

Equation of State
Mean-Field Models
Nuclear Observables
Nuclear Collisions
The Symmetry Energy
Neutron Stars

Neutron Rich Nuclei in Heaven and Earth

Jorge Piekarewicz Florida State University Tallahassee, Florida, USA with B. Todd-Rutel and C.J. Horowitz

Cassiopeia A: Chandra08/23/04

Neutron Stars at the Crossroads of Fundamental Physics University of British Columbia, Vancouver, Canada August 10-13, 2005

Equation of State
Mean-Field Models
Nuclear Observables
Nuclear Collisions
The Symmetry Energy
Neutron Stars

Equation of State I: Generalities

The Bethe-Weizsäcker (BW) Mass Formula:

 $E(Z,N) = a_{\rm vol}A + a_{\rm surf}A^{2/3} + a_{\rm coul}Z^2/A^{1/3} + a_{\rm symm}(N-Z)^2/A + \dots$

- Parameters extracted from a fit to thousands of known nuclear masses
- Hidden behind its success is the saturation of the nuclear force
- BW constrains the above parameters at (or near) saturation density: $(a_{\text{vol}}, a_{\text{surf}}, a_{\text{coul}}, a_{\text{symm}}) \simeq (-16, +18, +1, +26) \text{ MeV}$

BW offers little on the density dependence of the parameters!

Equation of State
Mean-Field Models
Nuclear Observables
Nuclear Collisions
The Symmetry Energy
Neutron Stars

Page 3 of 12

Equation of State II: Infinite Nuclear Matter

Recipe to make infinite nuclear matter:

- Turn off the long-range Coulomb force
- Let Z, N and V go to infinity with ratios remaining finite: $\rho = A/V, Y_p = Z/A, b = \delta = (N-Z)/A, \ldots$
- Only surviving terms in the thermodynamic limit: $E(Z,N)/A = a_{\rm vol} + a_{\rm symm}b^2 = \epsilon_0 + Jb^2$

Symmetric vs Asymmetric Matter:

• Expand the total energy per nucleon around b=0:

$$E(\rho; b)/A = \underbrace{E(\rho; b=0)/A}_{\text{Symmetric Matter}} + b \underbrace{\left(\frac{\partial E/A}{\partial b}\right)_{b=0}}_{0} + b^2 \underbrace{\frac{1}{2} \left(\frac{\partial^2 E/A}{\partial b^2}\right)_{b=0}}_{\text{Symmetry Energy}} + \dots$$

Pure neutron matter \approx Symmetric Matter + Symmetry Energy!

Goal: Study the density dependence of the equation of state

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

Density Functional, Kohn-Sham, MF Theory

Improving the Bethe-Weizsäcker (BW) Mass Formula:

$$\mathcal{L}_{\rm int} = g_{\rm s} \bar{\psi} \psi \phi - g_{\rm v} \bar{\psi} \gamma^{\mu} \psi V_{\mu} - \frac{g_{\rho}}{2} \bar{\psi} \gamma^{\mu} \boldsymbol{\tau} \cdot \mathbf{b}_{\mu} \psi - e \bar{\psi} \gamma^{\mu} \tau_{p} \psi A_{\mu} - \frac{\kappa}{3!} (g_{\rm s} \phi)^{3} - \frac{\lambda}{4!} (g_{\rm s} \phi)^{4} + \Lambda_{\rm v} (g_{\rm v}^{2} V^{\mu} V_{\mu}) (g_{\rho}^{2} b^{\mu} b_{\mu}) + \frac{\zeta}{4!} g_{\rm v}^{4} (V_{\mu} V^{\mu})^{2}$$

- Parameters fitted to a large body of ground-state properties (mostly binding energies and charge radii of many nuclei)
- Ground-state observables computed at the mean-field level
- Formalism is **NOT** Hartree (Hartree-Fock) theory
- Parameters of the model encode correlations that go beyond two-body (short, long, and pairing correlations in an average way)

Resulting model unlikely to describe correctly NN physics!

