vycor to ∆P

If solid helium subsequently flows into the Vycor to equalize the pressures after

compression, then the density capacitance will increase further, but at a slower rate

which depends on the flow velocity. This density capacitance change depends on the

compressibility of the helium in the pores, which can be estimated from the data of

Figure 5.6.
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Figure 5.6: Density capacitance during cooling at 36.2 bar (◦) and 54.0 bar (¤). The
inset shows the same two plots over a smaller temperature range.

The compressibility of a solid is given by

β = − 1
V

(
∆V

∆P

)
. (5.12)

And as -∆V/V = ∆ρ/ρ, we can write

β =
1

∆P

∆ρ

ρ
. (5.13)
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Inserting Equation 5.7 brings us to

β =
1

∆P

3
(ε + 2)

∆ε

(ε− 1)
. (5.14)

Recalling that the capacitance of the 4He in the pores of Vycor is given by

C = φ(εHe − 1)C0, (5.15)

we find that

∆C

C
=

∆(εHe − 1)
(εHe − 1)

=
∆εHe

(εHe − 1)
, (5.16)

which finally leads us to

β =
1

∆P

3
(εHe + 2)

∆C

C
. (5.17)

Looking at the 36.2 bar and 54.0 bar data at 1.45 K of Figure 5.6 (i.e., a difference

in pressure of ∆P = 17.8 bar = 1.78 x 106 Pa), the density capacitance difference

between the two is ∆C = 0.002 pF. The adsorption isotherm of Figure 4.11 showed

that helium’s contribution to the density capacitance is 0.052 pF at 1.8 K. This

allows us to estimate the solid’s compressibility (a measure of the relative volume

change of a fluid or solid as a response to a pressure change) as 2.1 x 10−8 Pa−1 (at

1.45 K), slightly less than the corresponding value for bulk helium (2.3 x 10−8 Pa−1

at 54.5 bar [145]).

For a 4.3 bar pressure step, equilibrating the pressure inside and outside the

pores would produce a change of about 4.8 x 10−4 pF, roughly what we observe

(about three times the magnitude of the elastic response).

The observed change in capacitance after the initial jump is a combination of

two factors. There is an increase in capacitance due to the helium flowing into the

pores and equilibrating the pressures, and there is a decrease resulting from the

Vycor glass springing back into its original dimensions.

The flow-induced density capacitance changes in Figure 5.5 occurred more slowly

as the temperature was reduced. This is consistent with mass transport via a ther-

mally activated process, presumably the diffusion of vacancies in the solid helium
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or in a disordered layer at the pore walls. Vacancy diffusion in solid 4He has been

studied under confinement [144] and in bulk [146]. Such a stress-induced migration

of vacancies is often referred to as vacancy creep or self-diffusion. The diffusion of

vacancies within the interior of the crystal cannot alter its external shape; however,

the migration of vacancies to or from the surfaces of a crystal or discontinuities in a

polycrystalline solid (e.g., grain boundaries, dislocations) does induce shape change.

For example, the arrival or departure of a vacancy at a surface causes matter to

be subtracted or added. This is the very basis of vacancy creep: a slow, diffusion-

controlled change in shape at elevated temperatures in response to a constant ap-

plied stress. Nabarro-Herring creep [147] is a form of diffusion-controlled creep, in

which atoms/vacancies diffuse through the lattice causing grains to elongate along

the stress axis.

Above 1.3 K, the capacitances approached similar final values within the time

shown; at 1.1 K the changes continued for much longer (e.g., many hours) and we

did not wait long enough to determine the asymptotic value. (It should be noted

that the flow behavior depended slightly on the thermal history of the sample and

differences between the final capacitance values may reflect defect creation associated

with deformation of the bulk solid and annealing at the higher temperatures. This

will be discussed in the section 5.5). At 0.5 K we saw no flow at all.

Even though the results of Figure 5.5 are not systematic enough to provide

a precise activation energy for the pressure induced flow (an empirical parameter

characterizing the exponential temperature dependence of the rate coefficient), it is

possible to determine an approximate value. If τ is the time constant associated

with the flow and Ea is the activation energy for the quasi-particles participating in

the flow at a temperature T, then we can write the rate of the observed flow as

1
τ

= Ae−Ea/kBT , (5.18)

where A is a pre-exponential factor. By writing Equation 5.18 for two different

temperatures and taking the ratio, we obtain a relation for the activation energy

Ea

kB
=

ln(τ2/τ1)
1/T2 − 1/T1

, (5.19)

Physically, the time constant represents the time it takes the system’s step re-
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sponse to reach 63.2% of its final asymptotic value (i.e., [1 - e−1] times its final

value). From the data in Figure 5.5 (as well as data from a squeeze at 1.7 K, not

shown in Figure 5.5 to avoid clutter), and assuming that the 1.8 K data had reached

the asymptotic value after about 20 minutes, we obtain time constants of τ1.8 ≈ 10 s,

τ1.7 ≈ 15 s, τ1.5 ≈ 30 s, τ1.3 ≈ 60 s. Through application of Equation 5.19, we obtain

activation energies of (Ea
kB

)1.8→1.7 ≈ 12.4 K, (Ea
kB

)1.8→1.5 ≈ 9.9 K, (Ea
kB

)1.8→1.3 ≈ 8.4 K,

(Ea
kB

)1.7→1.5 ≈ 8.8 K, (Ea
kB

)1.7→1.3 ≈ 7.7 K, (Ea
kB

)1.5→1.3 ≈ 6.8 K. Again, our results are

not systematic enough to provide a precise activation energy, but the data between

1.3 and 1.8 K indicate a value around 9 K.

Alternatively, we could take Equation 5.18 and plot ln(1/τ) against (1/T), as

shown in Figure 5.7. The negative slope of this line gives us an activation energy of

8.2 K.
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Figure 5.7: The determination of the activation energy of the quasi-particles in the
pressure-induced flow of solid 4He in Vycor.

The essential result is that solid helium near its melting point flows in Vycor
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when an external pressure is applied, but this flow is negligible at temperatures

below about half the melting temperature of the sample.

5.4 Low temperature squeezing

The most interesting question is whether or not the solid helium in the Vycor re-

sponds to a pressure difference when cooled below 200 mK (where Kim and Chan

saw decoupling). Figure 5.8 shows our density capacitance results at 88 mK when

the pressure was raised (by an estimated 4.3 bar), held for over four hours, and

then returned to its original value. By taking data at the capacitance minimum of

Figure 4.22 (88 mK), we eliminated potential background effects of the small tem-

perature changes caused by heating in the piezoelectric actuator. As can be seen,

there is no indication of any density change within the Vycor following the initial

capacitance jump. This measurement was also taken at 13 mK above (101 mK,

shown in Figure 5.10) and below (75 mK, shown in Figure 5.9) the capacitance

minimum, yielding the same result within the resolution of our system.
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Figure 5.8: Density capacitance change for a compression at 88 mK, followed by a
decompression 260 minutes later. Lines are a guide to the eye. The ever-so-slight
negative slope in the data is attributed to instrumental drift.
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Figure 5.9: Density capacitance change for a compression at 75 mK, followed by
a decompression 55 minutes later, a second compression 30 minutes later, and a
second decompression 30 minutes later. Lines are a guide to the eye.

About 0.5% of the helium was shown to decouple in Kim and Chan’s Vycor

measurements. If this fraction were to flow from the surface to the center of our

sample at their critical velocity (∼ 10 µm/s), then a 1% density change outside the

pores would be transmitted throughout the pores within a few seconds. Figure 5.8

shows that any pressure-induced helium flow in our experiments must occur at

much lower speeds. Assuming that helium does flow into the Vycor through the

perforations in the electrodes and its edges (totalling about 30% of the sample’s

outer surface), we can put a limit on the flow velocity of the helium into the pores

by looking at the noise in our signal. Note that an increase in measured density

capacitance (beyond the elastic compression of the Vycor) must be due to an increase

of the helium density within the pores; such an increase in helium density would be

the result of a movement of helium mass from the surrounding solid helium reservoir

to inside the Vycor, and may be expressed as

∆M = Atφ∆ρ = ρvav(0.3A)τ, (5.20)
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Figure 5.10: Density capacitance change for a compression at 101 mK, followed by
a decompression 40 minutes later. Lines are a guide to the eye.

where ∆M is the amount of mass that moves into the Vycor sample (of area A,

thickness t, and porosity φ), ∆ρ is the resulting density change within the Vycor, ρ

is the density of the helium, vav is the average velocity at which the helium flows,

and τ is the time interval over which the helium is allowed to move into the Vycor.

This permits us to write

vav =
tφ

(0.3)τ
∆ρ

ρ
. (5.21)

Recalling that

∆C = φ(εHe − 1)Co, (5.22)

it follows that

∆C

C
=

∆(εHe − 1)
(εHe − 1)

=
∆εHe

(εHe − 1)
. (5.23)
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And recalling that

∆ρ

ρ
=

3∆ε

(ε− 1)(ε + 2)
. (5.24)

we get

∆C

C
=

(εHe + 2)
3

∆ρ

ρ
, (5.25)

which finally allows us to write Equation 5.21 as

vav =
tφ

(0.3)τ
3

(εHe + 2)
∆C

C
. (5.26)

As a reminder, our Vycor was 0.52 mm in thickness and had a porosity equal to

0.28; the noise in our density capacitance reading (see Figure 5.8) is 0.00002 pF and

the density capacitance of the helium itself is 0.052 pF. With that, we find that the

average flow velocity, vav must be less than or equal to 0.012 nm/s. If we further

consider that the helium that flows into the Vycor is a supersolid component, which

is of the order 0.5% of the total helium density, then we can put an upper limit on

the critical velocity, vc, of this supersolid component of 3 nm/s (i.e., ρvav = ρsvc).

We extended our squeezing measurements down to 48 mK with no indication of

mass flow. Below this temperature, dissipation in the piezoelectric actuator would

heat the cell slightly (∼ 1 mK) and prevented accurate measurements.

5.5 Sensitivity to sample history

Not surprisingly, the measured response to deformation was sensitive to both the

thermal history (whether it had been annealed, or if its current temperature had

been reached from above or below, etc.) and the mechanical history (whether it

had been previously deformed) of the polycrystalline sample. Figure 5.11 provides

an example of how simple mechanical history of a sample (TF = 1.46 K at 34 bar,

with bulk melting at ∼ 1.9 K) can affect the measurement. Here, the sample was

solidified and cooled directly to 0.5 K, where it was then compressed. The first

compression results in an immediate increase in the density capacitance (due to

the elastic compression of the Vycor), followed by a slower increase in the density
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capacitance (cause unknown). Decompression results only in an immediate decrease

of the density capacitance, equal in magnitude to the initial immediate increase

following compression. Subsequent compressions and decompressions result solely

in this elastic response.
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Figure 5.11: Deformation history dependence of pressure-induced flow at 0.5 K. The
first squeeze is for a crystal that has not been annealed, nor previously compressed.
The magnitude of the elastic response for both compression/decompression sets is
the same.

Figure 5.12 shows measurements on a sample (TF = 2.12 K at 57 bar, with

bulk melting at ∼ 2.5 K) with a more involved thermal and mechanical history. The

crystal was grown slowly, 2.55 K to 2.10 K at 1 mK per 120 seconds, and then cooled

to 2.06 K and compressed twice. Once the density capacitance had equilibrated, the

sample was cooled to 2.0 K and compressed again (top curve). We then repeated

this process at 1.9 K, 1.8 K, and 1.5 K, before returning to 2.0 K for another

compression (bottom curve). The curves have not been offset. The difference in

shape and absolute value of the density capacitance curves serves to remind us that
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returning to the same temperature is not at all equivalent to returning to the same

thermodynamic state of the sample.
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Figure 5.12: Thermal history dependence of pressure-induced flow at 2.0 K. The
top curve (•) is the pressure-induced flow response in a crystal at 2.0 K, reached
from cooling from warmer temperatures, and with minimal mechanical history. The
bottom curve (◦) is the pressure-induced flow response in a crystal at 2.0 K, reached
from warming from cooler temperatures, with significant mechanical history. The
offset between the curves is real.

A further complication to these measurements (which was not fully understood

at the time of their collection) was the common occurrence of a background drift.

Figure 5.13 shows an example of this drift as the sample sat for 6 hours overnight

at a constant temperature of 0.5 K, at 57 bar.

Figures 5.14, 5.15, and 5.16 show examples of this drift occurring as we were

applying the pressure difference. The dashed lines in each are guides to the eye,

and are intended to show how the thermally activated background drift slows as the

temperature is reduced (i.e., the slope of the dashed line is steepest in Figure 5.14

at 1.9 K and gentlest in Figure 5.16 at 1.5 K).
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Figure 5.13: Overnight (6 hour) background drift as the sample sits at 0.5 K.

These background drifts are likely caused by a shifting of the Vycor sample

inside our cell, as extended defects re-organize themselves within the strained crystal.

Recall that the initial squeeze to which the sample is subjected is uniaxial and so

the initial sample compression is certainly not isotropic: pressure gradients will exist

between the volume directly below the diaphragm and the regions near the cell wall.

This sort of compression may relax by bulk flow to a more isotropic compression,

and such bulk flow could shift the position of the Vycor sample. The capacitance we

measure includes an effect from fringe fields (about 10% of the total capacitance),

and such fields are sensitive to the precise geometry of the of the capacitor within

its immediate environment. Shifting the Vycor capacitor’s position will result in a

change of the density capacitance we measure even though the density of the helium

within the Vycor is unchanged. Admittedly, we held a poor understanding of the

pressure response of bulk 4He at the time of these experiments (a good motivation

for the bulk flow experiments that follow, and the subsequent care we took to always

start from the same “pressure-annealed” state).
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Figure 5.14: Squeezes during the background drift at 1.9 K. The rate at which the
(downward) background drift occurs is a function of temperature.
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Figure 5.15: Squeezes during the background drift at 1.8 K. The rate at which the
(downward) background drift occurs is a function of temperature.
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Figure 5.16: Squeezes during the background drift at 1.5 K. The rate at which the
(downward) background drift occurs is a function of temperature.

5.6 Conclusions

The NCRI observed in Kim and Chan’s torsional oscillator measurements appears to

be a fundamental property of solid helium at low temperatures. Our measurements

rule out alternative explanations of their results based on redistribution of mass

in Vycor rather than supersolid decoupling. However, we do not see any evidence

of pressure induced flow in the temperature range where they observed supersolid-

ity. This is consistent with previous experiments by Greywall[41] in which a small

pressure difference (∼ bar) between two sample chambers filled with solid 4He and

joined by fine capillaries was measured as a function of temperature. For temper-

atures greater than 30 mK and for pressures between 25 and 50 bar there were no

indications (i.e., a similar limit of 0.002 µm/s, using Kim and Chan’s bulk supersolid

fraction of 1.5%, on pressure-induced flow of bulk solid helium through capillaries)

of “superfluid flow” in the capillary.

If a supersolid exists, then this experiment shows that its flow properties must

be quite different from that of superfluids, since the chemical potential difference

created by a pressure change does not appear to produce superflow.
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Chapter 6

Pressure Induced Flow of Solid
Helium (Bulk)

The observation of NCRI in bulk solid 4He [9] suggests that the superfluid-like

behaviour is a general property of solid helium and not the result of confinement in

any particular medium. It should be made clear, however, that this discovery does

not diminish the importance of the Vycor torsional oscillator results [10]. In fact,

the problem arguably becomes more difficult to solve as possible explanations for

the NCRI should apply to both systems (confinement and bulk). While it is entirely

possible that two separate mechanisms act for each system, it seems unlikely. As

an example, recall that mass can be transported in bulk crystals via the motion

of extended defects like dislocations or grain boundaries. Some have noted [18, 61]

that such defects may be essential for supersolidity. But these very same defects

would be pinned in small pores and would not explain the observed NCRI in Vycor.

Therefore, it seems unlikely (although, certainly not impossible) that such defects

are required for supersolidity. All the same, in discovering that the NCRI was

not a result of confinement, the more pertinent experiments became those which

investigate the properties of bulk solid 4He.

6.1 Bulk experimental design

The motivation behind the experiment described here is that, other than the tor-

sional oscillator experiments, there had not to date been any direct observations of

supersolid behavior, either in bulk or in small pores. However, the small critical

velocities (µm/s) and the sensitivity to 3He impurities (at the ppb level) may affect

dc flow (or other properties) even more strongly than the torsional oscillator mea-
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surements. Also, and more fundamentally, we must keep in mind that solids have

properties not shared by liquids (e.g., a lattice with shear rigidity) and a supersolid

simply may not exhibit all of the effects we associate with superfluidity (e.g., su-

perleaks, persistent currents, thermo-mechanical effects, quantized vortices, second

sound, etc.). Here we describe a set of experiments to look for one such property in

solid 4He: superflow in response to pressure differences. We have used a piezoelec-

trically driven diaphragm to study the pressure-induced flow of solid 4He through

an array of capillaries at low temperatures. We applied small pressure differences

(3 to 100 mbar) at low temperatures (down to 35 mK) and used both isotopically

purified 4He (1 ppb 3He concentration [148]) and 4He with the natural isotopic com-

position (typically 0.3 ppm 3He). We made both dc and low frequency ac (below

1 Hz) measurements, but did not see any evidence of flow below about 1 K.

6.1.1 Glass capillary array sample

Glass capillary arrays [149] (GCAs) consist of tens of thousands of precision glass

capillary tubes fused together to produce a uniform and mechanically rigid structure

(see Figures 6.1,6.2,6.3).

Figure 6.1: SEM image of our GCA.

The manufacture of these arrays begins with the fusion of drawn and clad glass
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Figure 6.2: Close-up SEM image of our GCA.

Figure 6.3: Even closer-up SEM image of our GCA.

112



fibres. The holes of the capillaries are created via a chemical etching process, pro-

ducing a smooth interface between the polished surfaces of the cladding and the

etch-able core. After the chemical removal of the etch-able core element, few defects

larger than 1/100th of a capillary diameter remain. The etched holes are individu-

ally straight and parallel, and the diameters in a close-packed array typically vary

by less than 5% from one to another, and by less than 2% along their length.

6.1.2 Cell construction

The pressure and temperature measurements were performed simultaneously in one

cell (the “squeezing” cell). A schematic of the cell is shown in Figure 6.4, with a

magnified view of the central part of the cell shown in Figure 6.5, and an image of

the cell is shown in Figure 6.6. Our beryllium copper cell consisted of two cylin-

drical chambers connected by a GCA porous barrier (roughly 36,000 parallel glass

capillaries, 25 µm in diameter, and 3 mm long). The porous barrier had an open

cross-sectional area A = 0.18 cm2. The outer wall of the larger chamber (diame-

ter = 25 mm, height ≈ 1 mm, volume V1 = 0.49 cm3) included a flexible diaphragm

which could be moved with an external piezoelectric actuator (APC International,

model PSt 150/10 x 10 x 18 [150]) to compress the helium. The smaller chamber

(diameter = 7 mm, height ≈ 0.3 mm, V2 = 0.01 cm3) included an in situ Straty-

Adams capacitive pressure gauge which, when used with a 1 kHz automatic bridge

(Andeen-Hagerling 2550A), had a resolution and stability better than 0.2 mbar. A

simple block diagram of the electronics used to make our measurements is shown

in Figure 6.7. Data collection (i.e., automatic capacitance bridge readouts) was

automated by a computer.

The cell, which had a total volume (including the GCA channels and fill line)

Vtotal = 0.79 cm3, was mounted onto the bottom of the mixing chamber of our

dilution refrigerator. A 0.004” i.d. capillary, thermally anchored at several points

on the fridge, was used to introduce 4He to the cell. Temperatures were measured

with a calibrated germanium thermometer above about 50 mK, with a 60Co nuclear

orientation and/or 3He melting curve thermometer for lower temperatures.
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Figure 6.4: Schematic image of the bulk squeezing cell, with the GCA in place.

small chamber

Straty-Adams gauge

GCA
large chamber

Figure 6.5: Close-up schematic image of the bulk squeezing cell, with the GCA in
place.
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Figure 6.6: Image of the bulk squeezing cell, next to a Canadian twoonie coin for
scale.
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Figure 6.7: Block diagram for the bulk squeezing experiment.
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6.2 Measurements in bulk (without GCA)

Before studying the pressure-induced flow of solid 4He across the GCA porous bar-

rier, we performed a few simple measurements in our cell without the GCA porous

barrier. This involved growing a solid 4He sample in the open volume (see Fig-

ure 6.8 for a schematic) between the diaphragm and the pressure gauge, and then

squeezing the sample (by flexing the diaphragm) while measuring how the pressure

was transmitted across the sample to the pressure gauge.

solid helium

piezoelectric stack

diaphragm

Straty-Adams gauge

fill line

Figure 6.8: Schematic image of the bulk squeezing cell, without the GCA installed.

