Neutrino Pulsars

Bennett Link

Bottom line:

Young neutron stars could be the brightest sources of high-energy neutrinos (~50 TeV).

In collaboration with F. Burgio (University of Catania, Italy)

Overview

- Neutrino astronomy
- A physical mechanism for high-energy neutrino production from pulsars
- Estimates of neutrino flux rates at Earth
- Prospects for detection

Some models of neutrino production

- pp interactions in AGN (Nellen et al. 93)
- pγ in AGN (Stecker & Salamon 96)
- pγ in extragalatic photoproduction sources (Mannheim et al.
 00)
- pγ and pp in blazar jets (Mannheim 95)
- pγ due to UHE CR from radio galaxies interacting with the CMBR (Rachen & Biermann 93; Protheroe & Johnson 96)
- Gamma-ray bursts (Waxman & Bahcall 97)
- pγ and pp interactions in plerions (Bednarek & Protheroe 97; Bednarek 03; Guetta & Amato 03)

Neutrino observatories

AMANDA-II, ANTARES, IceCube, NEMO, NESTOR

Detection principle

Angular resolution of $\sim 1^{\circ}!!$

Complete list of extraterrestrial sources of high-energy neutrinos by AMANDA-II

Muons from cosmic rays hitting the atmosphere have been seen.

Neutron stars might be sources too

Photomeson production (the "∆ resonance")

$$p\gamma \longrightarrow \Delta^+ \longrightarrow n\pi^+ \longrightarrow n\nu_{\mu}\mu^+ \longrightarrow ne^+\nu_e\nu_{\mu}\bar{\nu}_{\mu}$$

The threshold for this reaction is:

$$\varepsilon_p \ge \left(\frac{T_\infty}{0.1 \text{ keV}}\right)^{-1} \text{PeV}$$

Protons accelerated off the surface of a young neutron star could undergo photomeson conversion with the soft x-rays from the surface. (c.f. Zhang, Dai, Mészáros, Waxman & Harding 03). Is it possible to get protons to ~1 PeV?

The equilbrium magnetosphere

(Goldreich & Julian 1969)

From Ruderman & Sutherland (76)

Potential drop across B of:

$$\varepsilon_{\perp} \sim 100 Z B_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-2} \text{PeV}$$

Corotating charge of density: $n_{GJ} \simeq 10^{13} ZB_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-1} \text{ cm}^{-3}$

"'Light cylinder'

Sign of charges in open-field region is determined by sign of $\mu \bullet \Omega$.

The question of magnetospheric physics

- In the equilibrium magnetosphere, there is no charge acceleration (E●B≅0).
- For acceleration, need E

 B≠0, which requires n < n_{G.J}, somewhere.
- How and where does this gap develop?
 - Is it an *inner gap*, close to the star? (see, e.g., Ruderman & Sutherland 75; Arons & Scharlemann 79; Harding & Muslimov 98).
 - 2. Or is it an *outer gap*, far from the star? (Cheng, Ho & Ruderman 86).

Talks later today by Tomokhin and Spitkovsky

Suppose charge depletion occurs near the surface

(Ruderman & Sutherland 75; Arons & Scharlemann 70; Harding & Muslimov 98)

Charge-depleted region

 $n << n_{GJ}$

 $\mathbf{E} \cdot \mathbf{B} \neq 0 \Longrightarrow$ charge acceleration

A significant fraction of

$$\varepsilon_{\Phi} \sim 100 Z B_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-2} \text{PeV}$$

can be attained.

Conjecture to be tested by neutrino observations

A strong accelerating field exists *near the stellar surface* that is sufficient to bring protons to the Δ resonance:

$$p\gamma \longrightarrow \Delta^+ \longrightarrow n\pi^+ \longrightarrow n\nu_\mu\mu^+ \longrightarrow ne^+\nu_e\nu_\mu\bar{\nu}_\mu$$

Requirements

• Field is properly oriented: $\mu \cdot \Omega < 0$ (to accelerate positive ions). Half of pulsars.

Requirements

Field is properly oriented: μ·Ω < 0 (to accelerate positive ions). Half of pulsars.
 Sufficiently strong accelerating field exists to bring protons to resonance.

How strong an accelerating field?

Energy threshold for the proton is

$$\varepsilon_p \ge \left(\frac{T_\infty}{0.1 \text{ keV}}\right)^{-1} \text{PeV}$$

Compare to potential energy across the field: $\epsilon_{\perp} \sim 100 Z B_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-2} \text{PeV}$

Need an accelerating electric field of strength:

 $E_{\parallel} \sim 0.01 E_{\perp}$

Can we get protons to ~1 PeV?

