
Chapter 8.  Early network findings and ideas 
 

All great truths begin as blasphemies 
-George Bernard Shaw  

in Annajanska, 1919 
 

I have not failed. 
I've just found 10,000 ways that don't work. 

-Thomas Edison 
 

 
Jerne's idiotypic network hypothesis 
 
Immunologists in the early 1970's were in the process of discovering a wealth 
of information about how the immune system worked. They had found that 
the system is eminently manipulable. They could take it apart, then put it back 
together, and it would work! There are many bits and pieces, so there are many 
ways of taking it apart and putting it back together, piece by piece. They could 
for example combine cells from different animals, some of which had been 
exposed to one part of an antigen, and some to another part, and found that 
the combined cells would respond much more vigorously to the complete 
antigen than either population when used alone. On the other hand, they were 
finding that some cells were capable of specifically turning off other cell 
populations. This latter finding, called suppression, was particularly influential 
in spawning network ideas; it was difficult to avoid the conclusion that cells 
were recognizing each other. The puzzle was to work out how it all works. 
Then Niels Jerne, the Director of the Basel Institute for Immunology, 
published the seminal papers that gave birth to the network way of looking at 
the system.1 
    Jerne's network hypothesis was a radical innovation. The essence of it was, 
paraphrased, "This idiotypic network exists, since if antibodies can recognize 
essentially anything, they can recognize the V regions of other antibodies. V-V 
recognition within the system cannot be avoided. I propose that immune system 
regulation involves V-V interactions in a fundamental way, and predict that 
understanding such interactions will be the key to understanding many 
immunoregulatory phenomena, including specific suppression." Previously each of 
the clones had been regarded as a separate entity; and now he was suggesting that 
they were all strongly interconnected. Recall that the first law of cellular 
immunology is clonal selection. Jerne introduced the second law of cellular 
immunology, which states that the regulation of the adaptive immune system 
involves interactions between V regions.   
    Jerne's proposal initially seemed to many immunologists to make a complex 
subject even more complex, in fact unmanageably so.  In his hypothesis, the 
immune response to an antigen involves not only the cells with receptors 
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specific for that antigen, but also cells with receptors specific for those 
receptors.  The injection of an antigen could furthermore potentially lead to a 
chain reaction.  Cells with a given V region would proliferate and they would 
stimulate the proliferation of anti-V region specific lymphocytes, which could 
in turn stimulate anti-anti-V region specific cells, and so on. There were 
however also suppressive interactions in the model, that had the potential to 
limit the chain reaction.  
    The network hypothesis included the development of some new vocabulary. 
Jerne introduced the terms epitope, idiotope and paratope. He focused on the 
fact that V regions recognize and are recognized by each other, but he 
originally saw this as an asymmetric process, with idiotopes being recognized 
by paratopes and not vice versa. This distinction between idiotopes and 
paratopes did not prove fruitful. It corresponded to differentiating between the 
processes of recognizing and being recognized, a distinction that faded in 
significance in light of the fact that the specific stimulation of lymphocytes 
involves the cross-linking of receptors.76 Mutually specific V regions on cells 
can then be symmetrically stimulatory, since if one divalent (or other 
multivalent) receptor is able to cross-link a second receptor, the converse is 
also true. 
 
The importance of suppression 
 
The phenomenon of suppression played a key role in the genesis of Jerne's 
network thinking. Some lymphocytes are able to specifically prevent other 
lymphocytes from responding to an antigen, and this suppression was found 
experimentally to be just as specific as the recognition of an antigen by an 
antibody. How can suppression work? The suppressor cell (or the V region of 
a molecule derived from it) must be able to recognize another lymphocyte in 
order to specifically inhibit the function of the latter. The only thing that 
distinguishes the target lymphocyte from other potential target cells is the V 
region of the specific receptors on the target lymphocyte. And the only thing 
on the surface of the suppressor cell that has the needed specificity to do the 
job is its own specific cell surface receptor. Hence the V region of one cell 
must recognize, or be recognized by, the V region of another cell. Functional 
V-V interactions must be of the essence for understanding specific 
suppression.  
    When formulated this way, the basic network idea becomes compelling and 
almost trivial. We return to the question of how (if V regions are able to 
recognize anything) can such recognition be avoided? Rather than the network 
immunologist having to prove that V-V region interactions occur, the onus is 
shifted to the skeptic to explain why they would not occur. And if they do 

