Kicking Pulsars Hard¹

James Charbonneau

University of British Columbia Vancouver, BC, Canada

February 2010

¹Charbonneau, Hoffman and Heyl, Large Pulsar Kicks from Topological Currents. [arXiv:0912.3822] (2009)

James Charbonneau (UBC)

Pulsars move much faster than their progenitors, they have been kicked.

- The typical pulsar velocity is 400 km/s
- 15% of pulsars have velocities over 1000 km/s.

Large kicks do not have a suitable explanation.

Topological Vector Currents²

Topological vector currents carry electrons along magnetic flux lines in dense matter.

The currents appear in dense stars because

- the electrons have large Fermi momentum.
- the lowest Landau level only admits spin down electrons.
- the Urca processes violate parity,

$$n \rightarrow p + e^- + \bar{\nu}_e$$

 $p + e^- \rightarrow n + \nu_e$

Kicks from Topological Currents

- 1. Electrons transfer momentum.
 - electron rocket!
 - bremsstrahlung.
 - quark stars only.
- 2. Current is sensitive to Temperature, need a realistic cooling curve.
 - Haensel et al. (1991)
 - Page & Usov (2002)
- Mechanism generates large kicks > 1000 km/s.

So why is the electron kick bigger?

So why is the electron kick bigger?

So why is the electron kick bigger?

Topological currents can generate large kicks.

- 1. We use a realistic cooling model to estimate the kick.
- 2. Current dominates cooling later in life.
- 3. Leads to the conjecture that pulsars with large kicks are quark stars.