- Pair creation will quench the field at some point.
- There will be losses to curvature radiation.

Curvature radiation loss limit

\Rightarrow Not a limitation

Necessary condition on stellar parameters for resonance

$$B_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-2} \left(\frac{T_{surf}}{0.1 \text{ keV}}\right) > 0.03$$

Satisfied by dozens of close pulsars...probably.

Neutron stars stay hot for a long time

Yakovlev & Pethick 04

Necessary condition on stellar parameters for resonance

$$B_{12} \left(\frac{p}{10 \text{ ms}}\right)^{-2} \left(\frac{T_{surf}}{0.1 \text{ keV}}\right) > 0.03$$

There are 64 known pulsars within 10 kpc younger than 10^5 yr.

There are 9 within 5 kpc, younger than 10^5 yr, and that satisfy this condition if $T_{surf}=0.1$ keV.

Requirements

- Field is properly oriented: $\mu \cdot \Omega < 0$ (to accelerate positive ions). Half of pulsars.
- Sufficiently strong accelerating fields exist to bring protons to resonance.
- The acceleration must occur *near the* surface (within ~0.5R).

Resonance can happen only near the surface.

Also, the conversion probability is low

 $P_{conv} \simeq 0.02 T_{0.1 keV}^3$

 \Rightarrow few protons are affected.

If protons are converted...

 $p\gamma \longrightarrow \Delta^+ \longrightarrow n\pi^+ \longrightarrow n\nu_{\mu}\mu^+ \longrightarrow ne^+\nu_e\nu_{\mu}\bar{\nu}_{\mu}$

Pions move along the field lines before decaying... \Rightarrow a radio pulsar could be a "neutrino pulsar".

Protons

$$\varepsilon_p \simeq T_{0.1 keV}^{-1} \,\mathrm{PeV}$$

Pions

$$\varepsilon_{\pi} \simeq 200 \ T_{0.1 keV}^{-1} \ \text{TeV}$$

 μ neutrinos

$$\varepsilon_{\nu_{\mu}} \simeq 50 \ T_{0.1 keV}^{-1} \ \text{TeV}$$

Best candidate neutron stars are...

Close
Hot
Rapidly spinning

And <u>must</u> have $\mu \bullet \Omega < 0$

A crude flux estimate

(Link & Burgio 2005, PRL, 94, 181101)

depletion factor (<1)

 $\phi_{\mathbf{v}} \simeq c f_b f_d n_{GJ} \left(\frac{R}{d}\right)^2 P_{conv}$

neutrino flux

beam duty cycle

Muon number flux in a large-area detector

$$\frac{dN}{dAdt} = \phi_{\nu} P_{\nu_{\mu} \to \mu} \sim 10^5 Z^{-1} f_d f_b B_{12} p_{ms}^{-1} d_{kpc}^{-2} T_{0.1keV}^2 \text{ km}^{-2} \text{ yr}^{-1}$$

at an energy $\epsilon_{\nu_{\mu}} \simeq 50 \ T_{0.1 keV}^{-1} \ {\rm TeV}$

Some promising candidates

Detector area = 0.1 km^2 Observing time = 1 year

Source	Hemisphere	(muon counts)*f _d Z ⁻¹
Crab	northern	120
J0205+64	northern	10?
Vela	southern	80
B1509-58	southern	10?

At muon energies \geq 50 TeV

Calculating the neutrino spectrum

Predicted neutrino spectrum (Link & Burgio 05)

Other models

- pp interactions in AGN (Nellen et al. 93)
- pγ in AGN (Stecker & Salamon 96)
- pγ in extragalatic photoproduction sources (Mannheim et al.
 00)
- pγ and pp in blazar jets (Mannheim 95)
- pγ due to UHE CR from radio galaxies interacting with the CMBR (Rachen & Biermann 93; Protheroe & Johnson 96)
- Gamma-ray bursts (Waxman & Bahcall 97)
- pγ and pp interactions in plerions (Bednarek & Protheroe 97; Bednarek 03; Guetta & Amato 03)

Predicted neutrino spectrum

Conclusions

 Neutrino pulsars, *if they exist*, could be the brightest sources in the sky above ~ 50 TeV. They might be the first sources detected.

- Detection would allow direct constraints on the physical conditions in the neutron star magnetosphere.
- Lack of detection would also allow constraints.