                                                 
76 See chapter 3, "Switching on a B cell". 
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occur, why they should not be functionally significant. The existence of 
antigen-specific suppressor T cells is the compelling evidence that shows that 
V-V interactions not only occur but are also functionally significant. 
    Since antigen-specific suppression cannot be simply explained by theories of 
immune system regulation that do not include network interactions, those who 
reject immune network ideas characteristically deny the validity of a large body 
of published data on suppression.  
 
Dualisms 
 
The number two played an important, almost metaphysical role in Jerne's 
thinking; he stressed a perceived importance of "dualisms". For example, there 
were two main kinds of cells involved (T cells and B cells) and two main kinds 
of interactions (stimulation and suppression). As network theory subsequently 
developed, the two main kinds of interactions were to become three with the 
substitution of inhibitory (blocking) and killing interactions for the 
mechanistically less well defined "suppressive" interactions (beginning with the 
Richter model described below), and the two main classes of cells were to 
become three when non-specific accessory cells were included (in the 
symmetrical network theory, see chapter 10).   
 
Jerne's model of the network  
 
Figure 8-1 shows the network as Jerne envisaged it in 1974. All of the 
interactions are asymmetrical. The arrows show the direction of stimulatory 
interactions, and for each stimulatory interaction there is a suppressive 
interaction in the opposite direction. The asymmetry results in the existence of 
the various sets shown if the figure. An epitope of an antigen stimulates a set 
of lymphocytes that have paratopes complementary to the epitope. These 
lymphocytes are the “antigen-recognizing set”, and in accordance with basic 
clonal selection theory, the antibodies they produce eliminate the antigen. The 
paratopes of cells in an “antiidiotypic set” recognize idiotopes of the antigen-
recognizing set. The antigen recognizing set is assumed to stimulate the 
antiidiotypic set, and the anti-idiotypic set suppresses the antigen-recognizing 
set. The antigen-recognizing set is also stimulated by another set of 
lymphocytes called the “internal image set”, which resemble the epitope of the 
antigen in that their idiotopes had complementarity to the paratope of the 
antigen-recognizing set. And the antigen-recognizing set conversely suppresses 
the internal image set.  
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Figure 8-1. Jerne’s model of the network. Each antibody/clone has V regions that 
include a recognizing part (paratope) and parts that can be recognized by other 
antibodies/clones (idiotopes). The antigen recognizing set is stimulated by both an 
epitope (antigenic determinant) of the antigen and idiotopes of antibodies/clones that 
are an internal image of the epitope (mimic the epitope in that they stimulate the 
antigen recognizing set). This figure shows only the stimulatory interactions. For each 
stimulatory interaction there is a suppressive interaction in the opposite direction. The 
interaction between the antigen and the recognizing set is of course asymmetric; the 
antigen stimulates the antigen recognizing set and the antigen recognizing set 
eliminates the antigen. It is assumed in this model that, as a first approximation, the 
interaction between the recognizing set and the internal image set is similarly 
asymmetric; the internal image set stimulates the antigen recognizing set while the 
antigen recognizing set suppresses or eliminates the internal image set. As a result of 
this asymmetry, there is another population that interacts with the antigen recognizing 
set called the antiidiotypic set, with the opposite interactions. The antigen recognizing 
set stimulates the antiidiotypic set, and the antiidiotypic set suppresses or eliminates 
the antigen-specific set. The asymmetry furthermore leads to the expanding definition 
of further sets that are either stimulatory or suppressive for each of the internal image 
set and the antiidiotypic set (buffering sets) including an unspecific parallel set that has 
idiotopes similar to the antigen recognizing set and paratopes that recognize different 
antigens. Each arrow denotes stimulation of paratope(s) by idiotope(s); not explicitly 
shown is suppression or elimination in the opposite direction. Adapted from N. K. 
Jerne (July 1973) Scientific American pp. 49-57. 
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    The figure shows an expanding multiplicity of paratopes and their idiotypes 
that is readily envisaged to encompass the entire system. Jerne proposed that 
this system exhibited "eigen-behaviour", that is, dynamic behaviour that 
resulted from its structure, just as the oscillations of a guitar string or a drum 
surface depend on their respective geometries and the laws of physics.  
    Jerne envisaged that the immune response to an antigen involved firstly the 
removal of free preformed antibody by the antigen. This, he argued, would 
perturb the stable state of the system in two ways, both of which would 
contribute to antigen specific clones escaping from suppression. The removal 
of antibodies of the antigen recognizing set would mean they stimulate the 
antiidiotypic set less, so there is less suppression of the antigen recognizing set 
by that population. Secondly, the internal image set would be stimulated to a 
lesser degree, and hence the suppressive effect of that population on the 
antigen recognizing set would be diminished.  
    Jerne envisaged that the network interactions were playing a role already in 
the virgin state. With time it became apparent that no such model, that is also 
based on asymmetric interactions and is buttressed by mathematical modeling, 
would emerge. In the case of the Richter model (below) the interactions are 
asymmetric but are sub-threshold in the virgin state. In the symmetrical 
network theory (chapter 10 onwards) idiotypic interactions do play a role 
already in the virgin state. 
    Oudin and Casenave had shown that the various antibodies produced in an 
immune response to various epitopes of an antigen could unexpectedly 
resemble each other in having common idiotypic determinants.77 In other 
words, idiotypes on the antibodies to one epitope of an antigen resembled 
idiotypes on antibodies to another epitope of the same antigen. In the context 
of basic clonal selection theory this was a paradox, and it was one of the 
phenomena that inspired the network hypothesis. Jerne made the case that it 
can be logically explained by assuming that cells with the same idiotypes but 
different specificities are specifically regulated by common antiidiotypic cells. 
There seems to be no alternative to some kind of an idiotypic network 
explanation for this phenomenon. 
    Jerne also made tentative suggestions regarding how some other 
immunoregulatory phenomena could be explained in the context of the picture 
of asymmetric interactions. These included the regulation of the immune 
response, in which the increase in the antigen recognizing set would reverse 
the immune response process, and take the system back to an equilibrium 

