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Equation of State I: Generalities

The Bethe-Weizsäcker (BW) Mass Formula:

E(Z,N) = avolA+ asurfA
2/3 + acoulZ

2/A1/3 + asymm(N − Z)2/A+ . . .

• Parameters extracted from a fit to thousands of known nuclear masses
• Hidden behind its success is the saturation of the nuclear force
• BW constrains the above parameters at (or near) saturation density:

(avol, asurf , acoul, asymm)'(−16,+18,+1,+26) MeV

BW offers little on the density dependence of the parameters!
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Equation of State II: Infinite Nuclear Matter

Recipe to make infinite nuclear matter:

• Turn off the long-range Coulomb force
• Let Z, N and V go to infinity with ratios remaining finite:

ρ = A/V, Yp = Z/A, b=δ=(N−Z)/A, . . .
• Only surviving terms in the thermodynamic limit:

E(Z,N)/A = avol + asymmb2 = ε0 + Jb2

Symmetric vs Asymmetric Matter:

• Expand the total energy per nucleon around b=0:

E(ρ; b)/A = E(ρ; b=0)/A︸ ︷︷ ︸
Symmetric Matter

+b

(
∂E/A

∂b

)
b=0︸ ︷︷ ︸

0

+b2 1
2

(
∂2E/A

∂b2

)
b=0︸ ︷︷ ︸

Symmetry Energy

+ . . .

Pure neutron matter ≈ Symmetric Matter + Symmetry Energy!

Goal: Study the density dependence of the equation of state
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Density Functional, Kohn-Sham, MF Theory

Improving the Bethe-Weizsäcker (BW) Mass Formula:

Lint = gsψ̄ψφ− gvψ̄γ
µψVµ −

gρ

2
ψ̄γµτ · bµψ − eψ̄γµτpψAµ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4+Λv(g

2
vV

µVµ)(g2
ρb

µbµ)+
ζ

4!
g4
v(VµV

µ)2

• Parameters fitted to a large body of ground-state properties
(mostly binding energies and charge radii of many nuclei)

• Ground-state observables computed at the mean-field level
• Formalism is NOT Hartree (Hartree-Fock) theory
• Parameters of the model encode correlations that go beyond two-body

(short, long, and pairing correlations in an average way)

Resulting model unlikely to describe correctly NN physics!

Correlating Model Parameters to the Physics:

Parameters Constrained by
gs, gv Ground state properties of finite nuclei
gρ Ground state properties of heavy nuclei
κ, λ Isoscalar giant monopole resonance
Λv Neutron radius of heavy nuclei
ζ Neutron star structure

• Existent observables insufficient to constrain all parameters
• Determination of neutron radii of neutron-rich nuclei presses!
• Simultaneous mass-radius measurement of neutron stars presses!

Crucial measurements in Heaven and Earth on the horizon!
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Accurately Calibrated Parametrizations

The Program:
• Input binding energy and charge radii of doubly magic nuclei

Solve in self-consistent mean-field approximation
• Compute the linear response of the mean-field ground state

Solve in self-consistent MF+RPA approximation
• Without any further adjustment, compare to EoS from nuclear collisions

Up to five times nuclear-matter saturation density
• Without any further adjustment, predict neutron-star structure

Only physics that neutron stars are sensitive to — is the EoS
of neutron-rich matter ...

A Observable Experiment NL3 NL3 030 FSUGold 000 FSUGold∗

Stiff-Stiff Stiff-Soft Soft-Stiff Soft-Soft
90Zr B/A (MeV) 8.71 8.69 8.70 8.68 8.68

Rch (fm) 4.26 4.26 4.27 4.25 4.25
Rn−Rp (fm) — 0.11 0.08 0.09 0.09
GMR (MeV) 17.89± 0.20 18.62 18.75 17.89 17.98

208Pb B/A (MeV) 7.87 7.88 7.89 7.87 7.89
Rch (fm) 5.50 5.51 5.52 5.51 5.52

Rn−Rp (fm) — 0.28 0.20 0.29 0.21
GMR (MeV) 14.17± 0.28 14.32 14.74 13.73 14.04
GDR (MeV) 13.30± 0.10 12.70 13.07 12.79 13.07

∗ Disclaimer: Gold is referred to the color — not the metal!
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Experimental Extraction of Rn−Rp

JLAB Experiment 00-003 (03-011) [Michaels, Souder, Urciuoli]:
• Parity Violating Asymmetry in elastic e−Pb scattering
• Electroweak (as opposed to hadronic) probe of neutron density
• Weak-vector boson Z0 couples strongly to neutrons
• A clean and accurate measurement of the neutron radius