First, the Straty-Adams capacitive pressure gauge was calibrated against a room

temperature Mensor pressure gauge. This involved filling the cell at low temperature

with liquid helium to known pressures (measured by the Mensor pressure gauge on

the gas handling system) and recording the capacitance of the Straty-Adams gauge.

This was done at 5 bar intervals, for pressures between about 25 and 75 bar. The

pressure is plotted against the capacitance, and a second-order polynomial is fit

to the data; it is this polynomial, then, which is used to convert our capacitive

read-outs to a pressure.

The cell was then filled with high-pressure, commercially purified, liquid 4He
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Figure 6.9: The 4He melting curve [151].

(0.3 ppm 3He impurities) at 4.2 K and a solid sample was grown in the open volume

of the cell using the blocked capillary technique. The melting curve of 4He is shown in

Figure 6.9, with a focus on the thermodynamic phase space in which our crystals are

grown. Subsequent phase diagrams showing the measured thermodynamic path do

not include the lambda line (dividing the normal fluid from the superfluid phase), as

none of the solid samples presented in this thesis ever passed through the superfluid

phase. For this sample, freezing began at T = 2.39 K and P = 53.2 bar and was

complete at T = 1.76 K and P = 29.9 bar (the sample subsequently passed along

the bcc/hcp phase line upon further cooling, before entering the pure hcp phase at

1.70 K and 29.3 bar). This thermodynamic path is shown in Figure 6.10. It must be

made clear that the path shown here (and all others) is measured data of pressure

versus temperature.

The cell was then cooled to 1.60 K and the linearity of the compressions was

tested. Figure 6.11 shows the pressure capacitance CP increase which results from

the application of a voltage to the PZT stack, thus compressing the sample. The

left side of the plot shows the CP increase (and subsequent decrease) resulting

from the application (and subsequent removal) of 140 Vdc to the PZT stack. The
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Figure 6.10: The thermodynamic path for the solid 4He sample in open squeezing
cell. Inset shows a close-up of the end of freezing. This data is the pressure versus
temperature as we measured it.

compression(decompression) results in a positive(negative) capacitance change of

2.8 fF, corresponding to a pressure change of 0.08 bar within the sample, about 0.3%

of the initial pressure. This change in pressure occurs effectively immediately. The

right side of the plot shows the CP increase (and subsequent decrease) resulting from

the stepwise application (and subsequent removal) of five 25 Vdc and one 15 Vdc

increases to the PZT stack. The total pressure change (0.08 bar) after the stepwise

application of 140 Vdc is equal the total pressure change after the single application

of 140 Vdc to the PZT stack, confirming the linearity of our compressions and

decompressions.

This measurement was also made at 750 mK and is shown in Figure 6.12. Here,

140 Vdc compressions result in pressure changes of 0.1 bar. Given the solid’s reduced

compressibility at lower temperatures [145], a larger pressure change was expected

for this measurement. What was unexpected, however, was that the pressure change

deeper within the solid phase at 750 mK be ∼ 20% greater than what was observed

near melting (the solid’s compressibility only changes by only a few percent with

decreasing temperature). In hindsight, we suspect that at 1.6 K there may be some

“flow” of solid to equilibrate the pressure over the entire volume of the cell. At lower
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Figure 6.11: Pressure response to squeezes in open bulk cell containing solid 4He at
1.60 K. Lines are guides to the eye.

temperatures, pressure gradients would instead remain.

Finally, this measurement was made at 50 mK and is shown in Figure 6.13. There

is no discernable difference between the 750 mK and the 50 mK pressure changes,

as expected given that the solid’s compressibility is constant below ∼ 1 K [145].
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Figure 6.12: Pressure response to squeezes in open bulk cell containing solid 4He at
750 mK. Lines are guides to the eye.
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Figure 6.13: Pressure response to squeezes in open bulk cell containing solid 4He at
50 mK. Lines are guides to the eye.
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6.3 Measurements in bulk (with GCA)

The GCA was then epoxied into the cell, dividing the inner volume into two sepa-

rate chambers, as previously described. If helium moves a distance dx through the

capillaries, the resulting pressure change is given by

dP =
A

κHeV2
dx, (6.1)

where κHe is the helium’s compressibility. With a resolution on our capacitive

pressure gauge equal to 0.2 mbar, we typically could detect a 0.3 nm displacement

of solid 4He through the GCA.

A back-of-the-envelope calculation of the elastic energy of the system suggests

that we should not expect to see any elastic displacement of solid 4He across the

entire 3 mm length of the capillaries in our GCA. Imagine one single channel, as

shown in Figure 6.14, of radius r, which is filled with solid 4He, elastically compressed

from the top by δl, where l characterizes the distance over which a deformation from

equilibrium exists.

δl

l

r

Figure 6.14: Elastic deformation of solid helium in a channel.

This system is subject to compressional strain
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εc ∼ δl

l
(6.2)

and to shear strain

εs ∼ δl

r
. (6.3)

The total elastic energy, Eel of this system at fixed δl and r, then, is

Eel = Ec + Es =
1
2
(κ +

4
3
µ)εc

2V +
1
2
µεs

2V, (6.4)

where κ and µ are the bulk and shear modulus of the solid helium, respectively. We

use the longitudinal modulus (κ + 4
3µ) in this expression rather than just the bulk

modulus κ as we are only compressing in one direction (as in a longitudinal plane

wave). We may then write

Eel =
1
2
κ

δl2

l2
πr2l +

2
3
µ

δl2

l2
πr2l +

1
2
µ

δl2

r2
πr2l (6.5)

=
1
2
κ

δl2

l
πr2 +

2
3
µ

δl2

l
πr2 +

1
2
µδl2lπ. (6.6)

Minimizing Equation 6.6 with respect to the characteristic penetration depth of the

deformation l gives us

0 =
dEel

dl
= −1

2
κ

δl2

l2
πr2 − 2

3
µ

δl2

l2
πr2 +

1
2
µδl2π, (6.7)

which simplifies to

l = r

√
κ

µ
+

4
3
. (6.8)

As κ ≈ µ, we can conclude that l ≈ 1.5r; that is to say, the deformation only

penetrates the length of the channel to a depth roughly equal to its diameter. So,

we do not expect to see any elastic deformation at the opposite end of the GCA

channels (which have length 120 times greater than their diameter).
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Computer modelling was initiated to confirm that we should not expect such

an elastic deformation to span the length of our channels. Specifically, a deforma-

tion analysis of low temperature bulk solid 4He within a GCA channel was done

using a 3-D solid, stress-strain structural mechanics module within the COMSOL

Multiphysics [152] simulation environment. Preliminary models predict that the ap-

plication of 100 mbar in the direction of the length of the 4He-filled channel results

in a maximum compressional displacement of the order of the channel diameter

(∼ 25µm), and that the characteristic depth to which the deformation exists does

not extend beyond a few channel diameters (∼ 75 µm). This is consistent with the

back-of-the-envelope calculation presented above.

What we might expect to see, however, is plastic flow of solid 4He along the

channels. Helium is a relatively soft solid, often likened to butter. Mass may be

transported in bulk crystals via the motion of extended defects like grain boundaries

or dislocations (e.g., the glide of dislocations on parallel sets of crystal planes).

Mass may also be transported by vacancy motion. If a vacancy moves one lattice

spacing to the left, a helium atom moves one lattice spacing to the right. Mass

can be moved and crystals can be deformed through a mechanism called diffusional

flow [147] (or vacancy creep), the stress-induced migration of vacancies. Because

of the lattice mismatching between the helium crystals in the GCA pores and that

which is strongly adsorbed to the GCA pore wall, a higher-than-usual density of

such defects might be expected near the walls of the GCA.

With an idea of what we might expect to see, we began by filling and pressurizing

the cell at 4.2 K, using a room temperature gauge to calibrate our capacitive pressure

gauge (as described earlier). The actuator and diaphragm were then calibrated in

the liquid phase at 1.95 K and 36.4 bar, just below the melting curve. Figure 6.15

shows the pressure response of the liquid in the small chamber when the full voltage

(150 Vdc) was applied to the actuator, thus compressing the liquid in the large

chamber. It should be pointed out that the capillary was blocked (by a closed

needle valve) higher up along the fill line. As expected, the pressure increased

immediately (within the few seconds the capacitance bridge took to respond), and

returned to its original value when the diaphragm was released after about half an

hour. The pressure change due to the compression was ∆Pliquid ≈ 84 mbar. Using

the liquid’s compressibility (κliquid ≈ 3.6 x 10−3 bar−1 [151]) gives a volume change

∆V/Vtotal ≈ 0.03%, corresponding to a diaphragm deflection of about 1 µm. This is
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consistent with the manufacturer’s statement [150] that the full stroke (0→ 150 Vdc)

at low temperature is 6% of its room temperature value of 20 µm.
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Figure 6.15: Pressure response to squeezes in liquid 4He, at 1.95 K and 36.4 bar.
Lines are guides to the eye.

Crystals were then grown using the blocked capillary, constant volume technique,

with isotopically purified 4He (nominally 1 ppb 3He impurity concentration). This

is the same gas used in Kim and Chan’s torsional oscillator experiments [52]. We

started with liquid at high pressure and monitored the cell pressure as it was cooled.

At a pressure of 61.7 bar, freezing began at 2.60 K and was complete at a final

pressure of 36.8 bar. This thermodynamic path is shown in Figure 6.16.

We then annealed the solid by keeping it within 50 mK of its melting tem-

perature for at least 2 hours, thereby eliminating many of the pressure gradients

created during freezing and thus producing a sharp melting onset (at Tm = 1.96 K),

characteristic of a uniform density crystal, and as shown in Figure 6.17.

Our basic flow measurement was made at temperatures below Tm by quickly
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Figure 6.16: The thermodynamic path for solid 4He sample in open squeezing cell
with GCA. Inset shows a close-up of the end of freezing. This data is the pressure
versus temperature as we measured it.
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Figure 6.17: The elimination of pressure gradients through annealing. Pressure is
measured in situ during blocked capillary freezing of 4He (•) and subsequent melting
(◦). Annealing essentially eliminates the initial pressure gradients (∼ 200 mbar).
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(over about 5 seconds) applying a dc voltage to the actuator to squeeze the solid
4He, thus increasing the pressure in the large chamber. In contrast to the case

where the cell contained liquid, the solid helium may flow through the GCA channels

slowly, or not at all, and so the pressures in the two chambers may not equilibrate.

However, even without flow, some pressure is transmitted to the second chamber,

since a pressure difference will cause the GCA plate separating the chambers to

flex elastically. This small deflection appears as an immediate pressure step in the

other chamber. Any subsequent flow through the channels will further increase the

pressure, but more slowly.

The data in Figures 6.18 and 6.19 show the response to a pressure step when

the cell contains isotopically purified solid 4He (1 ppb 3He impurity concentra-

tion). At 0.5 K (Figure 6.18) the pressure in the second chamber immediately

changed by 38 mbar, corresponding to the GCA flexing by about 30 nm. Above

about half the melting temperature, this initial jump was followed by a slower,

temperature-dependent change due to flow. The curve in Figure 6.19 shows the

response at 1.95 K, very close to melting. After the initial jump, the pressure con-

tinued to increase due to flow of solid through the channels, but stabilized within

about half an hour. During this time, the GCA presumably relaxes to its original

position. The total increase of 105 mbar is slightly larger than the correspond-

ing change with liquid helium, as expected given the solid’s smaller compressibility

(κsolid ≈ 3.1 x 10−3 bar−1 [151]), and indicates that, near melting, flow through the

channels can maintain pressure equilibrium between the two chambers.

For all three sets of data, we confirmed the linearity of the response (i.e., the

pressure changes were proportional to the voltage applied to the diaphragm actua-

tor). Figure 6.20 shows these results.
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Figure 6.18: Pressure response to squeezes in solid 4He, at 500 mK and 36.6 bar.
The magnitude of the vertical scale is the same as on Figure 6.15. Lines are guides
to the eye.
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Figure 6.19: Pressure response to squeezes in solid 4He, at 1.95 K and 37.1 bar. The
magnitude of the vertical scale is the same as on Figure 6.15. Lines are guides to
the eye.
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Figure 6.20: The linearity of the pressure response to the compressions as a function
of applied voltage. Data sets for the solid at 1.95 K (◦) and for the liquid at 1.95 K
(•) have been shifted vertically by a constant amount to agree with the data set for
the solid 0.5 K (¤) at 0 Vdc. Lines are guides to the eye.
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6.4 High temperature squeezing

Figure 6.21 shows the response of a 42.0 bar sample of commercially purified solid
4He (0.3 ppm 3He impurity concentration), with a melting temperature Tm = 2.12 K,

when the larger chamber was suddenly compressed by about 0.1 bar and then de-

compressed 300 seconds later. The pressure in the smaller chamber responded in

two stages. First, there was an immediate pressure increase caused by the GCA

flexing elastically due to the pressure difference, thus compressing the helium in

the smaller chamber. Second, there followed a slower, temperature-dependent pres-

sure increase as solid helium flowed through the 25 µm channels in response to the

pressure gradient across the GCA.

At 2.10 K (i.e., 20 mK below melting), the pressure stabilized within a minute

following a compression and returned to its original value just as quickly after de-

compression. This confirms that both chambers experienced essentially the same

compression (i.e., that flow of solid through the GCA equilibrated the pressures in

the two chambers within a minute). We studied the response at lower temperatures,

but between squeezes we always warmed the crystal to 2.10 K to ensure we started

each measurement from a state of pressure equilibrium.

The response of solid helium changed rapidly as the temperature was lowered.

At 2.08 K the pressure increase after squeezing was essentially unchanged but after

decompression the pressure did not return quite to its original value. At 2.04 K the

pressure increase was smaller (by about 5%) and after decompression the pressure

remained even higher, indicating that flow in the solid was no longer sufficient to

completely eliminate the pressure difference between the two chambers. By 1.96 K

the decompression produced only a small pressure drop and below 1.92 K there was

almost no flow through the GCA after squeezing. This irreversible behavior due to

flow is characteristic of plastic deformation, as are the stress gradients that remain

after compressing and decompressing. As can also be seen, the flow slowed as the

temperature was lowered, but the complicated behavior we observed (e.g., note the

small bump developing at the beginning of compression as early as 1.98 K) cannot

be described simply with a thermally activated time constant. Instead, it appears

to reflect the creation of defects (dislocations) and stress gradients during pressure-

induced flow and the subsequent partial annealing of these defects near the melting

temperature.
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Figure 6.21: Bulk 4He: Temperature dependence of pressure response to a compres-
sion/decompression near the melting point of a 42.0 bar sample with a 0.3 ppm 3He
impurity concentration.

Figure 6.22 shows the response of a 41.2 bar sample of commercially purified solid
4He (0.3 ppm 3He impurity concentration), with a melting temperature Tm = 2.08 K,

for the same type of compression/decompression procedure as above. The behaviour

is extremely similar to that shown in Figure 6.21.

131



41.155

41.195

41.235

41.275

41.315

-200

0

200

400

600

1.90

1.95

2.00

2.05

P
re

ss
u
re

 (
b
ar

)

Time (s)

Temperature (K)

41.155

41.195

41.235

41.275

41.315

-200

0

200

400

600
1.90

1.95

2.00

2.05

P
re

ss
u
re

  
(b

ar
)

Time (s)
Temperature (K

)

41.155

41.195

41.235

41.275

41.315

-200

0

200

400

600

1.90

1.95

2.00

2.05

P
re

ss
u
re

 (
b
ar

)

Time (s)

Temperature (K)

41.155

41.195

41.235

41.275

41.315

-200

0

200

400

600

1.90

1.95

2.00

2.05

P
re

ss
u
re

 (
b
ar

)

Time (s)
Temperature (K

)

Figure 6.22: Bulk 4He: Temperature dependence of pressure response to a compres-
sion/decompression near the melting point of a 41.2 bar sample with a 0.3 ppm 3He
impurity concentration.
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6.5 Low temperature squeezing

The most interesting question is whether solid helium will flow through the chan-

nels in the temperature range where Kim and Chan saw decoupling. Figure 6.23

compares the pressure response at 35 mK to that at 500 mK in a sample of iso-

topically purified solid 4He (1 ppb 3He impurity concentration). They are offset for

clarity and are essentially identical, with no indication of flow over a period of about

20 hours.
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Figure 6.23: Solid 4He response at 500 mK (upper curve, ¤’s) and 35 mK (lower
curve, •’s). Lines are guides to the eye and the curves are offset for clarity. Note
the time scale, which is much longer than in Figures 6.21 and 6.22.

The rate of pressure change, set by the noise in our data, is given by

dP

dt
=

Avav

κsolidV2
<

0.5 mbar
20 hours

. (6.9)

With A ≈ 0.18 cm2, V2 ≈ 0.01 cm3, and κsolid ≈ 3.1 x 10−3 bar−1, this provides a
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limit on the average flow velocity of the solid,

vav =
ρs

ρ
vc < 1.2 x 10−14 m/s. (6.10)

Taking Kim and Chan’s value of ρs

ρ ≈ 0.01, we conclude that any supersolid

fraction present in the helium moves at a velocity of 1.2 x 10−12 m/s. This is seven

orders of magnitude below the supercritical velocities inferred from the Kim and

Chan torsional oscillator experiments.

For completeness, we also show Figure 6.24, which compares the pressure re-

sponse at 75 mK to that at 500 mK in a sample of commercially pure solid 4He

(0.3 ppm 3He impurity concentration). They are offset for clarity and their magni-

tudes are essentially identical. There is no indication of flow over a period of about

12 hours in the 75 mK sample.

Time (hours)

0 2 4 6 8 10 12

P
re

ss
u
re

 (
b
a
r)

40.50

40.51

40.52

40.53

40.54

40.55

40.56

Time (seconds)

0 100 200 300 400 500 600

Figure 6.24: Solid 4He response at 500 mK (upper curve, ¤’s) and 75 mK (lower
curve, •’s). Lines are guides to the eye and the curves are offset for clarity. Note
the different time scales.
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6.6 AC pressure induced flow

A common point raised in response to the pressure-induced flow results presented

above is that while these experiments measure a dc effect, the torsional oscillators

are an ac probe (i.e., they oscillate back-and-forth). Therefore, we also made low

frequency ac measurements using the piezoelectric actuator to produce smaller pres-

sure oscillations (±4 Vpeak−to−peak, corresponding to ±3 mbar). The pressure was

measured using a manual capacitance bridge (General Radio 1615-A, operating at

10 kHz) with an analog lock-in amplifier, and the ac response was monitored with

a digital lock-in amplifier(Stanford Research SR830 DSP). A simple block diagram

of the electronics used to make our measurements is shown in Figure 6.25. Sample

heating from the piezoelectric actuator limited these measurements to frequencies

below 1 Hz, and so we were not able to make direct comparisons to the Kim and

Chan torsional oscillator measurements at 1 kHz.

At 0.5 K the amplitude of the pressure oscillations was independent of frequency

up to about 1 Hz, as expected since the GCA can flex very rapidly. Close to melting,

the frequency dependence was considerably more complicated since, as Figures 6.21

and 6.22 remind us, the solid can flow through the capillaries even on a time scale

of a few seconds. We looked for ac flow at low temperatures by cooling a 34.3 bar

sample of isotopically purified solid 4He (1 ppb 3He impurity concentration) below

0.5 K. Figure 6.26 shows the amplitude of the pressure oscillations at a frequency

of 0.1 Hz. It also shows 0.01 Hz data at 35 mK and at 0.5 K, illustrating the

frequency independence over this temperature range. The resolution is better than

for dc flow and the pressure amplitude is constant within ±0.02 mbar. No evidence

of temperature dependence is seen that could be attributed to the onset of flow

through the capillaries.

