Neutron Star Radii: At The Crossroads

Bob Rutledge (McGill)

Collaborators: Lars Bildsten (ITP/UCSB) Ed Brown (MSU) George Pavlov (PSU) Slava Zavlin (MSFC) Greg Ushomirsky (Lincoln Lab.)

Pulsars

Outstanding Clocks for (doppler-shift) mass measurements Some systems with masses measurements of 1 part in 10⁶ However, not so useful for radius measurements.

> QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Quiescent Low Mass X-ray Binaries

• When accreting (pictured) we mostly observe X-rays from the disk.

• In some sources ("transients") accretion can stop -and then we see only the neutron star.

Fun Fact: Many names for these systems: qLMXBs, qNSs, Soft X-ray Transients, Neutron-Star Binaries. GLOAMARS

Neutron Star Transients

- Outbursts are due to disk instability; peak luminosities are 10³⁶-10³⁸ ergs s^{-1.}
- Outbursts last ~30 days (or as long as years).
- Exhibit type-I X-ray bursts (thermonuclear flashes).
- After outburst, X-ray sources return to quiescence (10³¹-10³³ ergs s⁻¹) -- accretion has stopped.

Why are qLMXBs promising for measuring NS radii?

First detection:

transient neutron star was discovered in quiescence (Cen X-4; $L_x \sim 10^{33}$ erg s⁻¹. Van Paradijs et al 1984), resulted in two problems :

1. The neutron stars should be cold. Luminosity provided by accretion? (van Paradijs et al 1984)

Brown, Bildsten & RR (1998)

Alternative: Deep Crustal Heating

Deep Crustal Heating

Non-Equilibrium Processes in the Outer Crust Beginning with ⁵⁶Fe (Haensel & Zdunik 1990, 2003)

$(g \text{ cm}^{-3})$	Reaction	Δρ⁄ρ	(Mey/np)
$1.5 \cdot 10^9$	${}^{56}\text{Fe} \Rightarrow {}^{56}\text{Cr} - 2\text{e-} + 2\nu_{e}$	0.08	0.01
$1.1 \cdot 10^{10}$	${}^{56}\mathrm{Cr} \Longrightarrow {}^{56}\mathrm{Ti} - 2\mathrm{e} - + 2\nu_{\mathrm{e}}$	0.09	0.01
$7.8 \cdot 10^{10}$	${}^{56}\text{Ti} \Rightarrow {}^{56}\text{Ca} - 2\text{e} + 2\nu_{e}$	0.10	0.01
$2.5 \cdot 10^{10}$	${}^{56}\text{Ca} \Rightarrow {}^{56}\text{Ar} - 2\text{e} - + 2v_{e}$	0.11	0.01
$6.1 \cdot 10^{10}$	${}^{56}\text{Ar} \Rightarrow {}^{52}\text{S} + 4\text{n} - 2\text{e} - + 2\nu_{e}$	0.12	0.01
	Non-Equilibrium Processes in th	e Inner Crust	
$(g cm^{-3})$	Reaction	$\mathbf{X}_{\mathbf{n}}$	(Mev/np)
$9.1 \cdot 10^{11}$	$^{52}\text{S} \Rightarrow ^{46}\text{Si} + 6\text{n} - 2\text{e} - + 2\nu_e$	0.07	0.09
$1.1 \cdot 10^{12}$	${}^{46}\text{Si} \Rightarrow {}^{40}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.07	0.09
$1.5 \cdot 10^{12}$	$^{40}\text{Mg} \Rightarrow ^{34}\text{Ne} + 6\text{n} - 2\text{e} + 2\nu_{e}$		
	^{34}Ne + ^{34}Ne \Rightarrow ^{68}Ca	0.29	0.47
$1.8 \cdot 10^{12}$	$^{68}\text{Ca} \Rightarrow ^{62}\text{Ar} + 6\text{n} - 2\text{e} + 2\nu_{e}$	0.39	0.05
$2.1 \cdot 10^{12}$	$^{62}\text{Ar} \Rightarrow ^{56}\text{S} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.45	0.05
$2.6 \cdot 10^{12}$	56 S \Rightarrow 50 Si + 6n - 2e- + 2v	0.50	0.06
$3.3 \cdot 10^{12}$	${}^{50}\text{Si} \Rightarrow {}^{44}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_e$	0.55	0.07
$4.4 \cdot 10^{12}$	$^{44}\text{Mg} \Rightarrow {}^{36}\text{Ne} + 6\text{n} - 2\text{e} - + 2v_e$		
	36 Ne+ 36 Ne \Rightarrow 72 Ca		
	$^{68}\text{Ca} \Rightarrow ^{62}\text{Ar} + 6\text{n} - 2\text{e} + 2\nu_{e}$	0.61	0.28
$5.8 \cdot 10^{12}$	$^{62}\text{Ar} \Rightarrow ^{60}\text{S} + 6\text{n} - 2\text{e} + 2\nu_{e}$	0.70	0.02
$7.0 \cdot 10^{12}$	60 S \Rightarrow 54 Si + 6n - 2e- + 2v _e	0.73	0.02
9.0·10 ¹²	${}^{54}\text{Si} \Rightarrow {}^{48}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.76	0.03
$1.1 \cdot 10^{13}$	$^{48}Mg + {}^{48}Mg \Rightarrow {}^{96}Cr$	0.79	0.11
$1.1 \cdot 10^{13}$	${}^{96}\text{Cr} \Rightarrow {}^{88}\text{Ti} + 8\text{n} - 2\text{e} - + 2\nu_{e}$	0.80	0.01 1.47 Mev per