Correlating Model Parameters to the Physics:

Parameters	Constrained by
$g_{ m s},g_{ m v}$	Ground state properties of finite nuclei
$g_{ ho}$	Ground state properties of heavy nuclei
κ,λ	Isoscalar giant monopole resonance
$\Lambda_{ m v}$	Neutron radius of heavy nuclei
ζ	Neutron star structure

- Existent observables insufficient to constrain all parameters
- Determination of neutron radii of neutron-rich nuclei presses!
- Simultaneous mass-radius measurement of neutron stars presses!

Crucial measurements in Heaven and Earth on the horizon!

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy

Neutron Stars

Page 5 of 12

Accurately Calibrated Parametrizations

The Program:

- Input binding energy and charge radii of doubly magic nuclei Solve in self-consistent mean-field approximation
- Compute the linear response of the mean-field ground state Solve in self-consistent MF+RPA approximation
- Without any further adjustment, compare to EoS from nuclear collisions Up to five times nuclear-matter saturation density
- Without any further adjustment, predict neutron-star structure Only physics that neutron stars are sensitive to — is the EoS of neutron-rich matter ...

Α	Observable	Experiment	NL3	NL3_030	FSUGold_000	FSUGold*	
			Stiff-Stiff	Stiff-Soft	Soft-Stiff	Soft-Soft	
90 Zr	$B/A \ ({ m MeV})$	8.71	8.69	8.70	8.68	8.68	
	$R_{ m ch}~({ m fm})$	4.26	4.26	4.27	4.25	4.25	
	$R_n - R_p \ (\mathrm{fm})$		0.11	0.08	0.09	0.09	
	GMR (MeV)	17.89 ± 0.20	18.62	18.75	17.89	17.98	
²⁰⁸ Pb	$B/A \ ({\rm MeV})$	7.87	7.88	7.89	7.87	7.89	
	$R_{ m ch}~({ m fm})$	5.50	5.51	5.52	5.51	5.52	
	$R_n - R_p \ (\mathrm{fm})$		0.28	0.20	0.29	0.21	
	GMR (MeV)	14.17 ± 0.28	14.32	14.74	13.73	14.04	
	GDR (MeV)	13.30 ± 0.10	12.70	13.07	12.79	13.07	

* Disclaimer: Gold is referred to the color — not the metal!

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

Experimental Extraction of $R_n - R_p$

JLAB Experiment 00-003 (03-011) [Michaels, Souder, Urciuoli]:

- Parity Violating Asymmetry in elastic e-Pb scattering
- Electroweak (as opposed to hadronic) probe of neutron density
- Weak-vector boson Z^0 couples strongly to neutrons
- A clean and accurate measurement of the neutron radius 1% or 0.05 fm measurement of the neutron radius of 208 Pb

Particle	EM coupling	Weak-Vector coupling					
up-quark	+2/3	$+1 - 4\sin^2\theta_{\rm w}(+2/3) \simeq +1/3$					
down-quark	-1/3	$-1 - 4\sin^2\theta_{\rm w}(-1/3) \simeq -2/3$					
proton	+1	$+1 - 4\sin^2\theta_{\rm w} \simeq 0$					
neutron	0	-1					
$g_{\rm v}^f = 2T_z^f - 4\sin^2\theta_{\rm w}Q^f, \sin^2\theta_{\rm w} \approx 0.231 \simeq 1/4$							

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

High Densities in Earth

[Danielewicz, Lacey, and Lynch – Science 298, 1592 (2002)]

Nuclear Collisions: Constraints and Predictions

- Sole earthly tool available to compress nuclear matter
- Compressions up to several (five) times nuclear saturation density
- Imprint of the EoS left in the flow and fragment distribution

FSUGold provides a reliable extrapolation to high density ...

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

Neutron Skin and Neutron-Star Radii

Question: Is there a correlation between the neutron skin of ^{208}Pb and the radius of a "canonical" $1.4M_{\odot}$ neutron star? Answer: Probably yes! Same pressure that pushes neutrons out in ^{208}Pb pushes neutrons out in a neutron star.