6.7 Conclusions

For a supersolid fraction ρs/ρ = 1%, our dc flow limit (obtained from Equation 6.10)

implies a critical velocity vc ≤ 1.2 x 10−12 m/s, seven orders of magnitude smaller

than the critical velocity inferred from Kim and Chan’s torsional oscillator mea-

surements and more than three orders of magnitude smaller than the limits set by

previous flow experiments [41, 43]. Flow in solids often involves dislocations or grain

boundaries, which can be immobilized by small concentrations of impurities. Our
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Figure 6.25: Block diagram for the ac squeezing experiment.
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Figure 6.26: AC pressure response in solid 4He at low temperatures. Solid symbols
are taken at 0.1 Hz during cooling. Open squares at 35 mK and 500 mK were taken
at 0.01 Hz.

measurements using isotopically purified 4He were essentially identical to our results

with commercially purified 4He, so the absence of pressure-induced superflow seems

not to be due to impurity pinning of such defects (although it possible that such

effects are sensitive to impurities even at the ppb level). There has also been a

suggestion [84] that a surface melted layer could allow solid helium in a torsional

oscillator to slip, providing an alternative, non-supersolid explanation of the bulk
4He decoupling. Our measurements appear to rule out such behavior at low tem-

peratures, although it may occur near melting. The torsional oscillator results were

also consistent with the displacement, rather than the velocity, being limited to a

critical value. We can put limits on possible displacements of the solid helium at

low temperatures from the data in Figures 6.23 and 6.26.

Recall that the bulk modulus K is given by

K = −V

(
∂P

∂V

)

T

. (6.11)

Solid 4He has a bulk modulus of ∼ 325 bar, while the volume of the chamber is

137



11 mm3. A pressure increase in this chamber will result if its volume is decreased. We

can correspond this decrease to some volume of solid 4He moving a distance h along

the 36,000 GCA channels of radius r and into the chamber (i.e., ∆V = 36000 πr2h).

Since the pressure jumps at 35 and 500 mK of Figure 6.23 agree within 1 mbar, the

corresponding displacements (i.e., the distance that solid 4He can travel along the

length of our GCA capillaries) cannot differ by more than 2 nm.

Our ac measurements are less sensitive to flow, but more sensitive to displace-

ments, and rule out movements of solid helium through the channels larger than

0.03 nm. If we again assume that only a 1% supersolid fraction moves, this would

imply supersolid displacements less than 3 nm, comparable to the amplitude of Kim

and Chan’s torsional oscillator at their critical velocity (for their 1 kHz oscillator,

vc ≈ 10 µm/s corresponds to an amplitude vc/ω ≈ 2 nm). These experiments show

that static or low frequency pressure differences do not produce either superflow or

unusual displacements at low temperatures in solid 4He. If the helium forms a su-

persolid, then its flow properties must be quite different from those of a superfluid,

in which the chemical potential difference created by a pressure change would cause

superflow.
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Chapter 7

Shear Modulus Study of Solid
Helium

The first, and so far only, evidence for supersolidity comes from torsional oscilla-

tor measurements in which the frequency increased at temperatures below about

200 mK, suggesting that some of the solid helium decoupled from the oscillator.

This behaviour has been interpreted in terms of the nonclassical rotational iner-

tia which characterizes a supersolid. The behaviour has been replicated by sev-

eral groups [53, 55, 54, 57, 56]; however, no clear signature has yet been seen in

other properties (although a recently reported heat capacity peak supports the

existence of such a new phase [97]). Persistent currents would provide definitive

proof of supersolidity, but this challenging experiment has not yet been performed.

Other experiments (i.e., Chapters 5 and 6) put extremely small bounds on possible

pressure-driven DC mass flow [78, 79].

Although the amount of helium which decouples in different torsional oscillators

varies widely, the measurements have many common features. Decoupling occurs

below about 200 mK, with a gradual onset accompanied by a dissipation peak. It

decreases at large oscillation amplitudes, which is interpreted in terms of a superflow

critical velocity (vc ∼ 10 µm/s). The magnitude of the decoupling is frequency

independent, although its onset shifts with frequency. Its amplitude dependence

appears to scale with velocity [56], but depends on the oscillation amplitude during

cooling and is hysteretic. A crucial feature of the decoupling is its sensitivity to 3He.

Most measurements used commercial 4He gas (with 3He concentration x3 ∼ 0.3 ppm)

but experiments [52, 58] with isotopically pure 4He (1 ppb 3He) show a sharper

onset at a lower temperature, around 75 mK. Decoupling is usually larger in narrow

annuli than in open cylinders [57] but begins at similar temperatures. Its magnitude

139



also depends on how the solid helium was grown and annealed, indicating that

defects are important. Most samples were grown at constant volume under blocked

capillary conditions, a procedure which involves substantial plastic deformation and

is expected to produce a polycrystalline solid with many defects. Theoretical work

also suggests that supersolidity does not occur in a perfect crystal [71, 61] and that

vacancies [67], grain boundaries [80, 81], glassy regions [75] or dislocations [83, 153]

are involved. Superflow associated with grain boundaries has been seen in solid 4He

coexisting with liquid [82], but solidification at constant pressure (producing single

crystals with fewer defects) still gives significant decoupling [58].

7.1 Experimental design

Dislocation networks are an important defect to consider. Since their main effect is

on mechanical behavior, we have made a detailed study of the elastic properties of

solid 4He. This required a completely new method to measure the shear modulus µ

at extremely low frequencies and amplitudes. Embedding piezoelectric transducers

in the helium allowed us to measure µ of the 4He within the gap separating the

transducers directly at strains (stresses) as low as ε = 2.2 x 10−9 (σ = 0.03 Pa).

This is two to three orders of magnitude lower than in previous ultrasonic [154, 155,

156], internal friction [157] and torsional [158] measurements and is comparable to

inertial stresses in torsional oscillator measurements. A low noise current amplifier

allowed us to measure µ at frequencies down to 20 Hz, far lower than in any other

measurements. These low amplitude and low frequency features proved crucial to

our experiments. We could also excite and detect acoustic modes of solid 4He outside

of the gap separating the transducers and within the surrounding solid 4He. The

first such acoustic resonance was near 8000 Hz and had a quality factor Q ∼ 2000

at our lowest temperature.

7.1.1 Cell construction

The shear and acoustic resonance measurements were performed in the same cell.

A schematic of the cell is shown in Figure 7.1 and an image of the cell is shown

in Figure 7.2. Our OFHC cell consisted of a large inner volume (≈ 25 cm3) into

which our shear transducers were installed. The transducers were epoxied onto

solid brass backing pieces, which were themselves rigidly mounted onto a solid brass

support arm, ensuring that the faces between the transducers were parallel. The
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cell also included an in situ Straty-Adams capacitive pressure gauge which, when

used with a 1 kHz automatic bridge (Andeen-Hagerling 2550A), had a resolution

and stability better than 0.2 mbar. The cell was mounted onto the bottom of the

mixing chamber of our dilution refrigerator. A 0.004” i.d. CuNi capillary, thermally

anchored at the 1 K pot of the fridge and at the 0.6 K step heat exchangers, was used

to introduce 4He to the cell. The 4He used in these experiments ranged in isotopic

purity from ∼ 0.3 ppm 3He isotopic impurities down to nominally pure 1 ppb 3He

isotopic impurities [148]. All crystals were grown using the constant volume, blocked

capillary technique. Temperatures were measured with a calibrated germanium

thermometer above about 50 mK, with a 60Co nuclear orientation thermometer for

lower temperatures.

solid helium

piezoelectric transducers

Straty-Adams gauge

fill line

    electrical 

feedthroughs

Figure 7.1: Schematic of the shear cell. The front faces of the transducers are
grounded to the body of the cell.

7.1.2 PZT transducers

Displacements were generated and stresses were detected by two parallel-aligned

shear transducers [159] with a helium-filled gap (D ≈ 180 µm) between their faces.

The transducers were made from PZT 5A material (quoted fundamental resonance

at 500 kHz, with dimensions width W = 9.6 mm, length L = 12.8 mm, thickness

t = 2.1 mm).
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Figure 7.2: Image of the shear cell, next to a Canadian quarter for scale.

When a voltage is applied across a capacitor made of normal dielectric material,

a charge results on the plates or electrodes of the capacitor. Charge can also be

produced on the electrodes of a capacitor made of a piezoelectric material by the

application of stress; this is known as the direct piezoelectric effect. Conversely,

the application of a field to the material will result in strain; this is known as the

inverse piezoelectric effect. Therefore, a piezo-ceramic is capable of acting as either

a transmitting element, a sensing element, or both.

Relationships between the applied forces and the resultant responses depend

upon a number of factors: for example, the piezoelectric properties of the ceramic;

the size and shape of the piezo-ceramic; and the direction of the electrical and

mechanical excitation. There exist double subscripted coefficients associated with

piezoelectric constants that link electrical and mechanical quantities. The first sub-

script gives the direction of the electrical field associated with the voltage applied,

or the charge produced; the second subscript gives the direction of the mechanical

stress or strain.

The piezoelectric constant which relates the mechanical strain produced by an

applied electric field are termed the strain constants, or the “d” coefficients (Equa-

tion 7.1). The units may then be expressed as m/m per V/m (i.e., m/V, and actual

displacements (in m) are independent of transducer thickness). The subscripts in
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d15 indicate that the voltage is applied to the electrodes which are at right angles

to the original poling electrodes and that the applied mechanical stress is shear.

d =
strain developed

applied electric field
. (7.1)

The piezoelectric constant which relates the electric field produced by a mechan-

ical stress are termed the voltage constants, or the “g” coefficients (Equation 7.2).

The units may then be expressed as V/m per N/m2 (i.e., Vm/N) or V/m per Pa.

The subscript in g15 implies that the applied stress is shear and that the resulting

electric field is perpendicular to the polarization axis (and charge is collected on

electrodes which are at right angles to the original poling electrodes).

g =
open circuit electric field
applied mechanical stress

. (7.2)

Finally, whereas the relative dielectric constant is strictly a material property,

the capacitance is a quantity which depends both on the type of material and its

dimensions. At frequencies far below resonance, piezoelectric ceramic transducers

are fundamentally capacitors. Consequently, the voltage coefficients gij are related

to the charge coefficients dij by the dielectric constant Ki (as in a capacitor the

voltage is related to the charge by the capacitance).

d15 = Kiε0g15, (7.3)

7.2 Measurements in sample

A simple block diagram of the electronics used to make our measurements is shown

in Figure 7.3. Data collection (i.e., lock-in amplifier readouts) was automated by a

computer.

A voltage V applied to the driving transducer produces a shear displacement

at its front face δx = d15V. Voltages were generated using a synthesized function

generator (Stanford Research Systems DS345), capable of generating many standard

waveforms with a frequency resolution of 1 µHz. Sinusoidal outputs were employed

for all measurements described below, the amplitude of which was adjustable from

10 mVpp to 10 Vpp. The signal was split into a driving voltage for the PZT and
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Figure 7.3: Block diagram for the shear experiment.

a reference signal for the lock-in amplifier. The minimum amplitude to which the

signal generator was set was 150 mVpp, near the reference detection limit of the

lock-in amplifier. The driving voltage was attenuated from 150 mVpp by a series of

electronic attenuators. The actual driving voltages (used to calculate strains) were

measured using an auto-ranging microvolt digital multi-meter (Keithley 197).

At room temperature, d15 is given by the manufacturer as 585 x 10−12 m/V. In

order to determine the low temperature value of this coefficient, consider that the

electric field generated in the detecting transducer is

E = g15σ, (7.4)

or that the voltage generated across the transducer is

V = Et = g15σt, (7.5)
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where the stress σ is related to the strain ε by the shear modulus of the helium in

the gap D ≈ 180 µm (µ = σ/ε). The strain in the helium in the gap between the

two transducers is

ε =
δx

D
=

d15V

D
, (7.6)

so that the stress induced in the detecting transducer is

σ =
µd15V

D
. (7.7)

The capacitance of the piezo-ceramic is given by

C =
K1ε0A

t
, (7.8)

where is A is the area of the electrodes. As q = CV, Equations 7.3, 7.5, and 7.8

allow us to write the charge generated on the face of the stressed electrode as

q = d15σA. (7.9)

We measure this charge generated as a current I (at a drive frequency f)

I = ωq = 2πfq = 2πfd15σA. (7.10)

Coupled with Equation 7.7, we measure an output current from our detecting shear

transducer equal to

I = 2πf
A

D
d15

2µV. (7.11)

This output current I can be vanishingly small, and so we used an ultra-low-noise

current preamplifier (Femto LCA-20K-200M) to magnify the signal. The pream-

plifier has an extremely low 14 fA/
√

Hz equivalent input noise current, a 20 kHz

bandwidth, and a gain of 2 x 108 V/A. This signal was then detected with a 2-

phase digital lock-in amplifier (Stanford Research System SR830 DSP), as R (the

amplitude of I) and θ (the phase of I). By measuring our signal in this way, back-
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grounds/crosstalk could be subtracted even if they had different phases.

With that, we can write d15 in terms of our experimental variables at low tem-

perature:

d15 =
(

D

2πAµ

1
V

I

f

) 1
2

. (7.12)

We must be careful to note that A is the overlapping area of the electrodes. The

total area of each electrode is 1.23 x 10−4 m2, but our electrodes are horizontally

offset from one another by about 3 mm (see Figure 7.4), so that the overlapping

area is actually ≈ 10−4 m2. For solid 4He at about 35 bar (µ ≈ 1.5 x 107 Pa), we

measured Irms ≈ 25 pA at 2000 Hz for a driving voltage Vrms ≈ 17.3 mV. This

means that d15 = 1.2 x 10−10 m/V for these transducers below 4 K (reduced to 21%

of its room temperature value).

180 µm gap
  PZT shear 

transducers

Figure 7.4: The horizontal offset in the transducers.

Returning to the original statement of this section, a voltage V applied to the

driving transducer produces a shear displacement at its front face δ x = d15V.

Below the resonance frequency of solid 4He in the gap (vt/2D ∼ 830 kHz), this

creates a strain, εt = δx/D, which then produces a shear stress, σt = µεt, on the

detecting transducer. The minimum detectable stress at 2000 Hz, set by noise in our
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preamplifier (14 fA/
√

Hz, resulting in ∼ 2.5 fA at 30 s averaging), is σt ∼ 10−5 Pa

(which corresponds to a displacement δx ∼ 2 x 10−16 m and strain εt ∼ 10−12).

After subtracting a background due to electrical crosstalk (the signal with liquid
4He in the cell, a correction of less than 15%, see Figure 7.5) from the raw signal

(Figure 7.6), the solid’s shear modulus (∼ 1.5 x 107 Pa) is proportional to I/f (recall

Equation 7.12). It is important to note that the small resonances in the liquid

background aren’t individually considered; rather, we subtract an “average” smooth

background. The shear modulus is nearly frequency independent below 4000 Hz, as

shown in Figure 7.7.

The 3 mm offset of the transducers (recall Figure 7.11) provided exposed surfaces

which could be used to excite and detect acoustic modes of the solid helium outside

the gap, surrounding the transducers. The first such resonance can be found near

8000 Hz in Figure 7.6.
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Figure 7.5: The liquid 4He background signal in the shear cell. Data were collected
at T = 0.5 K and P = 22.1 bar, at a 24.5 mVpeak sinusoidal drive.
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Figure 7.6: The raw signal of solid 4He in the shear cell. Data were collected at
T = 0.5 K and P = 33.3 bar, at a 24.5 mVpeak sinusoidal drive. Notice the difference
in vertical scale from Figure 7.5.
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Figure 7.7: The measurement of the shear modulus of solid 4He. Both sets of
data were collected at T = 0.5 K (liquid P = 22.1 bar; solid P = 33.3 bar), at a
24.5 mVpeak sinusoidal drive.
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7.3 Shear modulus in gap

The following section discusses the essential result of this experiment; namely, the

anomalous stiffening of solid hcp 4He at low temperatures. All solid samples are

grown by first filling the cell with a high pressure liquid (∼ 70 bar) at 4.2 K and then

cooling. No special effort is taken to keep the fill line from the high-pressure gas

cylinder to the cell open. As the dilution refrigerator is set into operation, parts of

the fill line will reach temperatures near 1 K long before the cell reaches those same

temperatures. As a result, a solid plug will develop in the fill line before the 4He

in the sample cell freezes, meaning that no more 4He may enter (or leave) the cell

during sample solidification (i.e., solidification occurs under constant density condi-

tions). This is referred to as the blocked capillary technique for sample growth, and

presumably results in a polycrystalline solid sample with many defects. 0.3 ppm 3He

was used for all samples discussed in this section (i.e. Section 7.3). Sometimes the

sample was annealed before the measurement was made, other times it wasn’t. Here,

annealing means keeping the sample at a temperature slightly below melting for an

extended period of time. We presume that this process improves the quality of the

sample under study (e.g., results in fewer crystallographic defects), but we have no

way of directly knowing this. The melting curve of 4He was given in Figure 6.9,

and the thermodynamic path followed during each particular sample growth will

be overlaid in the following subsections. Following that, the shear modulus of each

sample is provided and discussed. In each case, the liquid background has been

subtracted.

7.3.1 Sample 300ppb29.3

Figure 7.8 shows the thermodynamic path followed during the growth of sample

300ppb29.3. As can be seen from the inset of Figure 7.8, solidification was complete

at the upper bcc/hcp/liquid triple point; from there, the sample continued along

the bcc/hcp line until entering the pure hcp phase at T = 1.68 K and P = 29.3 bar.

The helium used for this sample had an isotopic purity of 300 ppb 3He.

Figure 7.9 shows the temperature dependence of the shear modulus of a sample

300ppb29.3 (typical of all samples studied). Sample 300ppb29.3 was annealed before

this measurement was taken by holding the cell temperature at 1.45 K for∼ 17 hours.

We annealed the sample until the shear modulus was no longer changing as a function
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of time. The data was collected as the sample was cooled. The measurement

was made at 2000 Hz, at a driving voltage of 32.7 mVpeak and a corresponding

strain of 2.2 x 10−8. Below 200 mK, the shear modulus µ increases by about 11%

(∆µ ∼ 16 bar). As mentioned above, this anomalous stiffening is our central result.

The pressure in the cell is constant within 0.2 mbar in this temperature range, which

rules out local density changes (e.g., freezing of small liquid regions) as the cause of

the µ increase and implies that the bulk modulus does not have a similar anomaly.
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Figure 7.8: The thermodynamic path for sample 300ppb29.3. Inset shows a close-up
of the end of freezing. This data is the pressure versus temperature as we measured
it.

Figure 7.10 shows a typical NCRI fraction from a torsional oscillator measure-

ment [51], at a frequency of 910 Hz. The onset and shape of the temperature

dependence is essentially the same as that of shear modulus anomaly, ∆µ, shown in

Figure 7.9.
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Figure 7.9: Shear modulus anomaly in sample 300ppb29.3 as a function of temper-
ature, measured at 2000 Hz.
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Figure 7.10: Typical NCRI fraction (65 bar) in a torsional oscillator operating at
910 Hz.
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7.3.2 Sample 300ppb34.0

Figure 7.11 shows the thermodynamic path followed during the growth of another

hcp solid 4He sample, 300ppb34.0. As can be seen from the inset of Figure 7.11,

solidification this time was complete before reaching the bcc/hcp/liquid triple point.

The rounded knee, signalling the end of freezing, is commonly observed when no

attempt is made to control the temperature of the cell while the dilution refrigerator

is cooling and can be made sharper through annealing the sample (as was shown

in Figure 6.17), or by way of a partial melt and re-freeze. The helium used for this

sample also had an isotopic purity of 300 ppb 3He.

