Internal dissipation and thermal emission from old neutron stars: "rotochemical heating" and constraints on dG/dtAndreas Reisenegger Pontificia Universidad Católica de Chile (PUC) with Rodrigo Fernández formerly PUC undergrad., now PhD student @ U. of Toronto Paula Jofré *PUC undergraduate*

Outline

- Density changes, nonequilibrium reactions, and heating of neutron star cores
- Rotochemical heating:
 - Calculations, comparison to observations
- *dG/dt*?
 - Previous constraints
 - Gravitochemical heating
 - Calculations and observational constraints
- Conclusions

Heating neutron star matter by weak interactions

- Chemical ("beta") equilibrium sets the relative number densities of particles (*n*, *p*, *e*, ...) at different pressures
- Compressing or expanding a fluid element perturbs the equilibrium
- Non-equilibrium reactions tend to restore the equilibrium
- "Chemical" energy is released as neutrinos and "heat"

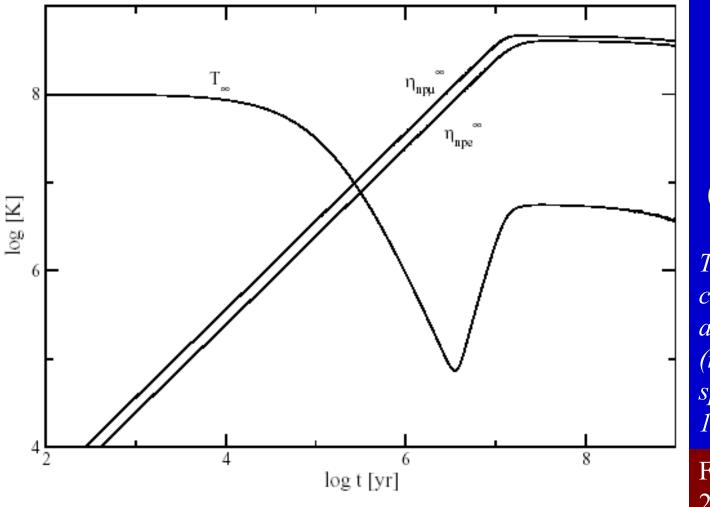
Possible forcing mechanisms

- <u>Neutron star oscillations</u>, e.g., r-modes: no conclusive evidence so far
- <u>Accretion</u>: effect overwhelmed by external and crustal heat release
- <u>dP/dt</u>: feasible in old, fast neutron stars: **Rotochemical heating** in MSPs
- <u>dG/dt</u>: highly speculative, but worth a try! "Gravitochemical heating"

"Rotochemical heating"

NS spin-down (decreasing centrifugal support)