Brown, Bildsten & RR (1998)

np

Deep Crustal Heating

Because the crust is in close thermal contact with the NS core, this will heat a cold core until a steady-state is reached (10⁴ yr; cf. Colpi 1999) in which the energy emitted between outbursts (the quiescent luminosity) is equal to the energy deposited in the crust during outbursts.

$$L_q \approx 6 \times 10^{33} \frac{\langle M \rangle}{10^{-10} M_{sun} \text{ yr}^{-1}} \frac{Q}{1 \text{ MeV}} \text{ er}_q$$

$$F_q \approx \frac{\langle F \rangle}{200} \frac{Q}{1MeV}$$

Why are qNSs promising for measuring NS radii?

 Spectral fits using blackbody spectra produced too small of radii for a neutron star (<1 km vs. ~10-20 km, with kT_{eff}~100 eV).

Solution: qNSs are not blackbodies.

When the accretion rate onto the NS drops below a certain rate (~10³⁴ erg s⁻¹) metals settle out of the photosphere on a timescale of 10-100 sec (Bildsten et al 1992). This leaves a photosphere of pure Hydrogen. The dominant opacity of a ~100 eV H photosphere is free-free processes, which is strongly energy dependent.

$$\kappa_E^{ff} \approx 114 \left(\frac{kT}{50 \text{ eV}}\right)^{-3/2} \left(\frac{E}{1 \text{ keV}}\right)^{-3} \text{ cm}^2 \text{ g}^{-1}$$

Brown, Bildsten & RR (1998)

Emergent Spectra from Neutron Star Atmospheres

Why Quiescent Transient Neutron Stars Are Useful for Radius Measurments.

- If you observe a qNS when accretion has shut off, it will emit isotropic thermal radiation from its surface, due to deep crustal heating.
- The composition of the atmosphere is known
 -- unmagnetized (or negligibly magnetized) H
 -- and the radiative transfer and resulting
 emergent spectrum is straightforward, as is
 the resulting measurement of R

Cen X-4 with Chandra (June 2000)

Short Timescale Variability

• Variability: qLMXBs sometimes vary on short timescales, sometimes don't! (Campana et al 1998; Rutledge et al 2002a, b. 2003)

data and folded model

The LMXB Factories: Globular Clusters

- GCs : overproduce LMXBs by 1000x vs. field stars -- contain 10% of the known LMXBs vs. 0.01% of the stars in the galaxy.
- Accurate distances are important for a number of studies (Stellar evolution, WD cooling).

qNSs can be identified by their soft X-ray spectra, and confirmed with optical counterparts.