                                                 
77 J. Oudin and P. A. Casenave (1971) Similar idiotype specificities in immunoglobulin 
fractions with different antibody functions or even without detectable antibody function. 
Proc. Nat. Acad. Sci. (USA) 68, 2616-2620. 
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state. From his description it was not clear however, how the immune 
response could then exhibit memory. He proposed a mechanism for the 
paradox of low dose tolerance that involved complexes of antibody and 
antigen stimulating antiidiotypic cells. He suggested that the eigen-behaviour of 
the network may be such that it is unable to simultaneously respond to two 
different antigens as an explanation for the antigenic competition paradox. 
Additional phenomena for which he offered explanations were the inhibition 
of immune responses by antigen-specific IgG,78 the idea, the ability of a cross-
reacting antigen to break tolerance,79 and the fact that immune responses are 
often accompanied by the production of antibodies that are not specific for the 
antigen. These non-specific antibodies can also express the same idiotype as 
the antigen-specific antibodies, again suggesting the two kinds of antibodies are 
under regulated by the same antiidiotypic antibodies and/or lymphocytes. 
    Jerne’s model was ingenious in that it appeared to resolve some important 
paradoxes, but mathematical modelling has shown that the details have to be 
different. My initial attempts to mathematically model the interactions as 
illustrated in the figure showed that the system typically oscillates, rather than 
exhibit multiple stable steady states, as is needed for a system that has memory. 
Furthermore, the idea that the first important thing to happen in an immune 
response was binding of antigen to free antibody, rather than to cell bound 
specific receptors, was a departure from conventional clonal selection theory, 
and was reminiscent of a paper Jerne had published in 1955.80 That paper was 
a precursor to Burnet’s paper on the clonal selection theory (reference 12).  
 