- \Rightarrow progressive density increase
- \Rightarrow chemical imbalance

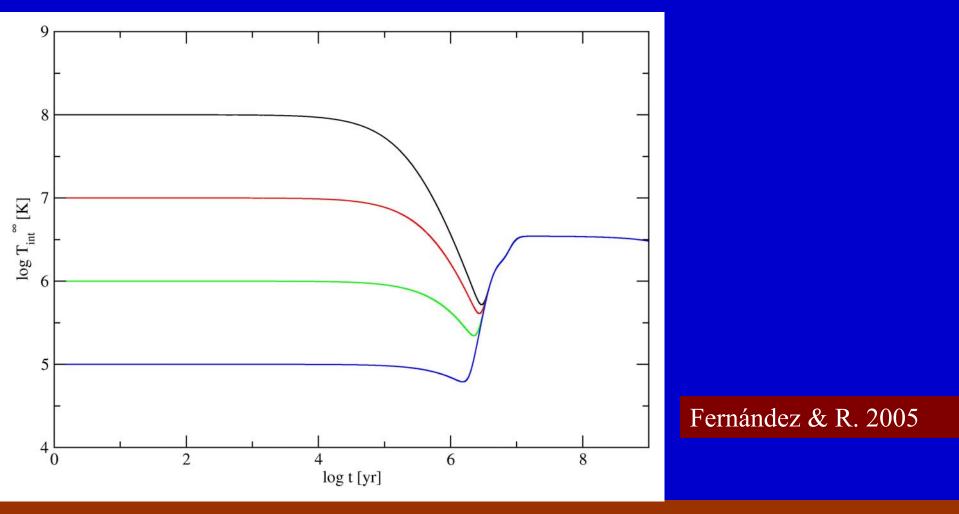

$$\eta \equiv \mu_n - \mu_p - \mu_{e,\mu} > 0$$

 \Rightarrow non-equilibrium reactions

$$n \to p + (e, \mu) + \overline{v}_e$$

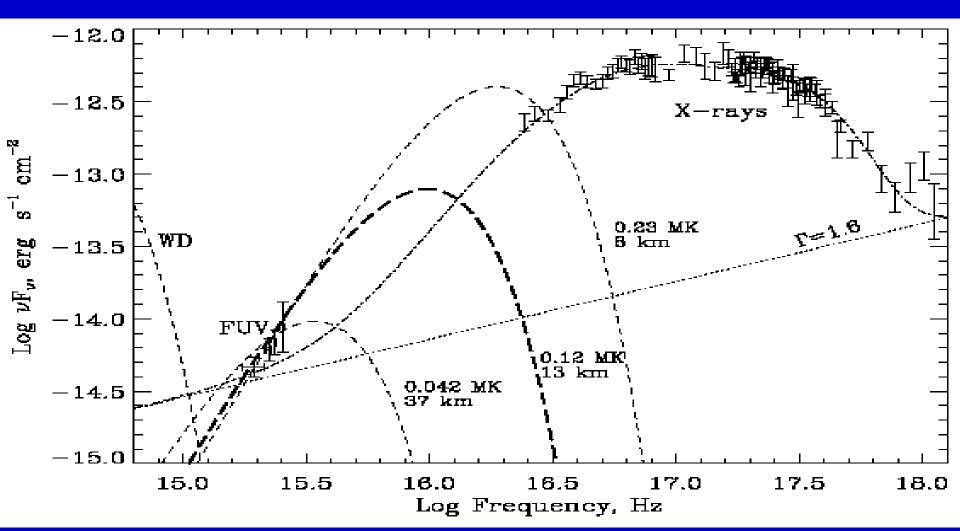
- \Rightarrow internal heating
- \Rightarrow possibly detectable thermal emission

Reisenegger 1995, 1997; Fernández & Reisenegger 2005 (all ApJ)

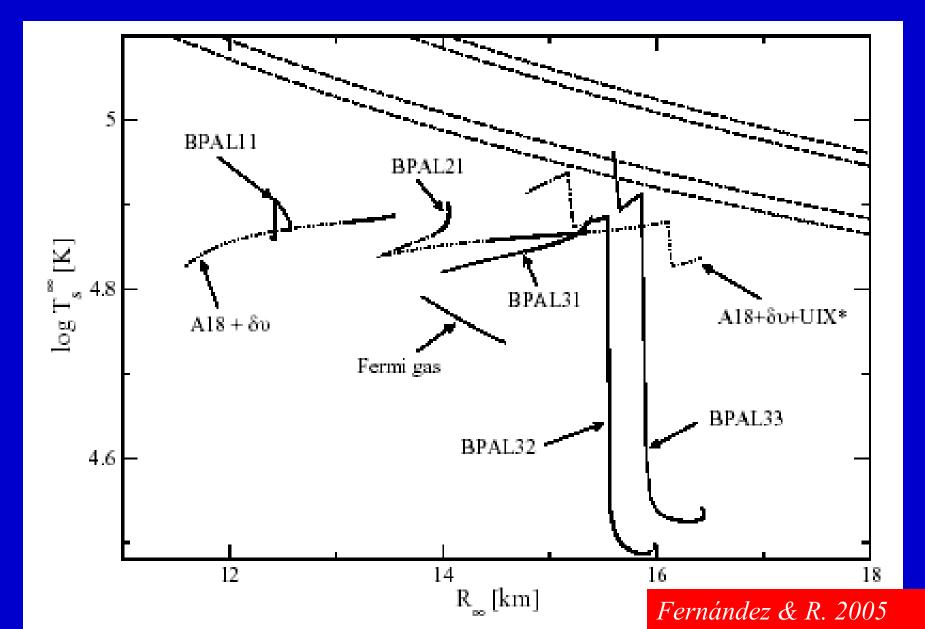

Neutron star evolution

Temperature and chemical imbalances as functions of time (magnetic dipole spin-down with $P_0 =$ 1 ms & $B = 10^8G$)

