Rapid X-ray oscillations in magnetar giant flares

Anna Watts NRC - NASA Goddard Space Flight Center

Magnetar giant flares

- ***** Three such events to date:
 - * March 5th 1979: SGR 0526-66
 - * August 27th 1998: SGR 1900+14
 - * December 27th 2004: SGR 1806-20
- * Powered by a global reconfiguration of the magnetic field
- * Likely to involve large-scale crust fracturing/ reconfiguration, which may excite global toroidal oscillations in the crust (see e.g. Duncan 1998)
- * Such modes observed after earthquakes (Park et al. 2005)

Crustal shear modes

 * Duncan (1998)
calculated the period of the fundamental toroidal mode to be:

***** Higher order modes

(l>2, n=0):

$$\mathbf{P}(_{2}\mathbf{t}_{0}) = \mathbf{33.6} \,\mathbf{R}_{10} \frac{(\mathbf{0.87} + \mathbf{0.13} \,\mathbf{M}_{1.4} \,\mathbf{R}_{10}^{-2})}{(\mathbf{1.71} - \mathbf{0.71} \,\mathbf{M}_{1.4} \,\mathbf{R}_{10}^{-1})^{1/2}} \,\mathbf{ms}$$

$$P(_{1}t_{0}) = P(_{2}t_{0}) \left[\frac{6}{l(l+1)}\right]^{1/2}$$

- * Splitting associated with m, B small
- * Could modulate X-ray emission....

$$\mathbf{P}_{1}^{\mathbf{B}} \approx \mathbf{P}(\mathbf{1} \mathbf{t}_{0}) \left[1 + \left(\frac{\mathbf{B}}{4 \times 10^{15} \, \mathrm{G}} \right)^{2} \right]^{-1}$$

QPOs in the SGR 1806-20 flare

- * Detected by RXTE despite being ~30° off-axis
- * Israel et al. (2005) reported 92.5 Hz QPO appearing ~170s after peak, with significance better than 10⁻⁴
- * QPO is transient, associated with a particular rotational phase and a boost in unpulsed emission
- * Weaker evidence at late times for a longer duration 30 Hz signal
- * Are we seeing l=2, l=7 modes?

Israel et al. 2005

What about SGR 1900+14?

- Detected by RXTE despite being 42° off-axis
- * Same high time resolution as for SGR 1806-20 (1 μs) but less frequent readout so more data gaps
- * Strohmayer & Watts, ApJ Letters in press, astro-ph/0508206
- * Started by searching each good interval separately

A QPO at 84 Hz (1)

- * 84 Hz QPO found in the first interval after the main pulse profile emerges
- * Significance of 5.6e-6 after taking into account the number of frequency bins and time intervals searched
- * Transient, like the 92.5 Hz signal in SGR 1806-20
- Could it be caused by the l=6 or 7 torsional mode?

A QPO at 84 Hz (2)

- * Not centered on main peak
- ***** RMS amplitude $20 \pm 3\%$
- * No apparent boost in unpulsed emission
- * No other strong transient signals in other intervals – but what about weaker longer duration signals?
- Compute average power spectra using ALL intervals, centered on rotational phase where 84 Hz signal is seen

A mode sequence?

- * Find additional significant QPOs at 53 and 155 Hz
- * Possibly also at 28 Hz, but this is tentative
- * No evidence for QPOs at other rotational phases
- * Implies phenomena are associated with a particular area of the surface or magnetic field bundle
- * Fits a mode sequence with l=2, 4, 7 and 13!

An aside on excitation

Park et al, 2005

Can we constrain NS properties?

- * Mode frequencies depend on M, R and crustal field B
- * Different fundamental frequencies imply stellar parameters must differ
- * Unless masses differ significantly, SGR 1806-20 has higher magnetic field
- * Highest masses and hardest EOS require fields higher than those inferred from timing
- * Can softest EOS be ruled out?

Upper line: SGR 1806-20, 30.4 Hz, *Lower line: SGR 1900+14, 28 Hz*,

Conclusions - and a lot of questions

- * The discovery of a sequence of QPOs with the right scaling is strong evidence that we are seeing the influence of global crustal modes on X-ray emission
- ***** This could constrain NS properties including the EOS
- ***** Can we improve the data?
- ***** More theoretical development also required:
 - ***** How do the modes modulate X-ray emission?
 - * How are modes excited and damped? What sets the different timescales observed?
 - * Can you constrain crustal breaking strain? (IMPORTANT FOR GRAVITATIONAL WAVES AND NS PRECESSION!)
 - ***** What is the effect of field configuration (Messios et al. 2001)?
 - ***** Are there other modes that would fit?