The analogy with the brain 
 
Jerne stressed that there are many similarities between the immune system and 
the central nervous system.  Indeed, his hypothesis may have been inspired 
largely also by this analogy. Both constitute networks of cells coupled by 
stimulatory and suppressive interactions; the number of cells are similar (to 
within a couple of orders of magnitude); both systems can respond to an 
enormous variety of stimuli; and, most notably, both systems are capable of 
learning (memory), without being able to pass the acquired information on to 
the next generation. This analogy made the hypothesis doubly exciting; it 
meant that progress toward understanding the immune system could lead to 

                                                 
78 C. Henry and N. K. Jerne (1968) Competition of 19S and 7S antigen receptors in the 
regulation of the primary immune response. J. Exp. Med. 128, 133-152. “19S” and “7S” 
refer to IgM and IgG antibodies respectively. 
79 W. O. Weigle (1973) Immunological unresponsiveness. Adv. Immunol. 16, 61-122. 
80 N. K. Jerne (1955) The natural-selection theory of antibody formation. Proc. Natl. Acad. 
Sci. USA 41, 849-857. 
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new ideas for understanding the brain (or vice versa). In the next section we 
see that the analogy played a role in the development of the Richter model. 

 
The first mathematical model 
 
Jerne recognized that mathematical modelling would have to play a role in the 
development of a more detailed immune network theory. He proposed the 
following differential equation to describe the dynamics of a typical clone 
consisting of L cells (lymphocytes)81 
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There are four terms in the differential equation for L. These correspond to 
non-specific influx (α ), natural death ( Lβ− ), a stimulation term due to all the 
clones with idiotopes that fit into the paratopes of the clone (the first 
summation term) and a killing term due to all the clones with paratopes that 
recognize the idiotopes of the receptors of the clone (the second summation 
term). This equation incorporates the asymmetry between idiotopes and 
paratopes shown in Figure 8-1. No analysis of this equation has been 
published, and as it stands the system is incompletely specified. Jerne later 
further formalized the distinction between the antiidiotypic set and the internal 
image set by calling the former Ab2α, and the latter Ab2β.82  
 
Limitations of the Jerne model 
 
While Jerne's model was a huge conceptual advance, he candidly recognized it's 
limitations. He wrote in 1974 “The weakness of this incipient network theory 
lies in its lack of precision. This leaves an ambiguity in the answer to the 
question whether the relationship between two sets is suppressive or 
stimulatory or partly one and partly the other, and thus permits us to postulate 
interactions that suit our explanatory needs” (reference 1). He also wrote, “To 
become meaningful, a more explicit formulation of the network and its 
functional features would be needed.”81 The network concept and his model 
were nevertheless a revolutionary and vital first step. He opened up the field 

                                                 
81 N. K. Jerne (1974) Clonal selection in a lymphocyte network. In Cellular Selection 
and Regulation in the Immune Response, Edelman, G. M. ed, Raven Press, New York, 
op. cit. p. 39-48. 
82 N. K. Jerne, J. Roland and P.-A. Cazenave (1982) Recurrent idiotopes and internal 
images. EMBO J. 1, 243-247. 