Fernández & R. 2005 (ApJ)


MSPs evolve to a <u>stationary state</u> in which as much heat is released by the reactions as radiated away as neutrinos and photons. *A "heater" is even better than a "hot water bottle"!*

Insensitivity to initial conditions



For a given NS model, late-time temperatures can be predicted uniquely from the measured spin-down rate.

The nearest MSP: PSR J0437-4715 HST-STIS far-UV observation (1150-1700 Å) Kargaltsev, Pavlov, & Romani 2004

PSR J0437-4715: Predictions vs. observation

dG/dt ?

"Beyond Einstein"...

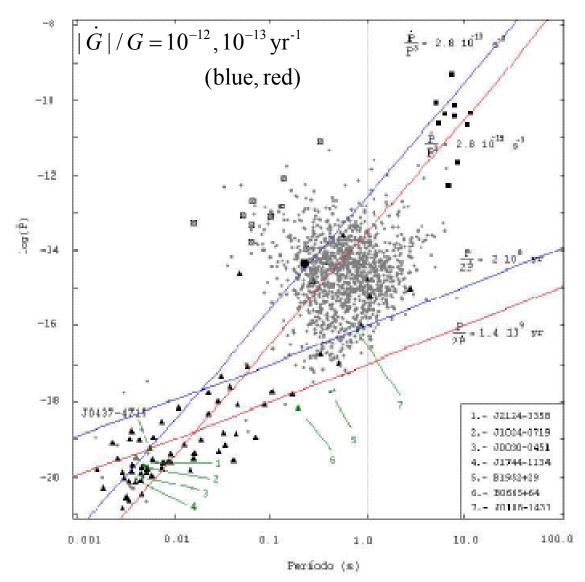
- Dirac: large-number hypothesis
- Extensions to GR: Brans-Dicke et al.
- Present cosmology: excellent fits, great mysteries (dark matter, dark energy)
- "Braneworlds" and curled-up extra dimensions, effective gravitational constant

