Probing quark matter in compact stars with cosmic rays

Jes Madsen University of Aarhus, Denmark

Strangelets in cosmic rays?

- What are strangelets ?
- Ways to detect a cosmic ray strangelet flux
- A strangelet search with AMS-02 on the International Space Station
- A lunar soil strangelet search
- Strangelets beyond the GZK-cutoff ?

$B = (145 MeV)^4 vs. (165 MeV)^4$

Color-Flavor Locking

Madsen, PRL 87 (2001) 172003

Strangelets have low Z/A

¹ H 10 5		Periodic Table of Strangelets														² He 20 17	
³ Li 30 31	⁴ Be 40 48	^Z El Element ^{bag} CFL strangelet mass (amu) for MIT bag model and CFL model ⁵ B ⁶ C ⁷ N ⁸ O ⁹ F ¹⁰ ⁵⁰ 60 70 80 90 11 ⁶⁰ 100 130 160 10													¹⁰ Ne 100 190		
¹¹ Na	¹² Mg	¹³ Al ¹⁴ Si ¹⁵ P ¹⁶ S ¹⁷ Cl ¹⁸													¹⁸ Ar		
110	120	¹³⁰ ¹⁴⁰ ¹⁵⁰ ¹⁶⁰ ¹⁷⁰ ¹¹													¹⁸⁰		
220	250	²⁸⁰ ³¹⁰ ³⁵⁰ ³⁵⁰ ³⁸⁰ ⁴²⁰ ⁴													460		
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360
500	540	580	620	670	710	760	800	850	900	950	1000	1000	1100	1100	1200	1200	1300
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	⁴⁷ Ag	48 Cd	⁴⁹ In	50 Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
370	380	390	400	410	420	430	440	450	460	470	480	490	500	510	520	530	540
1300	1400	1400	1500	1500	1600	1700	1700	1800	1800	1900	2000	2000	2100	2200	2200	2300	2400
55 Cs	⁵⁶ Ba		⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	⁷⁷ Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ Tl	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
550	560		720	750	790	820	850	890	920	960	1000	1000	1000	1100	1100	1100	1200
2400	2500		3700	3700	3800	3900	4000	4100	4100	4200	4300	4400	4500	4600	4600	4700	4800
⁸⁷ Fr	⁸⁸ Ra		¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110	111	112	113	114——	115	116——	117	118
1200	1300		2100	2200	2300	2300	2400	2500	2500	2600	2700	2800	2800	2900	3000	3100	3200
4900	5000		6400	6500	6600	6700	6800	6900	7000	7100	7200	7300	7400	7500	7600	7700	7800
	-					-						-					
		⁵⁷ La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	⁶⁷ Ho	68 Er	⁶⁹ Tm	70 Yb	⁷¹ Lu	

5	7 La	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	^{62}Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu
	570	580	590	600	610	620	630	640	650	660	670	680	690	700	710
L	2600	2600	2700	2800	2800	2900	3000	3100	3100	3200	3300	3400	3400	3500	3600
8	9 Ac	90 Th	91 Pa	92 U	⁹³ Np	94 Pu	95Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰ Fm	10Md	¹⁰ No	^{103}Lr
	1300	1400	1400	1500	1500	1600	1600	1700	1700	1800	1800	1900	2000	2000	2100
L	5100	5100	5200	5300	5400	5500	5600	5700	5800	5900	5900	6000	6100	6200	6300

FIG. 2: The Periodic Table for strange quark matter, showing the predicted mass range. Noble gases are shown in yellow, "volatiles" are in green. The remainder are considered "metallic" in terms of their atmospheric behavior. The strangelet masses are calculated both for the CFL charge-mass relation $Z = 0.3A^{2/3}$ and the MIT bag model relation $0.1A \le Z \le 8A^{1/3}$

From: B. Monreal (nucl-ex/0506012)

Detecting strangelets at 1-1000 GV

Find low Z/A cosmic rays with high precision equipment in space

=>

AMS-02

AMS-02 Collaboration

Y96673-05_1Commitment

S98-11010

Lyndon B. Johnson Space Center Houston Texas 77058

Alpha Magnetic Spectrometer AMS-02

International Space Station 2008 - 2011 (or longer)

PURPOSE

- Cosmic rays
 Antimatter (anti-He)
 Dark matter
 Strangelets
 Superconducting
- magnet technology

The AMS superconducting magnet coils are fully assembled:

Volume 35 cu. ft., Field 8,600 Gauss, Weight 2 tons

National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston. Texas 77058

AMS-01 Anomalous Cosmic Rays

Choutko (MIT)

Strangelets from strange star binary collisions

- 1 binary "neutron star" collision per 10,000 years in our Galaxy
- Release of 10⁻⁶ solar masses per collision
- Basic assumptions:
 - SQM absolutely stable!
 - All mass released as strangelets with mass A (fluxes for mass A give lower limit of flux if mass spectrum of masses below A)

Strangelet propagation

- Acceleration in supernova shocks etc
 Source-flux powerlaw in rigidity
- Diffusion in galactic magnetic field
- Energy loss from ionization of interstellar medium and pion production
- Spallation from collision with nuclei
- Escape from galaxy
- Reacceleration from passing shocks

Total CFL-strangelet flux

Total CFL-strangelet flux

Detecting strangelets at 100 MeV

Find low Z/A "nuclei" in lunar dust with high precision accelerator mass spectrometer

=>

Lunar Soil Strangelet Search

The Moon as a strangelet detector

Wright Nuclear Structure Lab Yale

LSSS-collaboration:

Sandweiss, Majka, Finch, Ashenfelter, Beausang, Casten, Chikanian, Han, Heinz, Parker, Emmet, Baris (Yale) Fisher, Monreal (MIT) Madsen (Århus)

Background Ions in E-dE

First run March 2005

Cronin, Gaisser & Swordy (1997)

Strangelets could also explain Ultra-High Energy Cosmic Rays

Madsen & Larsen, PRL 90 (2003) 121102

- Avoids the acceleration problem of ordinary UHECR candidates (HIGH Z)
- Avoids the GZK cut-off from interaction with 2.7K cosmic microwave background (HIGH A)

Eliminating the GZK-cutoff

a) Photo-pion production cut-off at $\gamma_{\pi} \approx m_{\pi}/E_{2.7K}$ $E_{\rm photo-pion} \approx \gamma_{\pi} A m_{p} \approx 10^{20} {\rm eV} A$ b) Photo-disintegration at $\gamma_{dis} \approx 10 \text{MeV} / E_{2.7K}$ $E_{\rm photo-dis} \approx \gamma_{\rm dis} Am_n \approx 10^{19} {\rm eVA}$ c) Photo-pair-production above $\gamma_{\text{pair}} \approx 2m_e / E_{2.7K}$ $E_{\rm photo-pair} \approx \gamma_{\rm pair} Am_p \approx 10^{18} {\rm eVA}$ $-dE/dt \propto Z^2 A^{-1}$ small for low Z/A

Conclusions

- Strangelets have low Z/A
- CFL and non-CFL strangelets differ wrt. Z
- Experimental verification/falsification of
 - Strangelet existence
 - Realistic from AMS-02 [2008-?]
 - Possible from lunar soil search [2005]
 - (A,Z)-relation (CFL or ordinary)
 - Optimistic, but not impossible from AMS-02 or lunar soil search
- Possible explanation of UHECR's