Chapter 8. Early network findings and ideas 77 

for theorists to formulate the more explicit network models that were needed, 
and to endeavour to interpret phenomena in the context of such network 
models. Adding the complexity of network interactions would mean that it 
would become possible to dispense with some of the less than elegant 
complexities of other ideas about immune system regulation, and a new, more 
satisfying picture of the immune system would emerge.  
    It is interesting to evaluate Jerne's model from the point of view of the eight 
criteria for a good theory that we formulated in chapter 1.  
(a) Simplicity.  When Jerne published the theory, many immunologists wailed, 
"It's too complicated." Complexity and simplicity are however in the eye of the 
beholder, and the idea that V regions are also antigens can be regarded as 
simpler than the alternative, namely that V regions are a special class of protein 
molecules that are somehow able to evade having a role as antigens. That 
alternative is not a complete theory until a mechanism for such a 
discrimination is specified. Figure 8-1 has an important simplicity, namely it is 
constructed according to the simple (even if ultimately erroneous) rule that 
epitopes stimulate paratopes, and paratopes suppress epitopes. This would 
later be replaced by the even simpler concept known as “first symmetry” (next 
chapter), in which the distinction between paratopes and idiotopes largely 
evaporates.   
(b) Scope.  The potential scope of the network hypothesis in general was 
enormous, since it provided a fundamentally new way of looking at 
immunoregulatory phenomena. As listed above, the phenomena that the Jerne 
model tentatively explained is impressive. The limitations in scope were also 
candidly acknowledged.  
(c) Predictions. The Jerne model did not make explicit new predictions. The 
Richter theory and the symmetrical network theory that followed were more 
explicit with respect to the underlying mechanisms and consequently had 
stronger predictive power.  
(d) Resolution of Paradoxes. The model provided explanations for several 
phenomena that are paradoxical in the context of a non-network clonal 
selection point of view. As mentioned, these included the phenomena of low 
zone tolerance, antigenic competition and the finding by Oudin and Cazenave 
that antibodies produced against different non cross-reacting epitopes of one 
antigenic molecule can have similar idiotypes. 
(e) Mechanistic basis. The mechanistic basis was primarily "antibodies bearing 
paratopes suppress cells bearing receptors with complementary idiotopes and 
idiotopes stimulate cells bearing complementary paratopes." This was 
sufficiently mechanistic for Jerne to make the case that the model could resolve 
important paradoxes.   
(f) Rigour. The proposed mechanisms were more at a handwaving level than at a 
rigorous level with some mathematical modelling. 
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(g) Robustness. The details of the interactions were not specified at a sufficiently 
detailed level to provide dynamics that could be investigated for robustness. 
(h) Aesthetics.  While experimental immunologists were divided on the question 
of whether this was an attractive theory, most theorists certainly saw it as very 
attractive. In addition to an intrinsic beauty, it gave them an exciting 
opportunity to contribute to progress towards understanding how the immune 
system is regulated. 
    Overall, the formulation of the network hypothesis was a huge step forward 
in the science of cellular immunology. It was also a break from the popular 
idea that such breakthroughs are made solely by young scientists. In 1974 Jerne 
turned 63 years old.   

 
Comments on mathematically modelling the network 
 
The immune system consists of a large number of clones of lymphocytes. 
These clones and the V region bearing molecules they produce are capable of 
interacting with each other to form a system that can learn and which has 
memory. The memory aspect of the system implies stability; if the system were 
not stable in some fundamental sense it is hard to see how it could exhibit 
memory. An idiotypic network description of the system is the specification of 
a set of rules for how the clones interact with other. Let the system consist of 
N  clones. Let ix  be the population size (number of cells) of the thi  clone, 

and let ijK  be the interaction strength (most simply, affinity) between the V 
regions of clones i  and j . The list of population sizes can be written as an 
N -dimensional vector x  with components ix , and the interaction strengths 
are a matrix with N N×  terms, that can be written more simply as K  with 
the elements ijK . The sizes of the clones change with time, especially when 
the system is perturbed by a foreign antigen. Let the parameters associated 
with such a perturbing antigen be its concentration a  and its affinity for each 
of the N  clones, designated by an N  dimensional vector A . A set of rules 
(postulates) for the system can be expressed in the form of a differential 
equation for x : 
 

( , , , )d a
dt

=
x F x K A                                         

 
where t is time. The problem of immune system regulation, expressed in 
mathematical terms, is to find the function F , and to provide an interpretation 
of F  in terms of plausible mechanisms. We typically envisage the mechanisms 
first, then formulate the corresponding function F . We can then determine, 
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by integrating the equations, whether F  has dynamical properties 
corresponding to the properties of the actual immune system. The rate of 
change of a  is given fairly generally by 
 

( , , )da G a
dt

= x A                                          

 
where plausible, mechanistically based forms for G  can be readily formulated.  
 