Figure 7.12 shows the temperature dependence of the shear modulus µ of sample

300ppb34.0. Sample 300ppb34.0 was annealed before this measurement was taken

by holding the cell temperature at 1.70 K for ∼ 10 hours. The data was collected as

the sample was cooled. The measurement was made at 2000 Hz, at a driving voltage

of 32.7 mVpeak and a corresponding strain of 2.2 x 10−8. At low temperature, it

increases by about 6% (∆µ ∼ 9 bar).
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Figure 7.11: The thermodynamic path for sample 300ppb34.0. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we
measured it. Data in grey shows sample 300ppb29.3.
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Figure 7.12: Shear modulus anomaly in sample 300ppb34.0 as a function of temper-
ature, measured at 2000 Hz.

7.3.3 Sample 300ppb33.3

Figure 7.13 shows the thermodynamic path followed during the growth of sample

300ppb33.3. As can be seen from the inset of Figure 7.13, this sample is at only a

slightly lower pressure than the previous sample 300ppb34.0. As well, it has entered

the hcp phase without having first entered the mixed bcc/hcp phase. The helium

used for this sample also had an isotopic purity of 300 ppb 3He.

Figure 7.14 shows the temperature dependence of the shear modulus µ of sample

300ppb33.3 (and looks cleaner than the previous sets of data, as it was taken with

our then-newly-acquired current pre-amplifier). Sample 300ppb33.3 was annealed

before this measurement was taken by holding the cell temperature at 1.70 K for

∼ 12 hours. The data was collected as the sample was cooled. The measurement

was made at 2000 Hz, at a driving voltage of 32.7 mVpeak and a corresponding strain

of 2.2 x 10−8. At low temperature, it increases by about 8% (∆µ ∼ 12 bar).

We observed variations in ∆µ of up to a factor of 2 over a total of 8 samples
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Figure 7.13: The thermodynamic path for sample 300ppb33.3. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we
measured it. Data in grey shows sample 300ppb29.3 and sample 300ppb34.0.
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Figure 7.14: Shear modulus anomaly in sample 300ppb33.3 as a function of temper-
ature, measured at 2000 Hz.
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in the pressure range 29-34 bar, and with varying concentrations of 3He impurities.

This is similar to the range of NCRI seen in a single torsional oscillator.

7.3.4 Frequency dependence

Figure 7.15 shows the shear modulus anomaly at three frequencies (2000, 200 and

20 Hz), at a driving voltage of 32.7 mVpeak and a corresponding strain of 2.2 x 10−8,

in the sample 300ppb33.3 of Figure 7.14. The magnitude of the modulus increase is

similar for each and is nearly independent of frequency over two orders of magnitude.

This is in agreement with torsional oscillator experiments where a frequency inde-

pendent NCRI fraction is measured [56]. The transition is sharper at low frequency,

and appears to begin at lower temperatures.
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Figure 7.15: The shear modulus anomaly as a function of frequency in sample
300ppb33.3. The 200 Hz and 20 Hz data have been shifted down for clarity.

We did not measure the shear modulus µ at frequencies below 20 Hz because

the low signal-to-noise ratio required painfully long averaging times with the lock-in

amplifier. For example, the 200 Hz data was collected over a period of 4 hours,
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whereas the 20 Hz data was collected over a period of 12 hours. Measuring the

shear modulus µ at a significantly lower frequency would have taken more than a

full day, which is about as long as the dilution refrigerator can run without having

to re-fill the pot (a process we know can disturb the signal). Additionally, and

even at temperatures above the anomaly, the shear modulus µ is not independent

of frequency much below 20 Hz, as we measure it. A closer look at Figure 7.7 shows

that the signal tends to roll off at the lowest frequencies, and that the effect is

greater in the solid than in the liquid. The cause of this roll-off is unknown.

Also, we did not perform measurements at frequencies above 2000 Hz because

the shear modulus µ becomes frequency dependent near 4000 Hz. As will later be

discussed in greater detail, an acoustic resonance exists in the cell, outside of the

gap. This resonance is centered near 8000 Hz, and while its Q-factor is high, it is

not infinite. As a result, measurements of I/f at frequencies near to the resonance

give more than just the shear modulus µ of the solid in the gap.

7.3.5 Amplitude dependence

Figure 7.16 shows ∆µ at 2000 Hz for sample 300ppb33.3 at different strains (as

calculated from the drive voltages using Equation 7.6). The shear modulus anomaly

∆µ is independent of drive amplitude for strains up to 2.2 x 10−8 and then begins

to decrease.

Nearly identical behavior was also observed at 200 Hz, as shown in Figure 7.17.

The amplitude dependence begins at roughly the same drive level, indicating that

∆µ scales with either stress or strain and not with velocity. That stress or strain

best parameterizes the magnitude of the shear anomaly ∆µ and how this compares

to analogous torsional oscillator measurements will be discussed in the following

subsection.

For an easier comparison of the data sets at 2000 Hz and 200 Hz, Figure 7.18

shows them side-by-side (with the 200 Hz data plotted on a decreasing temperature

scale).

The low temperature values of the shear modulus I/fV are plotted in Figure 7.19.

At the lowest strains, the shear modulus I/fV is constant; at the highest strains,

the shear modulus I/fV decreases with increasing strain. These two regimes are

demonstrated in Figure 7.19 by dashed lines, and are separated by a “critical strain”

εc ∼ 4.5 x 10−8, shown in grey.
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Figure 7.16: The shear modulus anomaly as a function of strain amplitude at
2000 Hz in sample 300ppb33.3. The data have been scaled by the driving volt-
age, have had the liquid background subtracted, and have been shifted to have
equal µ at 300 mK at the lowest strain.

The corresponding velocities in Figures 7.16 and 7.17 (v = ωx: ∼ 100 nm/s for

ε = 4.5 x 10−8 at 2000 Hz; ∼ 10 nm/s for the same strain level at 200 Hz) are much

smaller than the critical velocity (vc ≈ 10 µm/s) inferred from torsional oscillator

measurements. However, the stress levels (0.3 Pa) are comparable to inertial stresses

in torsional oscillators.

For example, consider the stresses involved in the annular torsional oscillator of

Reference [10]. The torque acting on the solid sample in such a system is given by

τ = σAR, (7.13)

where σ is the shear stress at the walls, A is the area of the walls against which

the solid sits, and R is the radius of the annulus. For a narrow cylindrical annulus,

A = 4πRh, where h is the height of the walls, and the extra factor of 2 comes in

because there is an inner and an outer wall whose area must be considered. The

torque of the oscillator acting on the solid 4He may also be written as
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Figure 7.17: The shear modulus anomaly as a function of strain amplitude at 200 Hz
in sample 300ppb33.3. The data have been scaled by the driving voltage, have had
the liquid background subtracted, and have been shifted to have equal µ at 250 mK
at the lowest strain.
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Figure 7.18: The shear modulus anomaly as a function of strain amplitude at 200 Hz
(left) and 2000 Hz (right) in sample 300ppb33.3. Note that the two vertical axes
span different ranges of the same scale.
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Figure 7.19: The shear modulus anomaly as a function of strain amplitude at
2000 Hz and 200 Hz in sample 300ppb33.3 at 18 mK. Dashed lines are a guide
to the eye. The shaded region highlights the inferred “critical strain” εc.

τ = Iα = Ia/R, (7.14)

where α is the angular acceleration and I = MR2 = 2πρhtR3 is the moment of inertia

of the solid. The stress exerted by the walls on the solid is

σ =
τ

RA
=

Ia

AR2
. (7.15)

This may be re-written as

σ =
2πρhtR3

R2(4πRh)
ωv =

ρt

2
ωv, (7.16)

where ρ is the density of the solid, t is the width of the annular channel, ω is the

frequency of oscillation, and v is its linear velocity. From the 910 Hz torsional

oscillator of Reference [9] at 41 bar (ρ ≈ 160 kg/m3), which had an annular width
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of 0.63 mm, we calculate σt ∼ 0.15 Pa at their highest velocity, 520 µm/s.

7.3.6 Hysteresis

A recurring theme to this chapter is the comparison of our shear modulus anomaly

∆µ to the NCRI fraction measured in torsional oscillator experiments. Continuing

along these comparative lines, it is important to know that hysteretic behavior

has been observed in torsional oscillator decoupling in a double resonance torsional

oscillator operating at 496 and 1173 Hz [56]. (In fact, this hysteretic behaviour

has also been observed in single resonance torsional oscillators [160].) A torsional

oscillation is initiated with a relatively high drive level at 300 mK. While keeping the

drive level constant, the torsional oscillator is then cooled down and held at 19 mK,

where the rim velocity of the torsional oscillator becomes 610 µm/s. (The process

is likened to a field cooled procedure in the studies of superconducting materials.)

As the drive level is then decreased, the NCRI fraction increases and eventually

attains the low velocity limit consistent with their previous measurements. When

the drive level is subsequently increased, however, the measured NCRI fraction does

not diminish; specifically, the NCRI fraction remains constant up to 610 µm/s. The

authors concede that it is conceivable that the high NCRI fraction would decay to

the low value at the highest rim velocity given enough time, but their estimated

time constant for this is greater than 100 hours. As well, if the torsional oscillation

is cooled down to 19 mK with low rim velocity near 10 µm/s (as in a nearly zero-

field cooled process) and the drive level is subsequently increased, then the NCRI

fraction again does not diminish. The observed history dependence of the NCRI

fraction on the initial state set by the rim velocity at low temperature seems to be

an important characteristics of the supersolid state.

Similarly, the observed behaviour in µ is reversible at temperatures above about

100 mK and at lower drive amplitudes where there is no amplitude dependence (as

shown in Figures 7.16, 7.17, 7.18, and 7.19). Figures 7.20 and 7.21 demonstrate this

behaviour for sample 300ppm33.3. To be explicit, Figures 7.20 and 7.21 plot data

from a completely separate measurement and are not simply the 17 and 100 mK

data from Figures 7.16 through 7.19.

The lower curves in Figure 7.20 (circles) show the magnitude of µ at 2000 Hz

and 100 mK, as a function of strain. The shear modulus increases as the strain is

decreased from above 1 x 10−6 down to almost 1 x 10−9 (•), and then reversibly
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decreases as the strain is once again increased (◦). The finite slope of these curves

is consistent with Figure 7.16 which shows that, at 100 mK, the magnitude of the

shear modulus increases with decreasing strain. However, they also show that, at

100 mK, the magnitude of the shear anomaly is constant at strains equal to or less

than ε = 2.2 x 10−8, which is inconsistent with what we measure at the lowest strains

in Figure 7.20 (i.e., the ε = 2.2 x 10−9 data point). Unfortunately, this discrepancy

cannot be explained. (A liquid background was subtracted from this data but with

the assumption that it was independent of temperature and scaled perfectly with

drive voltage. These assumptions might not hold and could possibly be the source

of the slight upturn in the data at the lowest strains in Figure 7.20, as well as in the

following Figures 7.21, 7.22, and 7.23.)

After having taken this measurement, the sample was cooled to the base temper-

ature of the dilution fridge while driving at high strain (ε = 1.7 x 10−6) at 2000 Hz.

The upper curves in Figure 7.20 (squares) show the resultant magnitude of the

anomaly at 2000 Hz and 17 mK, as a function of strain. When the sample has been

cooled at high amplitude and the drive is then reduced at low temperature from

strains above 1 x 10−6 down to almost 1 x 10−9 (¥), µ increases. The general shape

of this curve at is expected from Figure 7.16 for reasons similar to those outlined

above. However, they also show that, at 17 mK, the magnitude of the shear anomaly

is constant at strains equal to or less than ε = 2.2 x 10−8, which is inconsistent with

what we measure at the lowest strains in Figure 7.20 (i.e., again, the ε = 2.2 x 10−9

data point). As before, this discrepancy cannot be explained.

Alternatively, we could say that the anomaly increases with decreasing strain.

Explicitly, the anomaly is (roughly) the difference between the 100 mK (circles) and

17 mK (squares) shear modulus, and is the analog of the torsional oscillator NCRI.

This is as expected from Figure 7.16 which shows that the magnitude of the anomaly

increase with decreasing strain. There is no discrepancy here, as both Figures 7.16

and 7.20 show that the shear modulus anomaly is constant at strains equal to or

less than ε = 2.2 x 10−8.

When the drive is then increased at 17 mK from strains of almost 1 x 10−9

to above 1 x 10−6 (¤), µ does not decrease (with the exception, again, of the

ε = 2.2 x 10−9 data point). In terms of the shear modulus anomaly ∆µ, it does not

decrease at all as the strain is increased. In fact, the 17 mK shear modulus anomaly

∆µ actually increases slightly as the strain is increased beyond ε = 2.2 x 10−8. The
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reason for this could be one of equilibration times for the curves measured in Fig-

ure 7.16; for example, a slower cooling ramp might have resulted in a steeper curve

and a greater value for the shear modulus µ at 100 mK.

These slight discrepancies aside, it is clear that the low temperature behaviour

of the shear modulus µ is hysteretic. The region at which this hysteretic behaviour

begins (e.g., a “critical strain” εc) is highlighted by the grey region in Figure 7.20,

spanning the strains ε = (2 - 7) x 10−8, consistent with the range ε = (4 - 5) x 10−8

determined in Figure 7.19.
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Figure 7.20: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at high
drive, as a function of decreasing and then increasing strain in sample 300ppm33.3.
The behaviour is not reversible at 17 mK. The shaded region highlights the inferred
“critical strain” εc.

Figure 7.21 is meant to show how the behaviour of the shear modulus µ changes

after the sample has been cooled at low drive, rather than at high drive as in

Figure 7.20.

The lower curves in Figure 7.21 (circles) show the magnitude of µ at 2000 Hz
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and 100 mK, as a function of strain. The shear modulus is measured as the strain is

increased from almost 1 x 10−9 up to above 1 x 10−6 (◦), and then back down again

(•) - essentially the same data as the lower curve in Figure 7.20, as the behaviour is

reversible. The sample is then cooled to the base temperature of the dilution fridge

while under low strain (ε = 2.2 x 10−9) at 2000 Hz.

The upper curves in Figure 7.21 (squares) show the resultant magnitude of the

anomaly at 2000 Hz and 17 mK, as a function of strain. When the sample has been

cooled at low amplitude and the drive is then increased at low temperature from

strains of almost 1 x 10−9 to above 1 x 10−6 (¤), the anomaly behaves essentially as

it did in Figure 7.20. The one difference appears at the highest strain ε = 1.7 x 10−6,

where the magnitude of the shear modulus anomaly does decreases slightly. When

the strain is subsequently reduced (¥), a small hysteresis loop is formed. We expected

to observe identical behaviour as that shown in Figure 7.20, and the reason for this

slight decrease in the shear modulus anomaly at this highest strain is unknown.

Perhaps the dilution refrigerator was accidentally bumped at this measurement, an

event that we know can cause significant shifts in the data. We believe that had

we stopped increasing the strain at ε = 5.4 x 10−7, the behaviour would have been

completely reversible. So, while a small hysteresis loop does exist in this data set,

we describe this behaviour as reversible.

Figures 7.22 and 7.23 show the same sort of measurement as in Figures 7.20

and 7.21 on a solid 4He sample with 50 ppb 3He impurity concentration, which

came off the melting curve at 33.1 bar (sample 050ppb33.1, not annealed before

these measurements were taken). They are intended to show the same reversible

behaviour at higher temperature (150 mK), the same hysteretic behaviour at low

temperature (20 mK) when the sample has been cooled at high drive amplitude,

and the same reversible behaviour at low temperature (20 mK) when the sample

has been cooled at low drive amplitude.

Figure 7.22 shows the same increase in µ at the lowest strains at 150 mK and

the same hysteresis at 20 mK at higher strains, as in Figure 7.20. The region at

which this hysteretic behaviour begins (e.g., the “critical strain” εc) is highlighted

by the grey region in Figure 7.22, spanning the strains ε = (3 - 5) x 10−8, consistent

with our previous measures of this variable. There is also an increase in µ at the

lowest strains which (again) cannot be explained.

Figure 7.23 shows reversible behaviour in the shear modulus at 150 mK and at
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Figure 7.21: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at low
drive, as a function of increasing and then decreasing strain in sample 300ppm33.3.
The behaviour is almost reversible at 17 mK.

20 mK, nearly identical to what was observed in Figure 7.21.

Returning now to the comparison of the shear modulus anomaly ∆µ in our ex-

periments to the NCRI in the torsional oscillator experiments, the reduction in the

NCRI fraction as the drive level is increased was observed to be the same for both

496 and 1173 Hz when plotted as a function of cell rim velocity [56]. When the

NCRI fraction is plotted against displacement amplitude or acceleration, the reduc-

tion does not coincide in the two modes. The authors take this observation as a

demonstration that it is velocity, not displacement amplitude (strain) nor accelera-

tion (stress) applied to the solid, that best parameterizes the reduction in the NCRI

fraction. This contrasts our observation, as explained above, that ∆µ scales with ei-

ther stress or strain but not with velocity. It is not clear why these two observations

seemingly contradict each other, but it must be kept in mind that fundamentally

different properties are being studied. These torsional oscillator experiments probe

inertial effects, while our shear experiments probe elastic effects.

Finally, the torsional oscillator experiments reveal no history dependence at

63 mK; the measured NCRI fraction does not depend on how the initial state is
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Figure 7.22: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at high
drive, as a function of decreasing and then increasing strain in sample 300ppm33.1.
The behaviour is not reversible at 17 mK. The shaded region highlights the inferred
“critical strain” εc.

reached [56]. The border between the history dependent low temperature behavior

and the reversible higher temperature behavior appears to be around 40 mK, close

to the temperature where the NCRI fraction begins to decrease. This is consistent

with our observation that the behaviour of the anomaly as a function of strain is

reversible at 100 mK but not at 17 mK in sample 300ppb33.3, and at 150 mK but

not at 20 mK in sample 050ppb33.1.

7.4 Acoustic resonance in cell

The essential result of the experiments described above is the observation of a large

anomalous increase in µ with the same temperature dependence as the decoupling

in torsional oscillators. This effect was confirmed by simultaneously measuring the

frequency fr and damping 1/Q of an acoustic resonance in the cell.

A quick estimate (Equation 7.17) tells us that we should expect to observe a

resonance in our shear cell around a frequency

165



strain

10 -9 10 -8 10 -7 10 -6

I/
fV

 (
p
A

/H
zV

)

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

increasing drive (150 mK) 

decreasing drive (150 mK) 

increasing drive (20 mK) 

decreasing drive (20 mK) 

Figure 7.23: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at low
drive, as a function of increasing and then decreasing strain in sample 300ppm33.1.
The behaviour is almost reversible at 17 mK.

fr =
vshear

2L
, (7.17)

where vshear is the speed of shear sound in the solid and L is the smallest relevant

cell dimension. Taking the speed of shear sound in solid 4He to be ∼ 300 m/s and

the characteristic length in our shear cell to be ∼ 2 cm (its diameter), we predict an

acoustic resonance in the shear cell near 7500 Hz. Note that this is a resonance of the

helium in the whole cell and not in the gap between the piezoelectric transducers.

Computer modelling was also initiated to confirm that we should expect to find

an acoustic resonance in our shear cell. Specifically, an eigenfrequency analysis of

the bulk solid 4He within the cell was done using a 3-D solid, stress-strain structural

mechanics module within the COMSOL Multiphysics [152] simulation environment.

This was done using a realistic model of the cell’s internal geometry. Preliminary

models predicted an acoustic resonance in the cell around 10 kHz.
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7.4.1 Acoustic resonance peak position

Measurements of the low temperature (18 mK) frequency fr and damping 1/Q of the

acoustic resonance in the cell were made at drive voltages ranging from 2 µVpeak to

1.4 Vpeak, with the purpose of determining a drive amplitude independent regime.

For example, we discovered early on that the position of the acoustic resonance

shifted to lower frequencies at higher drive amplitudes. We also noted that the

shape of the acoustic resonance was asymmetric at higher drive amplitudes and

that the asymmetry was a function of the direction of the frequency sweep. To

best characterize the behaviour of this acoustic resonance solely as a function of

temperature, we need to eliminate the effects of these other variables. So, to ensure

that the acoustic resonance was measured in a drive amplitude independent regime,

its amplitude and position were studied at low temperature, as a function of drive

amplitude.