- Isolated radio-quiet neutron stars already discovered
- Find good candidates for mass-radius measurement

Interesting Correlation:

The neutron skin of ²⁰⁸Pb depends on the EOS below N.M. saturation density, while the radius of the neutron star is also sensitive to the high-density EOS. "The thinner the skin of ²⁰⁸Pb, the smaller the radius of the star"

Large neutron skin together with a small neutron-star radius, could provide strong signature in favor of a phase transition ...

Equation of State
Moon Field Models
Wean-Field Wodels
Nuclear Observables
Nuclear Collisions
The Symmetry Energy
Neutron Stars

Maximum (Limiting) Neutron-Star Mass

- Maximum mass determined by high-density behavior of EOS (ζ)
- Radius of low-mass stars determined by symmetry energy (Λ_v)

At present both parameters are poorly constrained! However, situation could improve very rapidly ...

- Find a single "heavy" neutron star (PSRJ0751?)
- Measure the neutron radius of ²⁰⁸Pb (JLAB?)

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

Neutron Star Composition

The composition of non-exotic stars is controlled by the density dependence of the symmetry energy!

- Symmetry energy imposes a penalty for violating (N = Z) balance
- The stiffer the symmetry energy, the higher the price
- The stiffer the symmetry energy, the higher the proton fraction

Equation of State Mean-Field Models Nuclear Observables Nuclear Collisions The Symmetry Energy Neutron Stars

Electron Fraction and Neutron-Star Cooling

Enhanced (direct URCA) cooling of non-exotic stars?

- Core-collapse Supernovae generates proto-neutron star $(T_{\rm core} \simeq 10^{12} {\rm K})$
- Direct URCA process cools down the star until $(T_{\rm core} \simeq 10^9 {\rm K})$
- Depending on the EoS direct URCA may continue Is Y_p large enough to conserve momentum?
- Best case for DUrca (soft-stiff): Soft EoS for symmetric matter \rightarrow large ρ_c Stiff symmetry energy \rightarrow large Y_p

Direct URCA process:

a)
$$n \to p + e^- + \bar{\nu}$$

b)
$$p + e^- \rightarrow n + \nu_i$$

may continue cooling the neutron star. FSUGold predicts that the pulsar in 3C58 does NOT need to be an exotic (quark) star.

Equation of State
Mean-Field Models
Nuclear Observables
Nuclear Collisions
The Symmetry Energy
The Symmetry Energy
Neutron Stars

High Densities in Heaven

Neutron Stars: Constraints and Predictions

- Sole heavenly tool available to compress nuclear matter
- Compression up to several (ten?) times nuclear saturation density
- Imprint of the EoS left in limiting mass, radius, cooling history, ...

М	odel	$l \mid k_{\mathrm{F}}^0 \; (\mathrm{fm}^{-1}) \mid \epsilon$		ϵ_0	$\epsilon_0 \; (\text{MeV})$		K (MeV)	J (MeV)		L (MeV)	
NL3 1.30		-16.2			271 37.		.4 118		.5		
SUGold 1.30		-16.3		230	32	.6	60.5				
	Obse	rvable	NL	3	NL3_03	0	FSUGold	1_000	FSU	JGold	
	ρ_c (f	$m^{-3})$	0.05	52	0.085		0.05	1	0.	076	
	R (km)	15.0)5	14.18		13.80)	12	2.66	
	$M_{\rm max}$	$_{\rm c}(M_\odot)$	2.7	8	2.75		1.80		1	.72	
	$ ho_{ m Urca}$	$({\rm fm}^{-3})$	0.2	1	0.51		0.22		0	.47	
	$M_{ m Urca}$	$_{ m a}(M_{\odot})$	0.8	4	2.64		0.74	:	1	.30	
	ΔM	$I_{\rm Urca}$	0.3	8	0.00		0.59		0	.06	

Some Questions and Answers (FSUGold):

• Is the pulsar in 3C58 an exotic star?

Not necessarily if $M_* > 1.3 M_{\odot}$

• Is the limiting mass of a neutron star $M_{\text{max}} \simeq 1.72 \ M_{\odot}$? Report suggests $M(PSRJ0751 + 1807) = 2.1^{+0.4}_{-0.5}$

Fascinating times ahead!