The Richter theory  
  
It did not take long for mathematical biologists to take up the challenge of 
translating Jerne's network hypothesis into a more concrete model or theory, 
with more explicit postulates about how the system might work. 
    The first detailed model (or "theory"83) based on the network hypothesis 
was developed by Peter Richter84 of the Max Planck Institute for Biophysical 
Chemistry in Göttingen, Germany. The Richter theory does not attempt to 
take into account the separate roles of T and B cells, but it included the first 
mathematical model to demonstrate that the network could have interesting 
dynamical behaviour. The aim of the theory was to explain the fact that either 
low or high doses of antigen can induce unresponsiveness ("high dose 
tolerance" and "low dose tolerance"), while intermediate doses induce an 
immune response. This tri-phasic dose-response behaviour had been reported 
by Avrion Mitchison in the murine response to bovine serum albumin (BSA) 
(reference 17). Richter’s model provided an elegant explanation for this 
dose-response behaviour.  
    Richter called the set of cells and antibodies that recognise the antigen  
"Ab-1", he called the set that is anti-idiotypic to Ab-1 "Ab-2", he called the set 
that is antiidiotypic to Ab-2 "Ab-3", and so on (Figure 8-2).  The network was 
thus simplified from Jerne's two-dimensional network (Figure 8-1) to a one-
dimensional chain. Consistent with the Jerne description in terms of paratopes 
and idiotopes, the Richter model is based on asymmetric interactions between 

                                                 
83 What are the differences between a hypothesis, a model and a theory? As used here, 
a hypothesis is something that is postulated, and alone may not have very much 
explanatory ability. A model is a set of hypotheses that together are designed to account 
for one or more phenomena in a more rigorous manner. A theory is a well-developed 
model that claims to be of broad applicability and validity. We will see that several 
mathematical models can be based on a single set of postulates, and can provide support 
for several aspects of a single theory. 
84 P. H. Richter (1975) A network theory of the immune response.  Eur. J. Immunol., 5, 
350-354.   
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idiotopes and antiidiotypes. The antigen stimulates Ab-1 and is suppressed by 
Ab-1,  Ab-1 stimulates Ab-2 and is suppressed by Ab-2, and so on.  
    The way in which Richter developed his theory is an elegant example of the 
importance of analogies in theory development. When formulating any 
theoretical model we often use things that we have learned about systems that 
have features in common with the system under consideration. The analogy 
between the immune system and the brain had already been discussed by Jerne, 
and Richter was familiar with neural network models in which short range 
activation and long range inhibition were key features.85  Such models had 
been shown to exhibit multiple stable steady states, an essential feature of any 
model that, like the immune system, has memory.  He was also familiar with 
reaction-diffusion models of biological pattern formation ("morphogenesis"), 
in which short range activation and long range inhibition were essential 
aspects.86 He found that he was able to formulate an immune network theory 
based on "short range activation" and "long range inhibition", analogous to the 
interactions that had been postulated in the other systems. Since the systems 
are quite different, the analogies are loose ones. "Short range activation" for 
lymphocytes was activation to proliferate characterized by a relatively high 
threshold in the amount of the stimulus needed, and "long range inhibition" 
corresponded to killing of lymphocytes, with a lower threshold in the amount 
of antiidiotypic lymphocytes or antibodies needed for killing.  
    The Richter theory included three kinds of interaction, namely stimulation, 
inhibition (blocking) and killing. This three-ness was a step away from Jerne's 
emphasis on dualisms, which did not include killing as a phenomenon distinct 
from suppression.  
 
Modes of response 
 
In the Richter theory, injection with various amounts of an antigen causes a 
wave of activation that propagates to various extents along the chain of 
specific cells Ab-1, Ab-2, Ab-3, and so on. A small dose may initially cause 
proliferation of just the Ab-1 lymphocyte population. When the Ab-1 
population reaches a certain threshold level (the stimulation threshold) it 
causes proliferation of the Ab-2, and when Ab-2 reaches a different level, the 
threshold level for killing, Ab-2 cells and/or antibodies kill the Ab-1 cells 
(Figure 8-3). The Ab-2 cells then persist at a level above the killing threshold 
level  and  below  the  threshold  needed for stimulation of Ab-3. This requires  