Figure 7.24 shows the behaviour of the acoustic resonance as a function of drive

voltage in an annealed sample of isotopically pure 4He (i.e., nominally 1 ppb 3He

isotopic impurity concentration) that solidified at 33.4 bar, hereafter referred to as

sample 001ppb33.4. The data of Figure 7.24 is re-plotted (in three sets per figure)

in Figures 7.25, 7.26, 7.27, 7.28, 7.29 for greater clarity. For each of the following

figures, the lowest drive amplitude displayed on one is the highest drive amplitude

displayed on the next. As well, each of these data sets was measured as the frequency

of the drive was increased.

It is clear from Figures 7.24 through 7.29 that, for drive amplitudes greater

than ∼ 50 µV, the position of the resonance is a function of drive amplitude. It

is natural to suppose that the shift in fr is a result of our sample heating, but a

quick estimate of the power would suggest otherwise. Equations 7.3 and 7.8 allow

us to calculate the capacitance of the PZT transducer. As the manufacturer quotes

d15 = 585 x 10−12 m/V and g15 = 38.2 x 10−3 Vm/N, the capacitance of the PZT

is CPZT ≈ 7.3 x 10−10 F. So, it has an impedance Z = 1/ωC ≈ 28 kΩ at 7900 Hz.

Now, as an example, consider the 34.6 mV drive of Figure 7.26 - the dissipation

must be (considerably) less than P = V2/Z = 4.3 x 10−8 W. It seems very unlikely

that such a small heat input could shift fr by more than 125 Hz in frequency space.

Figures 7.24 through 7.29 further demonstrate that, for drive amplitudes greater

than ∼ 50 µV, the symmetry of the acoustic resonance is governed by the drive

167



Frequency (Hz)

7700 7800 7900 8000 8100

I/
f 

(p
A

/H
z)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

102

1425.8 mV

356.2 mV

34.6 mV

10.9 mV 

3.4 mV 

1.1 mV 

332 µV

102 µV

32 µV

8 µV 

2 µV 

Figure 7.24: Behaviour of the resonance peak at 18 mK, as a function of drive
amplitude.
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Figure 7.25: Behaviour of the resonance peak at 18 mK, at a drive amplitude of
1425.8 mV, 356.2 mV, and 34.6 mV.
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Figure 7.26: Behaviour of the resonance peak at 18 mK, at a drive amplitude of
34.6 mV, 10.9 mV, and 3.4 mV.
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Figure 7.27: Behaviour of the resonance peak at 18 mK, at a drive amplitude of
3.4 mV, 1.1 mV, and 332 µV.
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Figure 7.28: Behaviour of the resonance peak at 18 mK, at a drive amplitude of
332 µV, 102 µV, and 32 µV.
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Figure 7.29: Behaviour of the resonance peak at 18 mK, at a drive amplitude of
32 µV, 8 µV, and 2 µV.

amplitude. More specifically, we observe that our acoustic resonance behaves as a

nonlinear oscillator, displaying bi-stability and hysteresis for sufficiently strong driv-

ing amplitudes. That is, the nonlinear oscillator (the acoustic resonance) oscillates

either with a large amplitude or a small amplitude - this behaviour is most apparent

in Figure 7.27.

While certainly interesting in its own right, the nonlinearity of the acoustic reso-

nance was beyond the scope of this experimental investigation and was therefore not

studied in great detail. In fact, the nonlinearity of the acoustic resonance of sample

01ppb33.4 was not studied at all; however, a few days worth of time were spent

observing the nonlinear character of the acoustic resonance in sample 300ppb29.3.

Figure 7.30 shows the bi-stable and hysteretic nature of the acoustic resonance in

sample 300ppb29.3 at 126 mV drive and 50 mK. The curve labelled “increasing fre-

quency” in Figure 7.30 is comparable to the curve labelled “356.2 mV” in Figure 7.25

(i.e., they are of similar drive amplitude and were both taken as the frequency was

increased).

Figure 7.31 shows a decreased bi-stable and hysteretic nature of the same acous-
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Figure 7.30: Hysteretic behaviour of the acoustic resonance at 126 mV drive ampli-
tude and 50 mK, in sample 300ppb29.3.

tic resonance (in sample 300ppb29.3) at 760 µV drive and 50 mK. The curve labelled

“increasing frequency” in Figure 7.31 is comparable to the curve labelled “1.1 mV”

in Figure 7.27 (i.e., they are of similar drive amplitude and were both taken as the

frequency was increased).

Figure 7.32 shows an absence of bi-stability and hysteresis of the same acoustic

resonance (in sample 300ppb29.3) at 22 µV drive and 50 mK. The curve labelled

“increasing frequency” in Figure 7.32 is comparable to the curve labelled “32 µV”

in Figure 7.29 (i.e., they are of similar drive amplitude and were both taken as the

frequency was increased).

Provided that the excitation is driven at an amplitude of less than about 50 µV,

we observe no hysteresis in the acoustic resonance. Also at sufficiently low excitation,

we observe that fr and Q are independent of the drive amplitude, as shown in

Figure 7.33.

With this knowledge in mind, our subsequent study of the temperature depen-

dence of the acoustic resonance was performed at a driving amplitude of 32 µV (i.e.,

in the amplitude independent regime). All future plots of acoustic resonances, peak

positions, Q’s (or 1/Q’s), etc., are in this low amplitude regime (where they are
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Figure 7.31: Hysteretic behaviour of the acoustic resonance at 760 µV drive ampli-
tude and 50 mK, in sample 300ppb29.3.
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Figure 7.32: Non-hysteretic behaviour of the acoustic resonance at 22 µV drive
amplitude and 50 mK, in sample 300ppb29.3.
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Figure 7.33: Acoustic resonance in sample 001ppb33.4 at 18 mK, scaled by its low
drive amplitude.

independent of drive amplitude).

7.4.1.1 Sample 300ppb33.3

This sample is presented first because its acoustic resonance was studied in the

greatest detail. Figure 7.34 shows the acoustic resonance in sample 300ppb33.3 at

300 mK (refer back to the thermodynamic path on the phase diagram of Figure 7.13).

Recall that sample 300ppb33.3 had been annealed before these measurements were

taken.

The resonance frequency fr of this peak is (7782 ± 2) Hz. The amplitude of

this peak is (0.00106 ± 0.00001) pA/Hz. Both of these measures are shown in

Figure 7.34 (for clarity and here only). No liquid/background subtractions were

made in the analysis of these acoustic resonance peaks, as the effect was on the

order of 0.2% of the total signal. We can also assign a quality factor Q to this

resonance peak. Physically speaking, Q is 2π times the ratio of the total energy

stored divided by the energy lost in a single cycle. Equivalently (and for sufficiently

large values of Q, such as in the torsional oscillator experiments), the quality factor

is approximately the number of oscillations required for a freely oscillating system’s
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Figure 7.34: Acoustic resonance in sample 300ppb33.3 at 300 mK.

energy to fall off to 1/e2π of its original energy. When the system is driven by a

sinusoidal drive, its resonant behavior depends strongly on Q. Resonant systems

respond to frequencies close to their natural frequency much more strongly than

they respond to other frequencies. A system with a high Q resonates with a greater

amplitude at the resonant frequency than one with a low Q factor, and its response

falls off more rapidly as the frequency moves away from resonance. The width of the

resonance is given by ∆f = fr/Q, where ∆f, the bandwidth, is the width of the range

of frequencies for which the energy is at least half its peak value (the full width at

half-maximum). The peak shown in Figure 7.34 has a Q of ∼ 250. The dissipation

of the peak is defined as 1/Q.

It should be stated that the peak fr, amplitude, and Q were all determined

manually (i.e., by eye and not by a computer peak fitting algorithm). Of course, a

computer program could also be used to determine these values. Figure 7.35 shows

the same data as plotted in Figure 7.34, along with a simple 4-parameter Lorentzian

curve, fitted by SigmaPlot, to that same data. The equation used to fit the data is
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y = y0 +
a

1 + (x−x0
b )2

, (7.18)

where y0 is a vertical offset, a is the peak amplitude, b is the full width of the peak

at its half maximum, and x0 is the resonant frequency fr. For the fit in Figure 7.35,

the resonance frequency fr is 7780 Hz, the peak amplitude is 0.00103 pA/Hz, and the

half width of the curve at half its maximum is 16 Hz, implying Q = 243. So, there

is no discrepancy between the values determined by eye and those determined via a

fitting program. Of course, this is a relatively “clean” peak - estimates become more

difficult as the shape of the peak is distorted (as will be discussed momentarily).

Still, the analysis presented here is largely qualitative in nature and the values

determined by eye will suffice for our purposes.
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Figure 7.35: Acoustic resonance in sample 300ppb33.3 at 300 mK, with an overlaid
Lorentzian fit.

Figure 7.36 shows the same acoustic resonance in the shear cell for sample
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300ppb33.3 at 18 mK.
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Figure 7.36: Acoustic resonance in sample 300ppb33.3 at 18 mK.

The resonance frequency fr of this peak is (8141 ± 3) Hz. The amplitude is much

more difficult to determine because of a destructive interference very near to the

resonance frequency, resulting in what looks to be a double-peak. The interference

likely arises from the background signal of the cell; referring back to Figure 7.5, there

are a handful of smaller resonances that exist in the 8100-8200 Hz neighborhood.

In principle, this background could be subtracted from our signal, but the effort is

not worth the payoff (as I will soon argue). It is possible to estimate the amplitude

by manually (e.g., by eye) removing the effect of the interference. Figure 7.37

demonstrates what is intended by this admittedly crude technique, where the dashed

lines guide the eye along the shape of roughly where the peak (alone) sits. Using

this method, the amplitude is (0.014 ± 0.002) pA/Hz, and the Q is ∼ 2000.

Again, we can use a computer program to fit a curve to this data. Figure 7.38

shows the same data as plotted in Figure 7.36 (minus the range which contained the
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Figure 7.37: Acoustic resonance in sample 300ppb33.3 at 18 mK with a rough
estimate of the true shape of the peak.

interference), along with the 4-parameter Lorentzian curve, fitted by SigmaPlot, to

that same data. For the fit in Figure 7.38, the resonance frequency fr is 8138 Hz,

the peak amplitude is 0.016 pA/Hz, and the half width of the curve at half its

maximum is 3 Hz, implying Q = 1356. There is very little difference between the

values determined by eye and those determined via the fitting program, even though

we aren’t dealing with a “clean” peak.

As stated above, we will be using the values determined by eye and not those

determined by a fitting program. Those extracted by eye are less time consuming

to determine and, more important, our analysis is fairly insensitive to the small

differences that do exist between the two techniques. For example, we will be ex-

amining the temperature dependence of the peak position of the acoustic resonance

(i.e., fr(T)), and the difference fr(300 mK) - fr(18 mK) is two orders of magnitude

greater than the error in any value of fr(T). Also, we will be studying the dissi-

pation 1/Q (x 103) of the acoustic resonance. While it is conceivable that values

determined by eye and by fitting differ by as much as a factor of 2, it is unlikely;

in any case, conservative error bars have been included for every dissipation data
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Figure 7.38: Acoustic resonance in sample 300ppb33.3 at 18 mK, with an overlaid
Lorentzian fit.

point (and are largest when the peak is not “clean”).

Figures 7.39 and 7.40 show how the resonance peak in sample 300ppb33.3 evolves

as a function of temperature. Both plot the same data, but the latter has its

temperature scale reversed.

Figure 7.41 plots the temperature dependence of the peak position of the acoustic

resonance for sample 300ppb33.3 as a function of temperature. Comparing the

temperature dependence of the resonance frequency fr to that of the shear modulus

µ, it is clear that the two measurements probe the same elastic changes.
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Figure 7.39: Acoustic resonance in sample 300ppb33.3 as a function of temperature
(from the “front”).
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Figure 7.40: Acoustic resonance in sample 300ppb33.3 as a function of temperature
(from the “back”).
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Figure 7.41: Peak position of the acoustic resonance in sample 300ppb33.3 as a
function of temperature, compared to the associated shear modulus anomaly.
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The changes in fr (∼ 4%) are about half as large as for µ (∼ 8%), as expected

since fr varies with sound speed, as the square root of elastic moduli. As a brief

aside, the computer modelling of the acoustic resonance in our cell was extended to

calculate how the resonant frequency would shift given a 15% change in the shear

modulus or bulk modulus of the solid 4He. Table 7.1 summarizes the results of this

simulation for the lowest mode, f1. The modelling shows that fr depends almost

entirely on the shear modulus, and not the bulk modulus (otherwise, we would

expect ∆fr/fr to be less than half of ∆µ/µ).

Shear modulus (15.6 MPa) Bulk Modulus (33.5 MPa) ∆f1 (kHz) % change
decreased 15% fixed -1.01 -6.4
increased 15% fixed +0.94 +5.9

fixed decreased 15% -0.22 -1.4
fixed increased 15% +0.20 +1.2

Table 7.1: Simulation response of the lowest resonant mode to changes in the shear
and bulk modulus.

If supersolidity produces a decoupling of a supersolid fraction from the lattice

which responds to shear deformation in acoustic resonances [27], we wouldn’t expect

our low frequency (essentially static) shear modulus measurements to agree with the

acoustic resonance frequencies. (If some supersolid fraction decoupled, the sound

speeds would increase even more than expected from the shear modulus increases.

We wouldn’t be able to separate out a ∼ 1% effect due to decoupling from the ∼ 10%

modulus effect, but if the supersolid density were ∼ 50% it would be obvious.)

The corresponding dissipation 1/Q, shown in Figure 7.42, is largest near 140 mK,

near where fr is changing rapidly. The maximum dissipation consistently occurs at

a temperature slightly above the inflection in the fr curve (or the shear modulus

µ curve). In torsional oscillator experiments, the dissipation peak typically occurs

at a temperature slightly below the inflection in the NCRI fraction curve (which is

analogous to our shear modulus µ curve). This may be due to their lower frequencies,

which span from ∼ 185 Hz to ∼ 1500 Hz.

Figure 7.43 shows the change in dissipation versus the change in resonance fre-

quency scaled by its low temperature value for the acoustic resonances of sample

300ppb33.3. For this sample, ∆(Q−1) ≈ 11 x 10−3 is about a factor of five smaller
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than its ∆fr/fr ≈ 50 x 10−3. A comparison of this type of measurement to torsional

oscillator data is made toward the end of this section.
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Figure 7.42: Dissipation in the acoustic resonance in sample 300ppb33.3 as a func-
tion of temperature, compared to its peak position.
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Figure 7.43: Change in dissipation of the acoustic resonance in sample 300ppb33.3
as a function of the scaled change in resonance frequency.
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7.4.1.2 Sample 300ppb34.0

Figure 7.44 shows the acoustic resonance in sample 300ppb34.0 at 300 mK (refer

back to the thermodynamic path on the phase diagram of Figure 7.11). Recall

that sample 300ppb34.0 had been annealed before these measurements were taken.

The data presented here is noisier than that of the previous section because it was

collected without the current preamplifier (recall the block diagram of Figure 7.3).
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Figure 7.44: Acoustic resonance in sample 300ppb34.0 at 300 mK.

The resonance frequency fr of this peak is (7816 ± 4) Hz; its amplitude is

measured (0.00104 ± 0.00004) pA/Hz and it has a Q of ∼ 300.

Figure 7.45 shows the acoustic resonance that we measure in the shear cell for

the sample 300ppb34.0 at 33 mK.

The resonance frequency fr of this peak is (8148 ± 5) Hz; its amplitude is

(0.0027 ± 0.0004) pA/Hz and it has a Q of ∼ 800. As explained above, these

values have been determined by eye, without the aid of a fitting algorithm. For

the reader who remains unconvinced that this technique will suffice, we again use
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Figure 7.45: Acoustic resonance in sample 300ppb34.0 at 33 mK.

a computer program to fit a curve to this data. Figure 7.46 shows the same data

as plotted in Figure 7.45 (minus the range which contained the interference), along

with the 4-parameter Lorentzian curve, fitted by SigmaPlot, to that same data. For

the fit in Figure 7.46, the resonance frequency fr is 8153 Hz, the peak amplitude is

0.032 pA/Hz, and the half width of the curve at half its maximum is 10 Hz, implying

Q = 408. As before, there is very little difference between the values determined

by eye and those determined via the fitting program, even though we aren’t dealing

with a “clean” peak. As a reminder, conservative error bars have been included for

the dissipation data.

Figures 7.47 and 7.48 show how the resonance peak in sample 300ppb34.0 evolves

as a function of temperature. Both plot the same data, but the latter has its tem-

perature scale reversed. As was the case in the previous sample, the peak shifts to

higher frequency with decreasing temperature, experiencing a maximum in dissipa-

tion near where it moves through frequency space most quickly.

Figure 7.49 plots the resonance frequency for sample 300ppb34.0 as a function

of temperature. Comparing the temperature dependence of the resonance frequency

fr to that of the shear modulus µ, it is again clear that the two measurements probe
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Figure 7.46: Acoustic resonance in sample 300ppb34.0 at 18 mK, with an overlaid
Lorentzian fit.

the same elastic changes. The changes in fr (∼ 4%) are about half as large as for µ

(∼ 6%).

The corresponding dissipation 1/Q, shown in Figure 7.50, is largest near 110 mK,

near where fr is changing rapidly. Again, the maximum dissipation occurs at a

temperature slightly above the inflection in the fr curve (or the shear modulus µ

curve).

Figure 7.51 shows the change in dissipation versus the change in resonance fre-

quency scaled by its low temperature value for the acoustic resonances of sample

300ppb34.0. For this sample, ∆(Q−1) ≈ 8 x 10−3 is about a factor of five smaller

than its ∆fr/fr ≈ 42 x 10−3.

188



0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

7600 7800 8000 8200 8400

100

200

300

400

I/
f 

(p
A

/H
z)

Frequency (Hz)
T

em
pe

ra
tu

re
 (

m
K

)

Figure 7.47: Acoustic resonance in sample 300ppb34.0 as a function of temperature
(from the “front”).
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Figure 7.48: Acoustic resonance in sample 300ppb34.0 as a function of temperature
(from the “back”).
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Figure 7.49: Acoustic resonance in sample 300ppb34.0 compared to shear modulus
anomaly.
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Figure 7.50: Acoustic resonance in sample 300ppb34.0 and its dissipation.
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Figure 7.51: Change in dissipation of the acoustic resonance in sample 300ppb34.0
as a function of the scaled change in resonance frequency.
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7.4.1.3 Sample 300ppb29.3

Figure 7.52 shows the acoustic resonance in sample 300ppb29.3 at 200 mK (refer

back to the thermodynamic path on the phase diagram of Figure 7.8). Sample

300ppb29.3 had not been annealed before these measurements were taken.
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Figure 7.52: Acoustic resonance in sample 300ppb34.0 at 200 mK.

The resonance frequency fr of this peak is (7814 ± 4) Hz; its amplitude is

measured (0.00176 ± 0.00005) pA/Hz and it has a Q of ∼ 650.

Figure 7.53 shows the acoustic resonance that we measure in the shear cell for

the sample 300ppb34.0 at 35 mK.

The resonance frequency fr of this peak is (7943 ± 1) Hz; its amplitude is

measured (0.051 ± 0.001) pA/Hz and it has a Q of ∼ 1750. This peak is “clean”

enough that no comparison to a fitting algorithm will be provided.

Figures 7.54 and 7.55 show how the resonance peak in sample 300ppb29.3 evolves

as a function of temperature. As was presented before, both plot the same data, but

the latter has its temperature scale reversed. Once again, the peak shifts to higher
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Figure 7.53: Acoustic resonance in sample 300ppb34.0 at 35 mK.

frequency with decreasing temperature, experiencing a maximum in dissipation near

where it moves through frequency space most quickly.

Figure 7.56 plots the resonance frequency of sample 300ppb29.3 as a function

of temperature. This was one of the first measurements made on µ and it was

done before we had all of our electronics set to the proper sensitivities; therefore,

the µ data plotted here shows a digitization step. µ appears to change by ∼ 4%;

however, the digitization means that this value could be off by as much as a factor

of two. Also, this measurement was made at 100 Hz (as opposed to 2000 Hz), but

Figure 7.15 reminds us that ∆µ is unaffected by the measurement frequency. The

changes in fr (∼ 2%) are about half as large as for µ, as before.

