Do Old Neutron Stars Shiver to Keep Warm?

Jeremy S. Heyl Harvard-Smithsonian CfA

LMXBs and LIGO

Jeremy S. Heyl Harvard-Smithsonian CfA

Outline

- What are LMXBS?
- What is LIGO?
- What are r-modes?
- How do the modes saturate?
- <u>How does LMXB spin evolve?</u>
- How many and how bright?
- What if the modes grow further?
- What are the prospects?

Outline

- What are LMXBS?
- What are r-modes?
- How do the modes saturate?
- How does LMXB spin evolve?
- How many and how bright?
- <u>What are the prospects?</u>

What are LMXBs?

If the supernova of a star in a binary with a low-mass star does not destroy the binary, an LMXB is formed.

 Accretion will spin up the primary to the Kepler frequency of about 1.6 kHz.

• BUT we don't see neutron stars spinning this fast.

What is LIGO?

 LIGO is a pair of laser-interferometer gravitational- wave observatories in Livingston LA and Hanford WA.

- It is sensitive to GWs with a frequency ~ 1 kHz.
- It is now operating but not yet at the anticipated noise level.

The LMXB-LIGO Connection

- Bildsten (1998)
 - Sco X-1 would be detected by LIGO if its spin is limited by the emission of GW.
- Andersson et al. (1999) noted that the rmodes might do the job.
- Also since 1996 or so, the spins of LMXB primaries have been measured, and they range from about 100 Hz to 600 Hz.

The LMXB-LIGO-GSFC Connection

- The early theoretical work on r-modes in neutron stars was done in part by Tod Strohmayer at GSFC in 1996.
- Tod and collaborators also found oscillations in Type-I bursts in 1996 verifying that LMXBs spin in the LIGO range.

What are r-modes?

Kelvin Wave ($\Delta r=0$) Rossby Wave ——

What are r-modes?

- One type of oscillation mode in a rotating fluid is the Rossby wave (r-mode).
- If the fluid is not viscous, the r-mode is unstable - CFS instability.

• In the rotating frame the mode counter-rotates. In the inertial frame, it corotates.

Why are r-modes unstable?

- In the rotating frame the mode counter-rotates. In the inertial frame, it corotates.
- The presence of an r-mode reduces the angular momentum of the star.
- GW carry angular momentum away, amplifying the r-mode.

What if the fluid is viscous?

Shear viscosity decreases Bulk viscosity increases with T

- Viscosity damps fluid motions. Its effects are strongest for small wavelengths.
- Even a large scale mode has a large gradient in a boundary layer.
- Intermode coupling

Simulating the r-modes

- An r-mode in the best case grows over many thousands of rotations which makes the growth difficult to simulate.
- So people artificially increase the driving force by a factor of one

force by a factor of one thousand to see what happens.

From Joel Tohline's website

Spin-up/Spin-down

 The shear viscosity decreases with increasing temperature and viscosity produces heat, so the rmode amplitude can run away (Levin '99, Spruit '99).

• How the mode saturates dramatically affects the evolution.

Mode Saturation

- Typically r-modes grow over many thousands of rotations, so to treat the problem numerically, the driving force must be increased several thousand-fold. The mode grows until the shocks form.
- The conventional wisdom was that GW would drive the mode amplitude to ~ 1.
- Does this make sense from our experience of fluid dynamics?

Wind and Waves

- The gravitational radiation reaction is simply a driving force; it drives the r-mode like a breeze or a gale would.
- Small wind, small waves.
- Big wind, big waves.

Realistic Coupling

- Arras et al. '02 argue that how the mode saturates depends on the driving force.
- The energy in the mode at saturation is proportional to the ratio of the growth rate to the spin frequency, so

$$\alpha_{\rm max}^2 = \frac{A}{\Omega |\tau_{\rm grav}|\tilde{J}}$$
$$\alpha_{\rm max} = 0.002 A^{1/2} \left(\frac{\Omega}{350 {\rm Hz}}\right)^{5/2}$$

Spin-up/Spin-down Redux

- Why does this matter?
- As the peak amplitude decreases, the duration of spin-down goes up (Wu, Matzner & Arras '01), so a particular object is more likely to be spinning down.
- If the spin-down exceeds 1,000 yr, T_{surf} reflects it.

How bright in GW?

 One can estimate the amplitude of the GW at Earth by equating the decrease in angular momentum of the star to that carried in the waves.

 $h \approx 7 \times 10^{-25} M_{1.4}^{1/2} \tau_{\text{on},4}^{-1/2} R_{10} d_{10}^{-1}$ • With a one-year integration, the initial LIGO configuration could reach an amplitude of ~ 10⁻²⁶.

What I swept under the rug - 1

- The naïve S/N calculation assumes that I know several things about the source.
 - Period, period derivative
 - Right ascension, declination
 - Orbital period, semi-major axis
- The period should be ~ few ms, $\dot{P} \sim 10^{-14}$
- Orbital Period ~ 1 hour, a ~ 1 light-second

What I Swept under the Rug - 2.

- The growth of the r-modes due to GW emission may be hampered by
 - Superfluidity (Andersson & Comer '01)
 - Exotic matter (Lindblom & Owen '02)
 - Formation of a crust (Bildsten & Ushomirsky '00, Lindblom, Owen & Ushomirsky '00)
 - Magnetic fields (Rezzolla, Lamb, Shapiro '00)
- This has only fostered the growth of the rmode literature.

How many in the Galaxy?

 LMXBs are thought to be the progenitors of millisecond radio pulsars, so the rate of formation of LMXBs equals that of MSRPs.

$$egin{aligned} N_{ ext{LMXB,on}} &= rac{ au_{ ext{on}}}{ au_{ ext{cycle}}} N_{ ext{LMXB}} = rac{ au_{ ext{on}}}{ au_{ ext{cycle}}} ig(r_{ ext{MSRP}} t_{ ext{LMXB}}ig) \ &= au_{ ext{on}} rac{f_{ ext{MSRP}}}{ ext{\Delta}f} r_{ ext{MSRP}} \sim rac{ au_{ ext{on}}}{10^4 ext{yr}} \end{aligned}$$

• This assumes that the LMXB goes around the cycle once during its lifetime.

More details

How bright in photons?

- The core temperature reaches 6×10^8 K and stays this hot for several thousand years.
- It looks like a 21-year-old neutron star; its surface temperature will be $\sim 3 \times 10^6$ K.
- In the Galaxy, the flux is ~ 3 mCrab.
- An enhanced LIGO could detect such an object to 7 Mpc.

What if the modes crash?

- <u>If the mode amplitudes do saturate at unity</u>, <u>then the evolution is quite different</u>.
- The spin-down epoch may be as short as a year (one source per 10⁴ MW).
- How far do you need to go to find 10⁴ MW?
 0.02 MW Mpc⁻³, 5 × 10⁵ Mpc³, d ~ 50 Mpc.
 Just in range of initial LIGO, enhanced LIGO could see this type of source to 700 Mpc.

Prospects

- If the spin-down epoch is longer than $\sim 10^4$ years or less than ~ 1 yr, several LMXBs will be visible with the initial LIGO.
- For the long spin-down epoch, the sky would be static, but for the ~ 1 yr duration, new sources would pop up.
- The Galactic sources would be bright in X-rays without signs of accretion and spinning down quickly -- directed search.