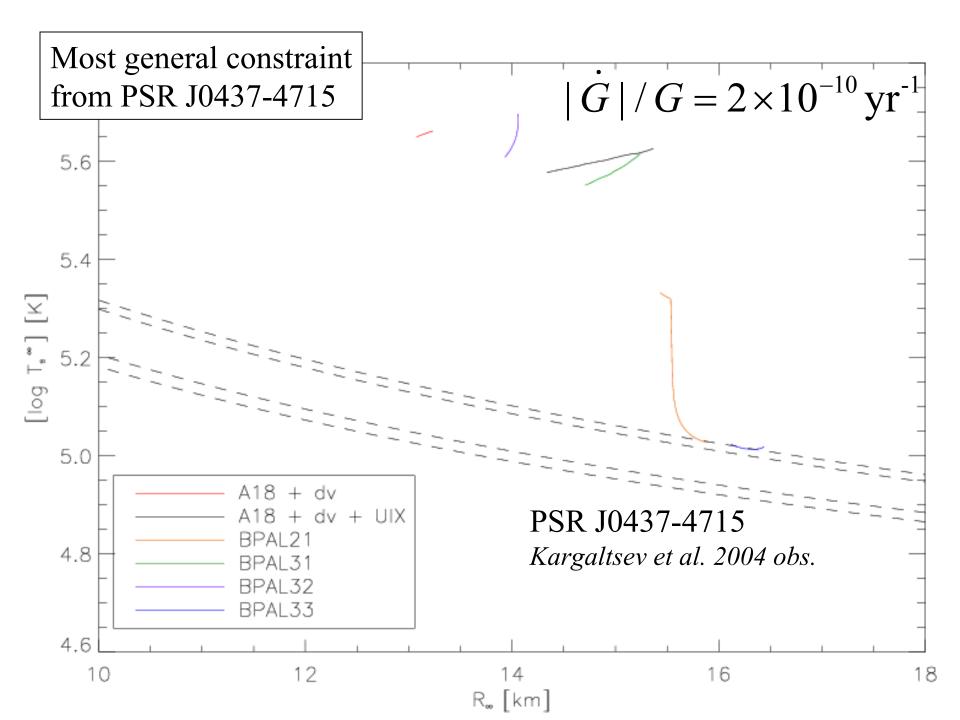
Previous constraints on dG/dt

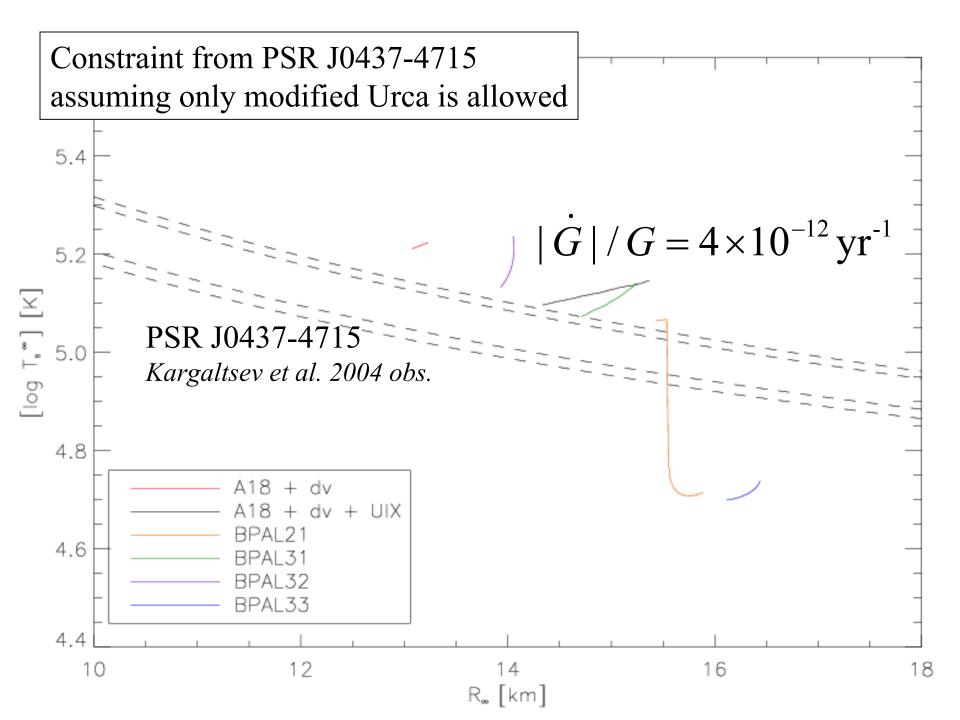
Method	G'/G [yr^(-1)]	Timespan[yr]	Reference
Solar System planet and	1E-12	24	Williams
satellite orbits			et al (1996)
Binary pulsar orbit	5E-12	10	Kaspi et al (1994)
Rotation of isolated PSRs	6E-11	10	Goldman (1990)
(var. moment of inertia)			
White dwarf oscillations	3E-10	20	Benvenuto et
			al. (2004)
Paleontology:	2E-11	4E+09	Eichendorf &
Earth's surface temp.			Reinhardt (1977)
vs. prehistoric fauna			
Binary pulsar masses	2E-12	2E+09	Thorsett (1996)
(Chandrasekhar mass at			
time of formation)			
Helioseismology	2E-12	5E+09	Guenther et
(Solar evolution models)			al. (1998)
Globular clusters	7E-12	1E+10	Degl'Innocenti
(isochrones vs. age of the			et al. (1996)
Universe)			
CMB temperature	1E-13	1E+10	Nagata
fluctuations (WMAP			et al. (2004)
vs. specific models)			
Big Bang Nucleosynthesis	2E-13	1E+10	Copi
(abundances of D, He, Li)			et al. (2004)