The corresponding dissipation 1/Q, shown in Figure 7.57, is largest near 150 mK,

near where fr is changing rapidly. In conformity with our previous measurements,

the maximum dissipation occurs at a temperature slightly above the inflection in

the fr curve (or the shear modulus µ curve).

Figure 7.58 shows the change in dissipation versus the change in resonance fre-

quency scaled by its low temperature value for the acoustic resonances of sample

3300ppb29.3. For this sample, ∆(Q−1) ≈ 2 x 10−3 is a factor of eight smaller than
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Figure 7.54: Acoustic resonance in sample 300ppb29.3 as a function of temperature
(from the “front”).

its ∆fr/fr ≈ 16 x 10−3.

In a simple oscillator the maximum dissipation ∆(Q−1) should equal the fre-

quency shift ∆fr/fr. Figure 7.59 shows the change in dissipation versus the change

in resonance frequency scaled by its low temperature value for the acoustic reso-

nances of all three samples discussed above. Recall that ∆(Q−1) was smaller than

∆fr/fr by a factor ranging from five to eight. Similar differences in torsional oscilla-

tor measurements have been ascribed [161] to sample inhomogeneity. For example,

Fig. 2 of Reference [51] shows ∆(Q−1) ≈ 3 x 10−6, about a factor of six or seven

smaller than its ∆ω/ω ≈ 20 x 10−6. In other examples, Rittner and Reppy [54]

show data very close to the homogeneous expectation (i.e., their Fig. 2 shows

∆(Q−1) ≈ 12 x 10−6 and ∆ω/ω ≈ 18 x 10−6); conversely, Kim and Chan [9, 51]

also have data in which the factor ranges up to about 100.
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Figure 7.55: Acoustic resonance in sample 300ppb29.3 as a function of temperature
(from the “back”).
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Figure 7.56: Acoustic resonance in 300ppb29.3 compared to shear modulus anomaly.
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Figure 7.57: Acoustic resonance in sample 300ppb29.3 and its dissipation.
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Figure 7.58: Change in dissipation of the acoustic resonance in sample 300ppb29.3
as a function of the scaled change in resonance frequency.
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Figure 7.59: Summary of the change in dissipation of the acoustic resonance as a
function of the scaled change in resonance frequency. •’s are for sample 300ppb33.3,
¤’s are for sample 300ppb34.0, and N’s are for sample 300ppb29.3.
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7.5 3He dependence

A striking feature of torsional oscillator experiments is their sensitivity to 3He. We

grew samples from isotopically pure 4He (1 ppb 3He - the same gas used in torsional

oscillator measurements [52]) and from intermediate concentrations made by mixing

with commercial 4He (0.3 ppm 3He). We compare their behavior in Figure 7.60. The

anomaly shifts to lower temperatures as the 3He concentration decreases.
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Figure 7.60: Shear modulus anomaly in solid 4He at 2000 Hz, for different 3He
impurity concentrations: 1 ppb (33.4 bar, •), 45 ppb (33.0 bar, ◦), 85 ppb (33.5 bar,
¥), and 0.3 ppm 3He (33.3 bar, ¤). Changes ∆µ have been scaled by their values
at the lowest temperature (18 mK) in order to compare temperature dependence.
The sizes of the anomalies ∆µ before scaling were: 14.9% for 1 ppb data; 7.8% for
45 ppb data; 16.6% for 85 ppb data; and 8.3% for 0.3 ppm data.

We also show similarly scaled decoupling data from torsional oscillator experi-

ments [9, 52] on 1 ppb and 0.3 ppm 3He samples in Figures 7.61 and 7.62, respec-

tively. In reference to this borrowed data, samples were grown using two different

techniques. Some samples were grown using the blocked capillary technique (BC),
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which was described earlier in this thesis. This technique results in a polycrystalline

sample with a relatively high level of associated disorder. Other samples were grown

using the constant temperature (CT) technique. This technique involves keeping the

fill line from high-pressure cylinder to experimental cell open during crystal growth.

The pressure in the experimental cell is slowly increased at low temperature (around

1 K) until solidification begins, and then is kept fixed until solidification is complete.

This technique results in single crystal that occupies the entire cell (or, at worst,

a few large crystals), with very little presumed associated disorder. Returning to

Figures 7.61 and 7.62, the onset temperatures and shapes of the curves agree very

well (roughly within the sample to sample variations in torsional oscillator measure-

ments).
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Figure 7.61: Shear modulus anomaly at 2000 Hz and NCRI at 1072 Hz in solid 4He
at 1 ppb 3He impurity concentration. Changes ∆µ have been scaled by the values
at the lowest temperature (18 mK) and NCRI has been similarly scaled in order
to compare temperature dependence. The NCRI data is that of Reference [58]; the
letters CT mean that the sample was grown at a constant temperature (of 1.38 K),
and the letters BC mean that the sample was grown using the blocked capillary
technique (and solidification was complete at 1.80 K and 2.17 K).
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Figure 7.62: Shear modulus anomaly at 2000 Hz and NCRI at 910 Hz in solid 4He
at 0.3 ppm 3He impurity concentration. Changes ∆µ have been scaled by the values
at the lowest temperature (18 mK) and NCRI has been similarly scaled in order
to compare temperature dependence. The NCRI data is that of Reference [9]; the
letters BC mean that the sample was grown using the blocked capillary technique.

Figure 7.63 shows the shear modulus anomaly at three frequencies (2000, 200

and 20 Hz), at a driving voltage of 32.7 mVpeak and a corresponding strain of

2.2 x 10−8, in the 1 ppb 3He sample at 33.4 bar of Figure 7.60. It is not possible

to say whether the magnitude of the modulus increase is the same for each, as

sufficiently low temperatures were not achieved to “saturate” the value for ∆µ. The

transition temperature appears to decrease with frequency, but does not appear

sharper at low frequency (as was the case in samples with greater 3He impurity

concentrations).

7.5.1 Acoustic resonance peak position at 1ppb 3He

Now that the shear modulus anomaly has been examined at lower 3He concentra-

tions, we’ll follow through a quick study of the acoustic resonance at lower 3He

concentrations.
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Figure 7.63: The shear modulus anomaly as a function of frequency in sample
001ppb33.4. The 200 Hz and 2000s Hz data have been shifted up for clarity.

7.5.1.1 Sample 001ppb33.4

Figure 7.64 shows the thermodynamic path followed during the growth of sample

001ppb33.4. As can be seen from the inset of Figure 7.64, this sample is at only a

slightly higher pressure than the sample 300ppb33.3. Also note that it has entered

the hcp phase without having first entered the mixed bcc/hcp phase. The helium

used for this sample also had an isotopic purity of 1 ppb 3He.

Figure 7.65 shows the acoustic resonance in sample 001ppb33.4 at 150 mK.

Sample 001ppb33.4 had not been annealed before these measurements were taken.

The resonance frequency fr of this peak is (7591 ± 2) Hz; its amplitude is

(0.006 ± 0.003) pA/Hz and it has a Q of ∼ 1100. As before, these values have been

determined by eye, without the aid of a fitting algorithm.

Figure 7.66 shows the acoustic resonance that we measure in the shear cell for

the sample 001ppb33.4 at 24 mK.

The resonance frequency fr of this peak is (8023 ± 3) Hz; its amplitude is

measured (0.030 ± 0.005) pA/Hz and it has a Q of ∼ 1000.

Figures 7.67 and 7.68 demonstrate how the acoustic resonance peak in the sample
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Figure 7.64: The thermodynamic path for sample 001ppb33.4. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we
measured it. Data in grey shows sample 300ppb29.3, sample 300ppb34.0, and sample
300ppb33.3.
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Figure 7.65: Acoustic resonance in sample 001ppb33.4 at 150 mK.
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Figure 7.66: Acoustic resonance in sample 001ppb33.4 at 24 mK.

001ppb33.4 evolves as a function of temperature. Just as before, both plot the same

data, but the latter has its temperature scale reversed. At the risk of sounding like

a broken record, the peak shifts to higher frequency with decreasing temperature,

experiencing a maximum in dissipation near where it moves through frequency space

most quickly.

Figure 7.69 plots the resonance frequency for the sample 001ppb33.4 as a function

of temperature. Comparing the temperature dependence of the resonance frequency

fr to that of the shear modulus µ, it is again clear that the two measurements probe

the same elastic changes. The changes in fr (∼ 5%) are about half as large as for

µ (∼ 11%), and the corresponding dissipation 1/Q (see Figure 7.70 is largest near

70 mK, near where fr is changing rapidly. Last, but certainly not least, Figure 7.71

shows the change in dissipation versus the change in resonance frequency scaled by

its low temperature value for the acoustic resonances of sample 001ppb33.4. For

this sample, ∆(Q−1) ≈ 2 x 10−3 is about a factor of twenty-five smaller than its

∆fr/fr ≈ 55 x 10−3.

205



0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

7600 7700 7800 7900 8000 8100

40

80

120

160

I/
f 

(p
A

/H
z)

Frequency (Hz)
T

em
pe

ra
tu

re
 (

m
K

)

Figure 7.67: Acoustic resonance in sample 001ppb33.4 as a function of temperature
(from the “front”).
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Figure 7.68: Acoustic resonance in sample 001ppb33.4 as a function of temperature
(“from the back”).
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Figure 7.69: Acoustic resonance in sample 001ppb33.4 compared to shear modulus
anomaly.
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Figure 7.70: Acoustic resonance in sample 001ppb33.4 and its dissipation.
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Figure 7.71: Dissipation of the acoustic resonance in sample 001ppb33.4 as a function
of the scaled change in resonance frequency fr.
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7.6 Annealing and stress effects

Another fascinating feature of the torsional oscillator results is the NCRI dependence

on sample history. For example, the NCRI fraction can be nearly eliminated through

annealing [54] (a process which presumably results in a reduced number of crystal

defects), or can be made remarkably large through quench cooling [57] (a process

which results in an increased number of crystal defects). Other groups performing

torsional oscillator experiments have noted similar behaviour. In order to begin to

understand the role of defects, we studied some the properties of our samples before

and after annealing. What follows is little more than scratching the surface of the

effects of annealing and stress, although one important conclusion is drawn - it is

largely the high temperature behaviour that is affected by annealing and stressing

the solid, not the low temperature behaviour.

To begin, we studied some the properties of sample 001ppb33.4 (please refer

back to Figure 7.64) before and after annealing. This sample was annealed for 11

hours at 1.70 K (∼ 0.2 K below Tm). We continued annealing the sample until the

measured shear modulus near melting no longer changed as a function of time, as

shown in Figure 7.72.

As shown in Figure 7.73, the annealing process reduced ∆µ from 11.3% to 7.4%,

but it was largely the high temperature behavior which changed. The values of µ

and fr at the lowest temperature were almost unaffected by annealing. For example,

at 25 mK fr decreased by less than 0.2% (as shown in Figure 7.74). At 25 mK µ

increased by only 0.3%, whereas at 0.5 K, µ increased by 2.9%. Unfortunately, the

analogous measurement was not made for fr at 0.5 K. The low temperature values

appear to reflect an intrinsic shear modulus and the effect of defects is mostly to

reduce µ at higher temperatures.

We also applied large acoustic stresses (∼ 700 Pa) to the annealed sample at

∼ 20 mK in an attempt to create additional defects. These large stresses were created

by applying a large driving voltage to the piezoelectric transducers (∼ 1.5 V) and

then sweeping the frequency over the range of the acoustic resonance. (In hindsight,

this might not be relevant to the low frequency µ measurement, since the large

amplitude at resonance presumably affects the solid 4He outside of the gap, but

doesn’t necessarily have a larger effect on the solid 4He in the gap than applying,

for example, ∼ 1.5 V at 1000 Hz.) Figure 7.75 shows that the value of µ remains

210



Time (hours)

0 2 4 6 8 10 12

I/
f 

(p
A

/H
z)

0.0095

0.0096

0.0097

0.0098

0.0099

Figure 7.72: Annealing time for sample 001ppb33.4 at 1.70 K.
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Figure 7.73: Effect of annealing shear modulus anomaly in sample 001ppb33.4. Both
data sets taken on cooling.
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Figure 7.74: Effect of annealing on resonant frequency in sample 001ppb33.4, at
25 mK.

essentially unchanged at low temperature but does change at high temperature

(which, to be clear, means above 100 mK but below 500 mK). Warming above 0.6 K

undoes these effects, indicating that defects introduced by stressing the crystal are

only stable at low temperatures. Ultrasonic measurements [156] on bcc and hcp 3He

showed similar effects of large stresses.

Figure 7.76 shows that the value of fr remains virtually unchanged at low tem-

perature (a 0.3% increase). There is no data showing how much fr is affected at high

temperatures by stressing. (In hindsight - which is always clearer than foresight -

and knowing that µ and fr probe different volumes of the cell, one would expect that,

depending on the procedure, the large stresses would affect each of those properties

differently; annealing, on the other hand, might be expected to affect µ and fr in

the same way.)
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Figure 7.75: Effect of stressing on shear modulus anomaly in sample 001ppb33.4.
The “before stress” data set taken on cooling, “after stress” data set taken on
warming.
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Figure 7.76: Effect of stressing on resonant frequency in sample 001ppb33.4 at
20 mK.
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We also studied some of the properties of sample 300ppb33.3 (please refer back

to Figure 7.13) before and after annealing. This sample was annealed for 15 hours at

1.70 K (∼ 0.2 K below Tm). We continued annealing the sample until the measured

shear modulus near melting no longer changed as a function of time, as shown in

Figure 7.77.
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Figure 7.77: Annealing time for sample 300ppb33.3 at 1.70 K.

As shown in Figure 7.78, the annealing process reduced ∆µ from 9.8% to 7.7%,

and it was more so the high temperature behavior which changed. The values of µ

and fr at the lowest temperature were almost unaffected by annealing. For example,

at 18 mK fr increased by only 0.1% (as shown in Figure 7.79). At 18 mK, µ decreased

by only 0.5%, whereas at 0.4 K, µ increased by 1.1%. At 0.4 K, fr increased by 3.8%

(as shown in Figure 7.80). Again, the low temperature values appear to reflect an

intrinsic shear modulus and the effect of defects is mostly to change µ at higher

temperatures.

We then, once again, applied large acoustic stresses (∼ 700 Pa) to the annealed

215



Temperature (K)

0.02 0.05 0.2 0.50.01 0.1 1

I/
f 

(p
A

/H
z)

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

before anneal
after anneal

Figure 7.78: Effect of annealing on shear modulus anomaly in sample 300ppb33.3.
Both data sets taken on cooling.

Frequency (Hz)

8000 8050 8100 8150 8200 8250 8300

I/
f 

(p
A

/H
z)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

before anneal 
after anneal

Figure 7.79: Effect of annealing on resonant frequency in sample 300ppb33.3, at
18 mK.
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Figure 7.80: Effect of annealing on resonant frequency in sample 300ppb33.3, at
400 mK.

crystal at 18 mK in an attempt to create additional defects. Here, the values of µ

changed at both low and high temperature, as shown in Figure 7.81. There is no

corresponding fr data to study. Stressing the crystal in this way caused µ to increase

by 1.4% at low temperature, and by 3.8% at 400 mK. Alternatively, we could say that

stressing the crystal caused the anomaly ∆µ (as measured between low temperature

and 400 mK) to decrease from 7.7% to 5.3%, as shown in Figure 7.82. Again,

warming above 0.6 K undoes these effects, restoring the anomaly ∆µ back to 7.7%.
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Figure 7.81: Effect of stressing on shear modulus anomaly in sample 300ppb33.3.
The “before stress” data set taken on cooling, “after stress” data set taken on
warming.
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Figure 7.82: Effect of stressing on shear modulus anomaly in sample 300ppb33.3,
with data shifted. The “before stress” data set taken on cooling, “after stress”
data set taken on warming. Also, “after stress” data has been shifted to agree with
“before stress” data at low temperature.
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Finally, we consider sample 300ppb29.3 (please refer back to Figure 7.8) before

and after annealing. This sample was annealed for 10 hours at 1.45 K (∼ 0.3 K

below Tm). As before, we continued annealing the sample until the measured shear

modulus near melting no longer changed as a function of time (this data unavailable).

As shown in Figure 7.83, the annealing process enhanced ∆µ from 6.0% to 11.1%,

and it was mostly the high temperature behavior which changed. The values of µ

and fr at the lowest temperature were almost unaffected by annealing. For example,

at 50 mK fr increased by 0.1% (as shown in Figure 7.84) and µ decreased by only

4.3%. At 0.2 K, however, fr decreased by 1.8% (as shown in Figure 7.85) and µ

decreased by 10.2%. To reiterate, we conclude that the low temperature values

appear to reflect an intrinsic shear modulus and the effect of defects is mostly to

reduce µ at higher temperatures.
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Figure 7.83: Effect of annealing on shear modulus anomaly in sample 300ppb29.3.
Both data sets taken on cooling.

As before, we then applied large acoustic stresses (∼ 700 Pa) at the base temper-
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Figure 7.84: Effect of annealing on resonant frequency in sample 300ppb29.3, at
50 mK.
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Figure 7.85: Effect of annealing on resonant frequency in sample 300ppb29.3, at
200 mK.
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ature of the annealed crystal in an attempt to create additional defects. Again, the

values of µ and fr changed at high temperature but not at low temperature, as shown

in Figure 7.86. One last time, warming above 0.6 K undoes these effects: the defects

introduced by stressing the crystal seem to be stable only at low temperatures.

Temperature (K)

0.02 0.05 0.2 0.5 20.01 0.1 1

I/
f 

(p
A

/H
z)

0.0078

0.0080

0.0082

0.0084

0.0086

0.0088

0.0090

0.0092

0.0094

before stress 

after stress 

Figure 7.86: Effect of stressing on shear modulus anomaly in sample 300ppb29.3.
The “before stress” data set taken on cooling, “after stress” data set taken on
warming.

7.7 Discussion

The modulus changes at low temperatures are very large: orders of magnitude larger

than expected in defect-free crystals (e.g., than are seen in ultrasonic measurements

on single crystals [49, 154]). It is difficult to imagine small concentrations of point

defects having such significant effects. Dislocations, however, can dramatically affect

the elastic properties of solids and may lead to anomalous low temperature behavior

in quantum crystals like helium [162].
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Much of what is known about dislocations in metals has been directly confirmed

through electron microscopy (and other techniques) which can monitor their motion.

In solid helium, of course, direct observation isn’t possible, and so what is known

is much more indirect. Most dislocation information for solid helium comes from

acoustic experiments [154, 155, 156, 163, 164], plastic deformation [38, 165], and

internal friction [157, 158] studies, although dislocations have been shown to be

important in thermal conductivity [166, 167, 168], ion motion [169], and perhaps

even heat capacity of solid helium [87]. Recent synchrotron X-ray tomography on

solid helium [170] has even given some pictorial confirmations that dislocations really

do exist in solid helium.

7.7.1 Dislocation basics

Dislocations can be easily conceptualized in (semi-)two-dimensional structural car-

toons on the atomic scale. They are typically introduced and thought of as extra

lattice planes inserted into the crystal that do not extend all the way through, ending

at the dislocation line. The schematic of Figure 7.87 displays a three-dimensional

view of an edge dislocation in a cubic primitive lattice, and should serve as the

quintessential illustration of what an edge dislocation looks like. The upside-down

T is an end view of the dislocation itself and the dashed gray line is its glide plane,

along which it may move. It is imperative, however, to remember that this is just

a cartoon. First, such a crystal very rarely exists in nature - with the exception of

polonium, all real lattices are more complicated. Second, the exact structure of real

dislocations will never be so simple - edge dislocations are just an extreme form of

the possible dislocation structures. A mental expansion of Figure 7.87 (no easy feat)

shows that a dislocation cannot end in the interior of an otherwise perfect crystal.

Dislocations must end on either: a crystal surface; an internal surface or interface

(e.g., a grain boundary); at a point where other dislocations intersect, forming a

dislocation node; or on itself, forming a closed dislocation loop (it is worth making

the “closed” distinction, since dislocations between pinning nodes are often referred

to as “loops”).