1% or 0.05 fm measurement of the neutron radius of 208Pb

0Z

electron

γ,

Nucleon

Particle EM coupling Weak-Vector coupling
up-quark +2/3 +1− 4 sin2 θw(+2/3) ' +1/3

down-quark −1/3 −1− 4 sin2 θw(−1/3) ' −2/3
proton +1 +1− 4 sin2 θw ' 0
neutron 0 −1

gf
v = 2T f

z − 4 sin2 θwQf , sin2 θw ≈ 0.231 ' 1/4



Florida State
University

Equation of State

Mean-Field Models

Nuclear Observables

Nuclear Collisions

The Symmetry Energy

Neutron Stars

Page 7 of 12

JJ J I II

Full Screen

Print

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

High Densities in Earth
[Danielewicz, Lacey, and Lynch – Science 298, 1592 (2002)]

Nuclear Collisions: Constraints and Predictions
• Sole earthly tool available to compress nuclear matter
• Compressions up to several (five) times nuclear saturation density
• Imprint of the EoS left in the flow and fragment distribution

FSUGold provides a reliable extrapolation to high density ...
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Neutron Skin and Neutron-Star Radii

Question: Is there a correlation between the neutron skin of
208Pb and the radius of a “canonical” 1.4M� neutron star?

Answer: Probably yes! Same pressure that pushes neutrons
out in 208Pb pushes neutrons out in a neutron star.

• Isolated radio-quiet neutron stars already discovered
• Find good candidates for mass-radius measurement

Interesting Correlation:
The neutron skin of 208Pb depends on
the EOS below N.M. saturation density,
while the radius of the neutron star is
also sensitive to the high-density EOS.
“The thinner the skin of 208Pb,
the smaller the radius of the star”

Large neutron skin together with a small neutron-star radius,
could provide strong signature in favor of a phase transition ...
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Maximum (Limiting) Neutron-Star Mass

• Maximum mass determined by high-density behavior of EOS (ζ)
• Radius of low-mass stars determined by symmetry energy (Λv)

At present both parameters are poorly constrained!
However, situation could improve very rapidly ...

• Find a single “heavy” neutron star (PSRJ0751?)
• Measure the neutron radius of 208Pb (JLAB?)
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Neutron Star Composition

The composition of non-exotic stars is controlled
by the density dependence of the symmetry energy!

• Symmetry energy imposes a penalty for violating (N=Z) balance
• The stiffer the symmetry energy, the higher the price
• The stiffer the symmetry energy, the higher the proton fraction



Florida State
University

Equation of State

Mean-Field Models

Nuclear Observables

Nuclear Collisions

The Symmetry Energy

Neutron Stars

Page 11 of 12

JJ J I II

Full Screen

Print

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Electron Fraction and Neutron-Star Cooling

Enhanced (direct URCA) cooling of non-exotic stars?

• Core-collapse Supernovae generates proto-neutron star (Tcore'1012K)
• Direct URCA process cools down the star until (Tcore'109K)
• Depending on the EoS direct URCA may continue

Is Yp large enough to conserve momentum?
• Best case for DUrca (soft-stiff):

Soft EoS for symmetric matter → large ρc

Stiff symmetry energy → large Yp

Direct URCA process:
a) n → p + e− + ν̄e

b) p + e− → n + νe

may continue cooling the neutron star.
FSUGold predicts that the pulsar in
3C58 does NOT need to be an exotic
(quark) star.
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High Densities in Heaven

Neutron Stars: Constraints and Predictions
• Sole heavenly tool available to compress nuclear matter
• Compression up to several (ten?) times nuclear saturation density
• Imprint of the EoS left in limiting mass, radius, cooling history, ...

Model k0
F (fm−1) ε0 (MeV) K (MeV) J (MeV) L (MeV)

NL3 1.30 −16.2 271 37.4 118.5
FSUGold 1.30 −16.3 230 32.6 60.5

Observable NL3 NL3 030 FSUGold 000 FSUGold
ρc (fm−3) 0.052 0.085 0.051 0.076
R (km) 15.05 14.18 13.80 12.66

Mmax(M�) 2.78 2.75 1.80 1.72
ρUrca (fm−3) 0.21 0.51 0.22 0.47
MUrca(M�) 0.84 2.64 0.74 1.30

∆MUrca 0.38 0.00 0.59 0.06

Some Questions and Answers (FSUGold):
• Is the pulsar in 3C58 an exotic star?

Not necessarily if M∗>1.3 M�
• Is the limiting mass of a neutron star Mmax'1.72 M�?

Report suggests M(PSRJ0751 + 1807)=2.1+0.4
−0.5

Fascinating times ahead!