Carretta et al (2000)

NGC	D (kpc)	+/-(%)
104	5.13	4
288	9.77	3
362	10.0	3
4590	11.22	3
5904	8.28	3
7099	9.46	2
6025	7.73	2
6341	8.79	3
6752	4.61	2

The Best Measured Neutron Star radii

Name	R (km/D)	D (kpc)	kT _{eff,} (eV)	N _H (10 ²⁰ cm ⁻²)	Ref.
omega Cen (Chandra)	13.5 ± 2.1	5.36 ±6%	66 ⁺⁴ -5	(9)	Rutledge et al (2002)
omega Cen (XMM)	13.6 ± 0.3	5.36 ±6%	67 ±2	9 ± 2.5	Gendre et al (2002)
M13 (XMM)	12.6 ± 0.4	7.80 ±2%	76 ±3	(1.1)	Gendre et al (2002)
47 Tuc X7 (Chandra)	R=14.51.4 ^{+1.6} (M=1.4)	5.13 ±4%	kT=105 ±6	4.2 +1.8 -1.6	Rybicki et al (2005)
M28 (Chandra)	14.5 _{-3.8} +6.9	5.5 ±10%	90 ₋₁₀ +30	26 ± 4	Becker et al (2003)

Caveats: • All IDd by Xray spectrum (47 Tuc, Omega Cen now have optical counterparts)

 calibration uncertainties

Distances: Carretta et al (2000), Thompson et al (2001)

Radius Constraints on the Equation of State

Chandra: Observed Observed with insufficient time Not Observed

NGC	Rcore (")	D (kpc)	Log N _H	Obs. Time ACIS-S/I?	qNS detect Tobs (ksec)	qNSs?
104	22.5	4.6	20.3	74 I/ 299 S	33	2
5904	24.2	7.6	20.2	45	87	
3201	86.3	5.0	21.1	0	56	
4372	104.2	5.2	21.4	0	89	
4833	60.2	5.8	21.3	0	91	
5139	156.3	4.9	20.9	70 S	48	1
6121	50.3	2.0	21.4	25	12	
6205	52.0	7.2	20.0	0	76	1 /XMM
6218	39.4	5.6	21.0	30	66	
6254	51.3	4.3	21.2	0	47	
6352	49.9	6.1	21.0	0	80	
6366	110.1	4.0	21.6	24	68	
6397	3.0	2.2	21.0	109	10	1
6496	62.8	5.7	21.0	0	66	
6539	32.5	4.0	21.7	0	92	
6541	17.9	6.6	20.9	46 S	83	
6544	2.9	2.5	21.6	0	29	
6553	33.1	3.5	21.7	0	73	
6656	84.3	3.0	21.3	0	26	
6752	10.5	4.2	20.3	30 S	28	
6809	170.6	4.8	20.8	34	43	
6838	38.2	3.9	21.2	0	39	
7099	3.4	7.4	20.5	50 S	88	

• 23 GCs for which one could easily detect 10³² erg/s qNS in <100 ksec.

5 have
sufficient time,
in which 4
qNSs detected.

•6 have been observed with insufficient time.

• 0 qNSs in the remaining

Mass Measurements with Continuum Spectra

You cannot measure a redshift from blackbody emission due to photon energy (E) temperature (kT) degeneracy.

• But, the free-free opacity breaks this degeneracy. This spectrum, redshifted, permits (in principle) determination of the redshift. T_1 T_2 T_1 T_3 T_4 $T_$

$$I(E_{\gamma}) \propto \left(\frac{E_{\gamma}}{kT}\right)^{3} \frac{1}{\frac{E_{\gamma}}{e^{\frac{E_{\gamma}}{kT}} - 1}} \kappa_{ff,o} \left(\frac{E_{o}}{E_{\gamma}}\right)^{3} \qquad f_{2} \qquad f_{2} \qquad f_{2} = T_{1}/(1+z)$$

The Path Forward

- Obtain Chandra Imaging Spectroscopy to:
 - spectroscopically identify qNSs

- identify nearby sources which would be spectrally confused in the 6-15" PSFs of XMM, Con-X and XEUS
- Use HIPPARCOS dwarfs, SIM to obtain 2% accurate distances to the GCs (field sources?)
- Obtain deep X-ray spectra (XMM, Con-X, XEUS) to:
 - confirm spectroscopic identifications
 - constrain intensity variability, which would affect R measurements
 - measure R -- AGAIN AGAIN AND AGAIN

Thank you!