Figure 7.87 should also illuminate the fact that dislocations are one-dimensional

defects. Beyond the edge dislocation, a screw dislocation is the other primary type

(which result in a helical nature of the lattice in its vicinity). Mixed dislocations are

intermediate between these. In all cases, the crystal lattice is disturbed only along
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Figure 7.87: Schematic of an edge dislocation [171].

the dislocation line (ignoring the inverse-proportionally smaller elastic deformations

that exist as we move away from the dislocation) and described at any point by its

line vector ~t(x,y,z).

The characteristic parameter of a dislocation is its Burgers vector, denoted
~b(x,y,z), which specifies the magnitude and direction of the lattice distortion of

dislocation in a crystal lattice. To determine ~b of a dislocation, a closed circuit sur-

rounding the dislocation is traced in the real crystal. This circuit is then mapped

onto an ideal crystal; the circuit does not close and the closure vector defines ~b.

The Burgers vector is perpendicular to the direction of an edge dislocation, and

is parallel to the direction of a screw dislocation. The magnitude of ~b (= b) is a

measure for the strength of the dislocation, or the amount of elastic deformation

in the core of the dislocation. The glide plane is the plane defined by the Burgers

vector ~b and the line vector ~t. (A pure screw dislocation has no particular glide

plane since ~b and ~t are parallel and thus do not define a plane. In principle, then,

a screw dislocation could move on any plane; in practice, certain restrictions exist.)
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The existence of a Burgers vector implies that the bonds between atoms in the

dislocation core itself are not in an equilibrium configuration (i.e., at their minimum

enthalpy), and so dislocations possess both energy (per unit of length, with a greater

contribution coming from the elastic field than from the core) and entropy. Note in

Figure 7.87 how the region above the dislocation (with the inserted half-plane) is

in compression, while the region below the dislocation (without the half-plane) is in

tension. As these atoms are displaced from their perfect lattice sites, the resulting

distortion produces a displacement field in the crystal around the dislocation. The

displacement field is given by ~u(x,y,z), thus defining the displacement of atoms. The

displacement field leads to the existence of a corresponding stress field and strain

field. With the components ux, uy, uz representing projections of ~u on the x, y, and

z axes, the nine components of the strain tensor are directly given in terms of the

first derivatives of these displacement components. The normal strains are given by

the diagonal elements of the strain tensor:

εxx =
dux

dx
; εyy =

duy

dy
; εzz =

duz

dz
. (7.19)

The shear strains are given by the off-diagonal elements of the tensor:

εyz = εzy =
1
2

(
duy

dz
+

duz

dy

)
;

εzx = εxz =
1
2

(
duz

dx
+

dux

dz

)
; (7.20)

εxy = εyx =
1
2

(
dux

dy
+

duy

dx

)
.

The dislocation, therefore, is a source of internal stress in the crystal. In all

regions of the crystal except right at the center of the dislocation core, the stress is

small enough to be treated by conventional linear elasticity theory. Moreover, it is

generally sufficient to use isotropic theory, further simplifying things. If the elastic

field is known, it is possible to calculate the force that a dislocation exerts on other

dislocations, or, more generally, any interaction with elastic fields from other defects

or from external forces can be calculated. It is also then possible to calculate the
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energy contained in the elastic field produced by a dislocation. Calculations of this

sort are beyond the scope of this thesis.

Also pertinent to the discussion of our results is that dislocations can be made to

move, as shown in the cartoon of Figure 7.88. Panel A shows the application of an

external force to the right on the top half of a crystal containing an edge dislocation

and an external force to the left on the bottom half of the same crystal. When

under the influence of external forces, internal stress are caused within the crystal.

Panels B and C show how the bonds between atoms in the vicinity of the dislocation

re-configure to minimize the internal stress. Panel D shows how the movement of

a dislocation moves the whole crystal on one side of the glide plane relative to the

other side. Plastic deformation therefore proceeds, atomic step by atomic step, by

the (generation and) movement of dislocations.

If a dislocation is to move within a plane of atoms in the unit cell, a critical shear

stress equal to the maximum of the Peierls potential is needed. The magnitude of

this force varies periodically as the dislocation moves within the plane and through

the crystal lattice. The Peierls stress also depends on the width of a dislocation

core and the distance between planes. It decreases with increasing distance between

atomic planes and, since the distance between planes increases with planar density,

slip of the dislocation is preferred on closely packed planes.

7.7.2 Dislocation specifics

In a real crystal, dislocations will form a 3-dimensional network. The dislocations

within the network are pinned at nodes where they intersect, and may be character-

ized by several parameters. Their Burgers vector ~b (on the order of an interatomic

spacing) has already been discussed, but they may be further characterized by their

density Λ (which is the total dislocation length per unit volume, and so carries units

of m/m3, or #/m2). The dislocation density Λ can vary in 4He and is not easy

to extract from measurements, which may not be sensitive to screw dislocations.

The estimates of dislocation densities in solid helium come largely from analysis of

acoustic/ultrasonic data. The ultrasonic estimates of [154, 155, 156] are the most

likely to be quantitatively correct since they come from an analysis of the com-

plete temperature and frequency dependence of sound velocities and attenuations.

The low frequency acoustic measurements (e.g., [158]) and some of the ultrasonic

measurements (e.g., [163]) are limited to a single low frequency or to temperatures
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Figure 7.88: Schematic of dislocation movement.
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relatively near melting. This is important, since the damping of dislocations is due

to thermal excitations, largely phonons, and therefore is strongly temperature de-

pendent (∼ T3) and there is a frequency-dependent crossover from under-damped

to over-damped motion of dislocations as T increases. As the ultrasonic measure-

ments of [154, 155, 156] (3-50 MHz) required fairly high quality single crystals, they

were all done with crystals grown at constant pressure. The work of [163] probably

involved poorer quality crystals and might have inferred much higher dislocation

densities. Typical values are Λ = (106 - 105) cm−2.

The network loop length between nodes LN is another important characteriz-

ing parameter. Typical values are LN = (5 -10) x 10−6 m, but it should be noted

that these come from ultrasonic measurements on relatively high quality single crys-

tals [154, 155, 156]. Figure 7.89 shows a cartoon diagram of what is meant by the

network loop length between nodes. More realistically, the dislocation loop length

should likely be treated as an (exponential) distribution of lengths.

Dislocations can also be pinned, albeit less strongly, by crystallographic impu-

rities - in the case of solid 4He, by 3He isotopic impurities. The impurity pinning

length LP (see Figure 7.90) is determined by the binding energy EB between the

impurity and a dislocation, the temperature T, and the impurity concentration x3.

LN

Figure 7.89: Schematic of a dislocation network, pinned at the intersection of dislo-
cations.
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Figure 7.90: Schematic of a dislocation network, pinned at the intersection of dislo-
cations and by 3He impurity atoms (shown as small gray dots).

As outlined above, dislocations will move in response to a shear stress in their

glide plane. For solid 4He in the hcp phase, there is one dominant slip system (as

in most hcp metals): edge dislocations gliding in the basal plane, perpendicular to

the c-axis. (This motion is related to the total stress by an orientation factor R

which accounts for the fact that only shear components of the stress normal to the

Burgers vector act on the dislocation. R typically varies between 0 and 0.5 in hcp
4He [172], and also depends on the type of dislocation.)

The motion of dislocations is well-described by the “vibrating string” model of

Granato and Lücke [173]. In this model, a dislocation behaves like a damped vibrat-

ing string. The mathematical model for the equation of motion for the transverse

displacement ξ(y,t) of the dislocation is

A
∂2ξ

∂t2
+ B

∂ξ

∂t
− C

∂2ξ

∂y2
= bσ. (7.21)

This is shown in Figure 7.91, where the plane of the paper is the slip plane. For

Equation 7.21, A is the effective mass per unit length, B is the damping force per unit

length, and C is the effective tension per unit length in a bowed out dislocation.

The term on the right is the force per unit length exerted on the dislocation by

the external shearing stress. The constants are given by A = πρb2, where ρ is

the density of the material and b is the Burgers vector, and C = 2µb2/π(1 - ν),

where µ is the shear modulus and ν is Poisson’s ratio. Both the effective mass

and the effective string tension result from the energy in the elastic strain field
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around the dislocation. These expressions include only the elastic energy of the

dislocation strain field and ignore the core structure of the dislocations, the effects

of anisotropy, and the differences between edge and screw dislocations. The damping

coefficient B is treated as a parameter to be determined from experiment, and is

due to the interaction of thermal phonons with the dislocations (and, so, increase

with temperature). The dominant contribution at low temperature is dislocation

“flutter” [174] in the stress field of the thermal phonons, radiating energy and giving

a low temperature damping B ∼ T3.

ξ

y
0 l

Figure 7.91: Bowed out dislocation. The dislocation has length `. The displacement
of the dislocation from its equilibrium position is given by ξ, while y denotes the
coordinate of an element of the dislocation line.

Below the dislocation loops’ resonance frequencies (typically in the MHz range),

inertia and damping are not important and they simply bow out between pinning

points like a rubber band, as was shown schematically in Figure 7.91. Such displace-

ment creates a strain which adds to the elastic strain of the crystal and reduces the

solid’s shear modulus. For example, as this dislocation bows outward by some aver-

age displacement ξ, an area ξ` is displaced by one Burgers vector b, giving a strain

(due to dislocations):

εd = RΛbξ, (7.22)

where the orientation factor R is included to find the strain in a particular direction

(e.g., along an applied stress). In the static/DC limit, we ignore time-dependent
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effects and Equation 7.21 simplifies to

−C
∂2ξ

∂y2
= bσ, (7.23)

for constant stress σ (i.e. independent of y). The solution to Equation 7.23 is

ξ(y) = − bσ

2C
y2 + dy + e. (7.24)

Applying the boundary conditions ξ(0) = 0 and ξ(`) = 0 yields

ξ(y) = − bσ

2C
y2 +

b`σ

2C
y. (7.25)

The average displacement of a dislocation, then, is

ξ =
1
`

∫ `

0
ξ(y)dy

=
1
12

b`2σ

C

=
π(1− ν)

24
`2

µb
σ. (7.26)

Equation 7.22 can then be re-written as

εd =
π(1− ν)

24
RΛ`2 σ

µ
. (7.27)

With σ/µ = ε, and εd equal to the dislocation-responsible change in this value (i.e.,

∆ε), we find that

∆ε

ε
=

∆µ

µ
=

π(1− ν)
24

RΛ`2. (7.28)

In the absence of impurity pinning, ` is simply the network length LN , which

is largest for low density dislocation networks with few intersections. In annealed

crystals with well-defined networks, ΛLN
2 is a geometric constant (e.g., 3 for a
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cubic network) and ∆µ can be nearly independent of the dislocation density. (From

ultrasound measurements of single crystals [175, 176, 154], it is usually found that

0.1 < ΛLN
2 < 0.2.) For the random orientations expected in polycrystalline samples,

the average anisotropy factor R is about 0.2, so dislocations can reduce µ by as much

as 30%.

When impurities are added, LP can become smaller than LN (recall Figures 7.89

and 7.90), reducing the dislocation strain. Impurity pinning is very effective since a

single pinning site at the middle of a loop reduces its contribution to µ by a factor

of four. At temperatures below EB, impurities condense onto dislocations giving an

enhanced concentration xD = x3 e
EB
kbT , where x3 is their bulk concentration. Pinning

will be significant when xD increases to the point where a typical dislocation loop has

an impurity bound to it (i.e., when xD ≈ a/LN , where a is the atomic spacing along

the dislocation). This implies that the shear modulus will recover to its intrinsic

value below a pinning temperature which decreases with impurity concentration:

TP = −EB

kB

1
ln(LNx3

a )
(7.29)

Our results are consistent with this picture. Ultrasonic measurements [154, 155,

156] on helium single crystals give dislocation densities Λ ∼ 106 cm−2 (polycrystals

are expected to have higher densities). Typical loop lengths are ∼ 5 µm, giving

resonant frequencies ∼ 15 MHz. Values of RΛL2 range from about 0.01 in ultrasonic

experiments to 1.0 in a low frequency measurement [158]. The dominant slip system

for hcp 4He is edge dislocations gliding in the basal plane [177]. 3He impurities

bind to these with EB/kB in the range 0.3 K [154] to 0.7 K [158]. Using values

EB/kB = 0.6 K, a = 0.35 nm, and LN = 5 µm, we arrive at TP = 110 mK for

x3 = 0.3 ppm, decreasing to 54 mK for x3 = 1 ppb. This is very close to the

temperatures where we observe µ to increase.

As a brief aside, Chan and collaborators also contemplate a crossover from

network-pinning to impurity-pinning (when the average distance LP between con-

densed 3He atoms becomes less than LN ). Their x3-dependent crossover temperature

accounts for zigzagging of dislocations for energy minimization and is of the form

TP = −2EB

(
ln

[
x3

2LP
3EB

4µb6

]−1)
. (7.30)
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Here, b is the magnitude of the Burger’s vector of a dislocation and µ is the shear

modulus of 4He. In order to reveal a possible connection between 3He impurity-

pinning and the observed x3 dependence of NCRI, they identify crossover tem-

peratures (i.e., the onset of NCRI) for varying levels of x3 and fit Equation 7.30

to their data by adjusting the parameters LP and EB. Their best fit parameters

(LP ∼ 1.5 µm and EB ∼ 0.5 K) are not inconsistent with those found in the litera-

ture.

A pinned dislocation is not forever immobile, however. Large stresses can tear

dislocations away from 3He pinning sites and reduce the shear modulus. The critical

stress for this breakaway can be estimated [173] as about 4 Pa for LP = 5 µm. This

corresponds to a strain of ε ∼ 3 x 10−7, a level where we see strong amplitude de-

pendence. Stress-induced breakaway can also produce hysteresis (e.g., if impurities

are unable to bind to rapidly moving dislocations when a sample is cooled at large

drive amplitudes [158]).

It is also useful to determine a relevant displacement (e.g., the amplitude of

dislocation motion when behaviour of the shear modulus anomaly ∆µ shows ampli-

tude dependence). The maximum deviation of a dislocation is determined by setting

y = `/2 in Equation 7.25 and is given by

ξm =
π

16
(1− ν)

`2

µb
σ. (7.31)

Using typical values ν ≈ 0.3, `≈ 5 x 10−6 m, b≈ 3.5 x 10−10 m, and µ≈ 1.5 x 107 Pa,

we get ξm ≈ (6.5 x 10−10)σ. In other words, the maximum displacement is roughly

2 lattice spacings per Pa. Our shear modulus measurements were made at stress

levels σ ≈ 0.33 Pa, corresponding to ξm ≈ 0.2 nm. The amplitude dependence of

∆µ was measured to set in at stress levels ∼ 0.68 Pa, corresponding to ξm ≈ 0.4 nm,

or about one lattice spacing. As a comparison, the “critical displacement” inferred

from torsional oscillator experiments is ∼ 2 nm (the displacement of a dislocation

can be much larger than the amplitude of torsional oscillator motion).

The increase in µ, its magnitude and frequency dependence, the temperature

at which stiffening occurs and its dependence on 3He concentration, the amplitude

dependence and its associated hysteresis - these are all consistent with a picture of

a network of dislocations pinned by 3He impurities (using dislocation parameters

determined in earlier experiments on hcp 4He). The effects of annealing can be
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understood in terms of changes in dislocation density Λ; note that ∆µ depends only

on the combination ΛL2
N and so can increase, decrease, or even remain unchanged

when dislocations disappear.

To help illustrate this point, Figure 7.92 shows a cartoon example of a (cubic)

network of dislocations. The dislocation density is given as the total dislocation

length (3LN ) per unit volume (L3
N ), so that ΛL2

N = 3.

Figure 7.92: Schematic of a (cubic) dislocation network, pinned at the intersection
of dislocations.

Annealing will result in some of these dislocations disappearing from the network.

Figure 7.93 shows a cartoon of the (cubic) network of dislocations from Figure 7.92,

with roughly half of the dislocations annealed away (i.e., removed). In this carefully

chosen example, LN has doubled, but Λ has been quartered, meaning that still

ΛL2
N = 3. Removal of a different number of dislocations and/or of different specific

dislocations can result in an increase or decrease in the product ΛL2
N .

Large stresses were also observed to change ∆µ, probably by introducing more
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Figure 7.93: Schematic of an “annealed” (cubic) dislocation network, pinned at the
intersection of dislocations.

dislocations or pinning existing ones, an effect also seen in ultrasonic measure-

ments [156]. Overall, our experiments show that the low temperature modulus

is largely unaffected by annealing or stressing, as expected since dislocations are

then pinned by impurities. Instead, µ softens when the temperature is raised to

the point where 3He impurities are able to “boil off” from the dislocations, thereby

allowing them to move in response to shear stress.

In contrast to our results, previous torsional measurements [158] on the shear

modulus of solid hcp 4He at comparable strains (ε = 10−7) showed no change between

0.5 K and 17 mK. The torsional oscillators in such experiments are run with solid
4He only in the torsion rod (as opposed to also in the torsion bob); here, a torsional

oscillator was used to make shear modulus measurements on solid 4He at 331 Hz with

torsional standing waves. With commercially pure 4He (0.3 ppm 3He) and at strains

ε = 10−7, no change in µ was observed below 0.5 K. Interestingly, they do observe

a softening of the solid sample, but at temperatures near 1 K. The temperature

at which this transition occurs can be made to decrease with increasing strain,

nearing 100 mK at relatively high strains ε = 10−5. With ultra-pure 4He (nominally

2.4 ppb 3He), no change in µ is observed at all, down to 17 mK. This is an apparent
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discrepancy with our results. Unfortunately, it is not possible to be more specific

since this difference is not understood, nor is it easy to speculate without more

details on how they calibrated their strains and 3He impurity concentrations.

7.7.3 In summary

The key features of the data presented in this chapter may all be well-understood

in terms of the dislocation model of Granato and Lücke, outlined above, in which

the dislocation lines between stable nodes can bend when stress is applied to the

crystal. This elastic dislocation motion reduces the shear modulus.
3He impurity atoms tend to bind to the dislocation lines at low temperatures

and pin this dislocation motion. Such pinning decreases dislocation loop lengths

and results in an intrinsic shear modulus µ at low temperature which is essentially

unaffected by annealing or stressing the sample (processes which presumably change

both dislocation number and density within the sample).

When the temperature is increased, the 3He impurity atoms unbind from the

dislocation lines and a break away occurs. Dislocation line lengths increase and

the shear modulus µ of the solid softens; namely, we observe that ∆µ/µ ≤ 30%, as

expected from Equation 7.28. Furthermore, the temperature at which this crossover

behaviour occurs as a function of bulk 3He impurity concentration makes sense, as

given by Equation 7.29.

As the applied strain is increased, the speed at which dislocations move increases

and the more difficult it becomes for a 3He impurity atom to condense on or “grab

on” to dislocations. The result is that fewer 3He impurity atoms serve as pinning

sites and the dislocation loop lengths will, to a greater extent, remain unchanged

as the temperature is reduced. With that, the magnitude of the shear modulus

anomaly ∆µ is decreased (and, under sufficiently high strain, made to disappear).

If these quickly moving dislocations are then made to slow down (i.e., the applied

strain is reduced) at low temperature, 3He impurity atoms can then pin - and stay

pinned - on the dislocations back up to large strains.
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Chapter 8

Summary

This thesis began with an introduction to some of the basic concepts behind super-

fluidity and an extension of them to the solid phase of 4He. Experimental data were

then presented for: the freezing of 4He under confinement; the pressure-induced flow

of solid 4He under confinement and in bulk; and, the elastic properties of solid 4He

at low temperatures, amplitudes, and frequencies. In this final chapter, I will try to

bring together these concepts with the results of our experiments.

8.1 Summary of background material

Helium behaves quite differently from the heavier inert gas solids and solid helium

is a uniquely ’quantum’ solid. The van der Waals attraction is not capable of over-

coming the quantum zero-point motion of the atoms and, unless external pressures

are applied, helium will remain a liquid all the way down to absolute zero. Quantum

effects play an important role in the fluid phase, as superfluidity exemplifies, and

are likewise significant in the solid phase; consequently, it is important to study the

fundamental properties of quantum solid helium.