Gravitochemical heating

 $dG/dt \text{ (increasing/decreasing gravity)} \Rightarrow \text{density increase/decrease} \\\Rightarrow \text{chemical imbalance} \quad \eta \equiv \mu_n - \mu_p - \mu_{e,\mu} \neq 0 \\\Rightarrow \text{non-equilibrium reactions} \quad n \leftrightarrow p + (e, \mu) \\\Rightarrow \text{ internal heating} \\\Rightarrow \text{ possibly detectable thermal emission}$


Paula Jofré, undergraduate thesis R., Jofré, & Fernández, paper in preparation


- Pulsar needs to have <u>reached quasi-</u> <u>equilibrium</u>: *large age* $t_s = P/(2\dot{P})$
- <u>Rotochemical effect</u> <u>weaker</u> than gravitochemical: *small* $\Omega | \dot{\Omega} | \propto \dot{P} / P^3$


 $\Rightarrow \text{Lower right of pulsar} \\ P-dP/dt \text{ diagram}$

Also: <u>close enough</u> to measure or constrain thermal emission

Conditions for a good constraint on *dG/dt*

Constraint from PSR J0437-4715:

$$\dot{G} / G < 4 \cdot 10^{-12} \,\mathrm{yr}^{-1}$$

...<u>if only modified Urca processes are allowed,</u> <u>and the star has reached its stationary state.</u>

Required time:

OK!!

$$t_{eq} \approx 90 \,\mathrm{Myr}$$

Compare to age estimates:

$$t_{\rm spin-down} = 4.9 \, {\rm Gyr}$$

 $t_{\rm WD \, cooling} \approx 2.5 - 5.3 \, {\rm Gyr}$

(Hansen & Phinney 1998)

Now:

Method	G'/G [yr^(-1)]	Time [yr]	Reference
Solar System planet and	1E-12	24	Williams
satellite orbits			et al (1996)
Binary pulsar orbit	5E-12	10	Kaspi et al (1994)
Rotation of isolated PSRs	6E-11	10	Goldman (1990)
(var. moment of inertia)			
White dwarf oscillations	3E-10	20	Benvenuto et
			al. (2004)
Gravitochemical heating	2E-10	1E+05	Paula Jofré,
of NSs (PSR J0437-4715)			undergrad. thesis
MOST GENERAL			(to be published)
Gravitochemical heating	4E-12	<i>9E+07</i>	Paula Jofré,
of NSs (PSR J0437-4715)			undergrad. thesis
ONLY MODIFIED URCA			(to be published)
Paleontology:	2E-11	4E+09	Eichendorf &
Earth's surface temp.			Reinhardt (1977)
vs. prehistoric fauna			
Binary pulsar masses	2E-12	2E+09	Thorsett (1996)
(Chandrasekhar mass at			
time of formation)			
Helioseismology	2E-12	5E+09	Guenther et
(Solar evolution models)			al. (1998)
Globular clusters	7E-12	1E+10	Degl'Innocenti
(isochrones vs. age of the			et al. (1996)
Universe)			
CMB temperature	1E-13	1E+10	Nagata
fluctuations (WMAP			et al. (2004)
vs. specific models)			
Big Bang Nucleosynthesis	2E-13	1E+10	Copi
(abundances of D, He, Li)			et al. (2004)

Main uncertainties

- Atmospheric model:
 - Deviations from blackbody?
- Neutrino emission mechanism/rate:
 - Slow (mod. Urca) vs. fast (direct Urca, others)
 - Cooper pairing

Not important:

- Heat capacity: steady state
- Heat transport through crust

Conclusions

- *Rotochemical heating* <u>must</u> occur in all neutron stars with decreasing rotation rates
- *Gravitochemical heating* happens if $dG/dt \neq 0$
- Both lead to a <u>stationary state</u> of nearly constant temperature that can be probed with old enough pulsars (e.g., MSPs)
- Observed UV emission of PSR J0437-4715 may be due to rotochemical heating
- The same emission can be used to constrain |dG/dt|:
 - competitive with the best existing constraints <u>if</u> fast cooling processes could be ruled out
- Sensitive UV observations of other nearby, <u>old</u> neutron stars of <u>different</u> rotation rates are useful to constrain both mechanisms