                                                 
85 H. R. Wilson and J. D. Cowan (1973) A mathematical theory of the functional 
dynamics of cortical and thalamic nervous tissue. Kybernetic 13, 55-80. 
86 A. Gierer and H. Meinhardt (1972) A theory of biological pattern formation. 
Kybernetic 12, 30-39. 
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Figure 8-2. The chain Ab-1, Ab-2 and Ab-3 of Richter’s model. Ab-1 is the antigen 
recognizing set, Ab-2 is the antiidiotypic set, and Ab-3 is anti-antiidiotypic clones and 
is the lowest of the buffering sets in the picture of Jerne’s model (compare Figure 8-
1). The interactions are again asymmetric, with a clear distinction being made between 
paratopes that recognize and idiotopes that are recognized. All idiotypic interactions 
are assumed to be initially sub-threshold. The levels of the internal image set and the 
unspecific parallel set of the Jerne model consequently remain sub-threshold in this 
model, since they can only be suppressed by any increase in Ab-1 and Ab-2 
respectively. The introduction of thresholds thus results in the more complex two-
dimensional diagram of interactions of the Jerne model being simplified to become a 
one-dimensional chain, consisting of idiotype, antiidiotype, anti-antiidiotype, and so 
on. Reproduced from P. H. Richter (1975) Eur. J. Immunol., 5, 350-354.  

 

 
 

that the killing threshold be lower than the stimulation threshold. This 
sequence of events was hypothesized to account for the phenomenon of low 
dose tolerance. 
    An injection with a larger dose of antigen in this model causes an immune 
response, consisting of a wave of activation proceeding one step further along 
the chain. Then Ab-3 eliminates Ab-2, leaving Ab-1 free to respond to 
stimulation by the antigen, unencumbered by any restraining regulatory 
influence of Ab-2 (Figure 8-4). 
    An even larger dose of antigen takes the wave of activation one step further 
still,  activating  Ab-4,  that  eliminates  Ab-3,  permitting  Ab-2  to emerge and 



Chapter 8. Early network findings and ideas 82 

Figure 8-3. Low dose tolerance in the Richter model. Stimulation of Ab-1 by antigen 
leads to proliferation of Ab-1 clones until Ab-1 reaches a threshold level at which it 
stimulates proliferation of Ab-2. Ab-2 proliferates until it reaches a threshold for 
killing Ab-1 cells. Ab-1 is eliminated while Ab-2 persists at an elevated level that is 
below the threshold for the stimulation of Ab-3. Reproduced from P. H. Richter 
(1978) Theoretical Immunology, G. I. Bell, A. S. Perelson and G. H. Pimbley Jr. Eds, 
Marcel Dekker, New York and Basel.. 
 

 
 
 
 
 
eliminate Ab-1. Since the antigen-specific clones are eliminated, the animal 
cannot make antibodies, and we again have tolerance; in this case "high dose 
tolerance." (Figure 8-5).  
    When Richter first mathematically modelled the simple chain of interactions 
shown in Figure 8-2, he found that he was unable to obtain both low dose 
tolerance and the immune response; a reasonable mathematical model resulted 
only in the dynamical behaviour he was seeking for low dose tolerance 
(personal communication). This led him to add inhibitory interactions, as 
shown in Figure 8-6. 

 



Chapter 8. Early network findings and ideas 83 

Figure 8-4. The immune response in the Richter model. A larger dose of antigen 
causes a deeper penetration of the perturbation into the network. The elimination of 
Ab-1 by Ab-2 is inhibited by the antigen, since the antigen and Ab-2 compete for 
binding to Ab-1 receptors. On the other hand Ab-2 continues to be stimulated by Ab-
1 until Ab-2 reaches the threshold for stimulating proliferation of Ab-3. Ab-3 reaches 
the threshold for eliminating Ab-2 and this elimination leaves Ab-1 free to rebound 
and reach a high level, that eliminates the antigen and is unfettered by any regulation 
by Ab-2. Reproduced from P. H. Richter (1978) Theoretical Immunology, G. I. Bell, 
A. S. Perelson and G. H. Pimbley Jr. Eds, Marcel Dekker, New York and Basel. 

 

 
 
Richter's mathematical model 
 
Richter translated the above ideas into differential equations, and Figures 8-3 
to 8-5 are obtained by integrating his equations, which appear below. Such 
differential equations are often formulated with concentrations ix  as the 

variables, but Richter used dimensionless variables is   for the size the clones. 
These variables can be interpreted as the product of a concentration and an 
affinity. The Richter equations have the form 
 

1 1 1 1
1 1( , , ) ( , , )i

i i i i i i i i
b d

ds f s s s s g s s s s
dt τ τ− + − += −  
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Figure 8-5. High dose tolerance in the Richter model. At still higher levels of antigen 
the perturbation of the network reaches Ab-4, which eliminates Ab-3, permitting Ab-2 
to rebound and eliminate Ab-1. Reproduced from P. H. Richter (1978) Theoretical 
Immunology, G. I. Bell, A. S. Perelson and G. H. Pimbley Jr. Eds, Marcel Dekker, 
New York and Basel. 