One of the first works to consider the quantum nature of solid 4He was by

Andréev and Lifshitz [28], who proposed that its significant quantum fluctuations

might, at low enough temperature, permit for a dilute gas of vacancies (i.e., non-

thermal zero point vacancies) within the solid and that these could Bose-Einstein

condense, resulting in a crystal that was neither a solid nor a liquid. This supersolid

phase would possess the characteristic properties of a regular solid (e.g., a periodic

lattice, a non-zero-shear modulus) but also share some properties with a superfluid

namely (e.g., frictionless flow).

It wasn’t until 2004, however, when Kim and Chan [9, 10] provided the first
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supporting experimental evidence for supersolidity.

Using a solid 4He-filled torsional oscillator, they have made observations consis-

tent with a portion of the solid 4He ceasing to oscillate with the rest of the system,

flowing through the solid matrix without encountering any frictional resistance:

namely, a supersolid phase transition. Importantly, the same result with solid 4He

has been reproduced in at least four other groups [53, 54, 55, 56].

8.2 Summary of experimental results

The four experiments described in this thesis, presented in the order in which they

were performed, were all motivated by the remarkable supersolid interpretation of

recent torsional oscillator results on solid 4He. With them, we are able to provide

evidence that supports the supersolid claim, as well as confounding it. The overall

picture that emerges from these studies is that solid 4He is proving to be at least

as weird as anyone ever could have predicted. As strange as it is, however, we still

find success in defining some of its fundamental mechanical properties.

8.2.1 Dielectric measurements of helium freezing in Vycor

In our first experiment, we studied how 4He freezes when it is subjected to confine-

ment on the nanometer scale, in porous Vycor glass (i.e., the system in which the

supersolid state was first observed) [78]. This was directly motivated by the fact

that obvious alternative explanations to the superfluid-like behaviour observed in

the torsional oscillator experiments existed.

Some of these possible mechanisms were tied to the understanding that confine-

ment can restrict freezing: perhaps the superfluid-like signal was actually coming

from a liquid portion of the system. With that, we took some dielectric measure-

ments of 4He freezing in the pores of Vycor. We were able to confirm that the

density change associated with freezing is substantially smaller than in bulk, which

implies that not all of the 4He in the pores is actually participating in solidification.

(It could also mean, although this seems more unlikely, that all of the 4He does

indeed solidify, but that the volume change associated with freezing, for unknown

reasons, is small in the pores of Vycor.) If some of the confined 4He remained liquid,

say as some thin film that coats the pore wall, then it is perfectly plausible that the

superfluid-like behaviour observed in the torsional oscillator experiments is nothing

more than superfluidity in that thin film. (Should this be the case, however, we
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expect that the thickness of this film would be a function of pressure. Our mea-

surements suggest otherwise, that the amount of 4He that solidifies in the pores is

independent of pressure.)

The presence of a persistent liquid layer, then, cannot be ruled out. In fact,

there very likely exists an amorphous 4He film strongly adsorbed to the pore wall,

having a density already near that of the solid phase and thereby minimally con-

tributing to the change in density upon freezing. Path Integral Monte Carlo (PIMC)

simulations [142] and Variational Monte Carlo simulations [143] both support the

persistent liquid layer model to explain the NCRI observations. Our density change

measurements of solid 4He in Vycor (∼ 70% of the bulk value) suggest a thickness

of this film corresponding to 3-4 layers of adsorbed 4He and is consistent with these

Monte Carlo results.

Some other potential mechanisms are cultivated from the understanding that a

torsional oscillator is a highly sensitive probe of the moment of inertia of a system

(i.e., its total mass along with how that mass is distributed). For example, the pores

of Vycor are small enough that it isn’t obvious which (if any) crystallographic phase

the solid 4He within takes. Should the solid undergo a crystallographic phase tran-

sition, it might re-distribute its mass and, therefore, change the system’s moment

of inertia. Just as a figure skater spins faster by pulling in her arms, so too might a

torsional probe oscillate more quickly if its solid 4He matrix shuffles into a tighter

packing fraction.

Alternatively, one should keep in mind that solid 4He is a notoriously poor wetter

of surfaces. It is known that solid H2 undergoes a de-wetting transition from Vycor

at reduced temperatures [116], causing the solid H2 to be expelled from its Vycor

confines and reducing the period of the torsional probe taking measurements on that

very same piece of Vycor. It was worth confirming that a similar phenomena does

not occur with solid 4He. Indeed, it does not. We found no evidence of any sudden

density changes, such as a crystallographic phase transition, nor any signs of the

solid 4He leaving the Vycor, such as a de-wetting transition, at low temperatures.

Any such behaviour would have altered the moment of inertia in a torsional oscillator

and could have mimicked mass decoupling. Our results leave little doubt that the

solid 4He stays put at low temperatures.
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8.2.2 Pressure-induced flow of solid helium

Our first set of measurements, described in the previous section, effectively ruled

out some of the most obvious alternative explanations to the NCRI observed for

solid 4He in Vycor: they seemed to strengthen the supersolid claim. With that,

it became extremely interesting to see whether solid 4He would exhibit any of the

other unusual flow properties of a superfluid. Of course, no one could say how a

supersolid should behave - no one had ever studied one before. All one could go

on was the (perhaps näıve) assumption that a supersolid would behave in roughly

the same way as a superfluid. Besides, if we knew exactly what we were doing, it

wouldn’t be research.

Some of the unusual properties of superfluids that one could explore in solid 4He

include superleaks, persistent currents, second sound, and quantized vortices. We

chose to study the response of solid 4He to pressure differences, in order to look

for unusual flow properties that might be associated with supersolidity. Superflow

is a hallmark of superfluidity in liquid 4He; it is natural to look for this in the re-

gion where solid 4He decouples from torsional oscillators. An early experiment [41]

solidified 4He in two chambers with pressure differences (of order 1 bar) between

them, but saw no flow through the solid 4He in the connecting capillaries, implying

either that superflow only occurred below the lowest temperature of the measure-

ment (30 mK) or that it had a critical velocity much smaller than the 10 µm/s

inferred from Kim and Chan’s torsional oscillator results. A later experiment [43]

extended to lower temperatures (4 mK) without seeing any flow through solid 4He.

The pressure difference was established by different liquid-solid interface heights in

a U-tube, so this experiment was necessarily done at coexistence on the melting

curve.

While two null results had already been obtained, neither studied solid 4He in

the pores of Vycor. We also felt that we could significantly improve on the sensitivity

of these previous measurements. So, we studied the flow of solid 4He in response to

pressure differences: in our first such experiment, the 4He was confined in the pores

of Vycor [78]; in the second, we studied bulk solid [79] in an experiment conceptually

similar to that of Greywall [41]. Both experiments used a beryllium copper cell

with a flexible diaphragm and an in situ capacitive pressure gauge. The diaphragm

was coupled to an external piezoelectric (PZT) actuator stack to compress the 4He
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inside the cell. In both sets of experiments, the 4He was always solidified using

the blocked capillary method and the cell was always initially filled with liquid at

sufficiently high pressure to ensure that the 4He in all internal volumes would freeze

at low temperatures. Pressure gradients grown into the sample during solidification

were eliminated by annealing our samples near their melting temperatures before

beginning our flow measurements.

8.2.2.1 Vycor

For the Vycor experiment, our sample was a Vycor disc onto which copper electrodes

were evaporated, to measure (via the sample’s capacitance) the density of the helium

within the pores. A typical flow measurement then involved suddenly compressing

the 4He by applying a voltage to the piezoelectric actuator, forcing the 4He to flow

into the pores of the Vycor, while monitoring it via the sample capacitance.

The sample responded to the applied pressure step in two stages. First, there

was an initial jump in density capacitance simply due to the elastic compression

of the Vycor capacitor. Second, as solid 4He then flowed into the Vycor pores

to equilibrate the pressures after compression, the density capacitance increased

further, at a slower rate reflecting the flow velocity of the solid 4He. The rate

of flow was strongly dependent on temperature, occurring most rapidly at higher

temperatures (e.g., equalizing pressures in less than a minute very near to melting).

Below about half of the melting temperature (in the neighborhood of 1 K), the

flow was too slow to measure. The temperature dependence that we observed was

consistent with mass transport via a thermally activated process, with an activation

energy of about 8 or 9 K. Lower temperature measurements (e.g., around 0.5 K)

showed no flow (and only the initial elastic jump).

The most interesting question, of course, was whether or not we would observe

any flow in the temperature range below 200 mK, where Kim and Chan saw decou-

pling of solid helium from Vycor [9]. The answer to that question was no. Our data

allowed us to put an upper limit of 3 nm/s on any superflow at low temperatures.

This limit is considerably smaller than the critical velocity of about 10 µm/s inferred

from the torsional oscillator measurements.
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8.2.2.2 Bulk

For the bulk experiments, the cell was divided into two chambers. The larger cham-

ber (0.49 cm3) included the diaphragm and the smaller one (0.01 cm3) had a pressure

gauge. The chambers were separated by a glass capillary array (GCA), a plate con-

taining 36,000 parallel capillaries, each 3 mm long and 25 µm in diameter, through

which the 4He could flow. The 4He was always solidified using the blocked capil-

lary method and the cell was initially filled with liquid at sufficiently high pressure

to ensure that all the 4He in and around the GCA channels would freeze at low

temperatures. Pressure gradients grown into the sample during solidification were

eliminated by annealing our samples near their melting temperatures before begin-

ning our flow measurements. Our bulk flow measurements were done in a similar

way to those of Vycor: a typical flow measurement involved suddenly compress-

ing the 4He by applying a voltage to the piezoelectric actuator, forcing the 4He to

flow through the channels of the GCA, while monitoring the flow into the smaller

chamber via the pressure gauge.

Not surprisingly, we found that liquid flows easily through the GCA channels,

keeping the two chambers in pressure equilibrium after a compression and serving

as a calibration of our diaphragm and piezoelectric stack. (A voltage step of 150 V

applied to the stack produced a pressure change of 84 mbar, implying a volume

change of 0.03% and a diaphragm deflection of about 1 µm.) Also not very sur-

prisingly, we observed that the solid near melting (e.g., within about 10 mK) does

flow in response to an applied pressure difference; the pressures in the two cham-

bers equilibrated within about half an hour (compared to a second or less for liquid

helium). As the temperature is lowered, even if just by another 10 mK, the pres-

sures did not completely equilibrate. Below about half of the melting temperature

of the crystal (around 1 K) we saw no evidence of flow. For example, the effect of a

compression at 0.5 K was an immediate smaller (38 mbar) pressure response in the

second chamber, but this was simply a reflection of the elastic bending of the GCA

plate (analogous to the elastic compression of the Vycor sample) due to the pressure

gradient across it. (A pressure difference of 100 mbar due to compressing the solid

in the larger chamber bent the plate by about 30 nm, thus compressing the solid
4He in the smaller chamber and producing this observed pressure step.) There was

no subsequent pressure change that would indicate flow between the two chambers
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and the pressure returned immediately to its original value when the diaphragm was

released.

We looked for unusual pressure-induced flow below 200 mK, again and to no

avail. The response of a squeeze at 35 mK was identical to the response at 0.5 K,

with no evidence of flow through the channels. After having monitored the pressure

following a squeeze for up to 20 hours with the same null result, we put an extremely

stringent limit on the pressure-induced superflow in solid 4He at low temperatures

of 1.2 x 10−12 m/s. This is seven orders of magnitude smaller than the 10 µm/s

critical velocity inferred from the torsional oscillator amplitude dependence.

In these experiments, we also compared the flow of isotopically pure 4He (about

1 ppb 3He) to that of commercial helium (about 0.3 ppm 3He). The behavior

was essentially identical, making it unlikely that 3He impurity atoms are somehow

responsible for the absence of flow at low temperatures.

In short, our experiments show that static pressure gradients do not produce

superflow at low temperatures in solid 4He. If the NCRI seen in torsional oscillator

measurements is due to supersolidity, we conclude that its behavior must be quite

different from that of a superfluid.

Of course, the amplitude dependence of the decoupling seen in the torsional

oscillator measurements does not have to be due to a critical velocity vc (about

10 µm/s). For example, it could be due to an effect that depends on the maxi-

mum displacement xc = vc/ω (about 2 nm) or one that depends on the maximum

acceleration ac = vcω (about 0.1 m/s2) of the solid 4He, and the distinction is im-

portant in comparing experiments at different frequencies. For example, a limit on

displacement could prevent a DC measurement (like ours) from observing superflow.

Alternatively, a limit on acceleration could prevent high frequency ultrasonic mea-

surements (like those on solid 4He in Vycor [104, 144]) from observing the decoupling

of a supersolid component.

Keeping this in mind, we looked for AC flow in our measurements (albeit at

rather low frequencies, 0.01 to 1 Hz) but saw no evidence of solid 4He motion

through the GCA channels at low temperatures. With these AC measurements, we

put an upper limit on the average displacement of the 4He in our work of about

0.03 nm. If only the 1% NCRI fraction moves, this corresponds to a 3 nm motion:

slightly larger than the displacement at which NCRI starts to decrease in Kim and

Chans experiments. So, we can not rule out the possibility of a critical displacement.
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Dislocations provide one mechanism for limiting displacements in solid 4He. This

was the line of thinking that carried us into our final set of experiments.

8.2.3 Shear modulus study of solid helium

Mass can be transported by the motion of dislocations, and dislocations can be

pinned by 3He impurities, even at the ppm level [154, 175], or by interactions with

other defects and surfaces. That the torsional oscillator results [52] are so extremely

sensitive of 3He (down to the ppb level!) might serve as a clue that dislocations are

somehow or another involved in the observed NCRI. Decoupling is usually larger

in narrow annuli than in open cylinders [57] but begins at similar temperatures; its

magnitude (and its elimination) also depends on how the solid 4He was grown and

annealed, and strongly suggests that the NCRI behavior involves defects. Theo-

retical work [71, 61, 81, 75, 83, 153] also suggests that defects are involved. These

should also affect the solid’s mechanical behaviour and this was the driving force

behind our final set of experiments.

In an investigation of elastic properties, we have made the first direct measure-

ment of the shear modulus of solid 4He at low temperatures. This study required

the development of a new experimental technique, although conceptually quite sim-

ple. A sample of solid 4He is grown between two parallel plates (piezoelectric shear

transducers). One plate, the driving transducer, is moved in a direction parallel to

the second plate. The solid 4He transmits the resulting elastic shear stress between

the plates, and this is measured by the second plate, the detecting transducer. This

new method allowed us to measure the shear modulus µ of solid 4He directly at

strains (stresses) as low as ε = 2.2 x 10−9 (σ = 0.03 Pa). this is two to three or-

ders of magnitude lower than in previous torsional [158], internal friction [157], and

ultrasonic measurements [154, 155]. We also measured µ at frequencies as low as

20 Hz, far lower than in any previous experiments.

What we found was that the shear modulus µ of solid 4He increases by about

∆µ ∼ 10% as the temperature is reduced from 200 mK to 20 mK. More significant

than the existence of ∆µ alone was that the temperature dependence of ∆µ closely

tracks the decoupling in the torsional oscillator experiments. Furthermore, it has

the same dependence on measurement amplitude, 3He impurity concentration, and

annealing as the decoupling seen in torsional oscillator experiments.

This unusual effect was confirmed through a simultaneous measurement of the
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frequency and damping of a resonance in our sample (outside of the gap, surrounding

the transducers). This resonance was also found to have the same dependence

on temperature, measurement amplitude, 3He isotopic impurity concentration, and

annealing as the torsional oscillator results. This is the first clear observation of

directly related phenomena in other properties of solid 4He.

Upon observing this phenomena, thought was given to what might be the root

cause of these effects. While a solid’s strength and shear modulus are indeed a func-

tion of the intrinsic nature of the perfect crystalline solid, they also depend strongly

on defects within the solid (such as dislocations and grain boundaries). Noteworthy

is the knowledge that the same seems to be true for the torsional oscillator exper-

iments, in which the results depend on the quality of the crystal, with the largest

effects seen in the most defective samples. Indeed, dislocations can dramatically

affect elastic properties (e.g., can produce a frequency-independent reduction of the

shear modulus [173] as large as 30%) and lead to unusual behaviour in quantum

crystals [162].

The results we obtained are well-explained as the behaviour of dislocations and

their interaction with trace amounts of 3He impurities in the solid 4He. When dis-

locations are free to move in response to a shear stress, they can relax the stress in

a crystal and so lower its shear modulus. Impurities of 3He tend to bind to dislo-

cations in solid 4He at low temperatures [154] and so can restrict their motion. As

the temperature is increased, the 3He unbinds from the dislocations and a break-

away, allowing the dislocations to move more freely and reducing µ. The observed

dependence of the shear modulus on the concentration of 3He is consistent with this

idea.

As it was torsional oscillator results which motivated this work and as the two

sets of measurements share all essential features (even though they measure very

different properties - shear modulus and sound speed versus moment of inertia and

density), one can’t help but ask: is the shear modulus anomaly directly related to

the frequency shifts and dissipation in torsional oscillator experiments?

The anomalous behaviours have the same temperature dependence and both

transitions are accompanied by similar dissipation peaks. They are both strongly

amplitude dependent (starting at comparable stress levels) as well as having very

similar amplitude-dependent hysteresis at low temperatures. In both types of mea-

surements, the magnitude of the anomaly is frequency independent, but its onset
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is broadened and shifts to higher temperature with increasing frequency. Tiny 3He

impurity concentrations have the same sort of dramatic effect on the onset temper-

ature, and annealing changes the magnitude of both anomalies.

Considering these remarkable similarities, it seems safe to say that the two sets

of effects are related. This, then, raises the more challenging issue of determining

how the two sets of effects are related.

One possibility is that the modulus increase stiffens the torsional oscillator, in-

creasing its frequency and mimicking mass decoupling. Interpreting a torsional

oscillator frequency as a direct measure of mass assumes that the oscillator head

is infinitely stiff and that the solid helium moves rigidly with its walls, neither of

which is exactly true. We initially stated [178] that an increase in the shear modulus

of 4He would improve its coupling to the torsional oscillator and thus decrease its

frequency (that is, the opposite of the observed behaviour). However, we have since

been shown that this statement is incorrect [179]; namely, that the stiffening of the

solid 4He shear modulus would increase the frequency of a torsional oscillator. The

question then is whether the increase in the 4He shear modulus observed at low

temperatures (which will increase the torsional oscillator frequency and so mimic

decoupling) is of the right magnitude. The answer to this query is reserved for

another student, and another thesis.

Alternatively, an increase in µ could raise the frequency of a torsional oscillator

by increasing the stiffness of its head (which is assumed to be infinite for an ideal

model of a torsional oscillator). Preliminary estimates for typical oscillators suggest

that this effect is several orders of magnitude too small to account for the observed

decoupling. However, simulations are underway in an effort to confirm the mag-

nitude of these sorts of effects [160], as the effect is sensitive to the details of the

torsional oscillator design. It should also be remembered that when the flow path

in a torsional oscillator annulus is blocked the decoupling is nearly eliminated, even

though this would barely change the contribution by the solid 4He to its stiffness.

Our observations do not provide an obvious mechanical, non-supersolid explanation

of the frequency changes in torsional oscillators (recall that there is strong evidence

for frequency independence of the NCRI).

It is perfectly plausible that the µ anomaly and the decoupling observed in

torsional oscillator measurements are both fundamental properties of a supersolid

phase [94]. If this were the case [83, 153], then it would be natural for them to have
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a common dependence on temperature, 3He, et cetera.

However, it is not unreasonable to argue that mobile dislocations could affect a

supersolid response. Perhaps the torsional oscillators truly are observing a super-

solid state, and our shear experiment has allowed for us to observe behaviour which

kills the supersolid state. For example, vortices [96] could be pinned by station-

ary dislocations but could introduce dissipation and destroy the supersolidity when

dislocations begin to move above 100 mK.

The decoupling seen in porous media [10] remains a puzzle, as it is hard to

imagine dislocations existing, let alone moving, in the 7 nm pores of Vycor glass.

The precise connection between our elastic measurements and decoupling of solid

helium from torsional oscillators is not certain, but it is clear that the two are

closely related and that models of supersolidity should consider the effects of moving

dislocations.
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