 

 
 
 

The first term describes birth, the second death. The functions f and g are 
threshold functions that for the rate of change of is  depend on 1is − , is  and 

1is + . The thresholds play a key role in the model. Jerne had suggested that 
network interactions are operative before the antigen arrives.  This is the case 
in the symmetrical network theory (see  10 onwards), but was not the case in 
Richter's model because of the thresholds. In Richter's model the V-V 
interactions are all sub-threshold prior to the appearance of the antigen. 
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Figure 8-6. Stimulatory, killing and inhibitory interactions were all found to be 
necessary by Richter in order for his model to work. For example, both Ab-3 and Ab-
1 bind to the specific receptors of Ab-2, and the model includes inhibition by Ab-3 of 
Ab-1 binding to Ab-2. More generally, clone i – 1 inhibits killing of clone i by clone i 
+ 1, and clone i + 1 inhibits stimulation of clone i by clone i – 1. Adapted from P. H. 
Richter (1975) Eur. J. Immunol., 5, 350-354. 

 

 
 
 

bτ  and dτ  are birth and death time constants. The functions f  and g  are 
structured to model the thresholds that are inherent in the theory, with 
minimum values of 0 and maximum values of 1. In the case of the function f  
there are thresholds for stimulation ( 1is −  dependence) and for inhibition of 

stimulation ( 1is +  dependence). There is also a dependence on is , which 
accounts for the fact that the amount of stimulation depends on how many 
cells there are to stimulate or kill (buffering dependence).  Mass action 
considerations lead to the following form for f : 
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This is a threshold function that has switch-like behaviour for large m . In that 
case (large m ) f  is close to zero for 1is −  less than iB  and the value switches 

to 1 when 1is −  becomes greater than iB . The position of the threshold, iB , 
depends on inhibitory and buffering interactions according to 
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where B , ξ  and η  are constants. Analogous equations for g , the function 
modelling death, are  
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An important aspect of the model is that the threshold for destruction of cells 
must be chosen lower than the threshold for birth. This prevents activation of 
the chain of clones from running out of control, and is achieved by making D  
suitably less than B . The values of the parameters used in the Figures 8-3 to 
8-5 are: B  = 0.1, D  = 0.01, bτ  = 0.3, dτ  = 0.1, m  = n  = 5, and 
ξ η= = 0.01. 

 
Achievements of the Richter theory 
 
Since the Richter model had a clear, simple mechanistic basis, and it was the 
first one that successfully addressed what the theorists of the time regarded as 
the most interesting system-response behaviour, it can reasonably be called a 
theory. The Richter theory was also an important precursor of symmetrical 
network theory that followed. It achieved several things. Firstly, it showed that 
Jerne's network concept could be reduced to manageable proportions, which 
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was something about which Jerne himself had not been optimistic. Secondly, 
the Richter theory showed that there are three basic types of specific 
interactions which are important for such models - stimulation, inhibition 
(blocking) and elimination (killing). Thirdly, it illustrated a potential importance 
of thresholds in stabilizing the immune system. A major constraint on 
workable idiotypic network models is the problem of stability. The Richter 
theory showed that an immune network model can exhibit stable memories. 
    The publication of the Richter theory was thus a big step towards making 
the network concept plausible. When I went to Basel in late 1974 I heard two 
disparaging comments about the newly publicized immune network idea. One 
was "it can't be right, because the network goes on forever." This unbounded 
nature of the network did not fit within the bounds of their "common sense."  
The Richter model demonstrated that when thresholds played a role, it did not 
have to go on forever. A comment from the theorist Mel Cohn on the Jerne 
network hypothesis was that the network "is just a buffer". The Richter theory 
included buffering, but it exhibited dynamics that clearly reflected the potential 
for much more than just buffering.  


