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I) Neutron Rich Matter in the 
Laboratory

Parity Radius Experiment
(PReX) uses parity violating 
electron scattering to 
measure the neutron radius 
of 208Pb

208Pb
PReX references:

http://cecelia.physics.indiana.edu/prex



Parity Radius Experiment
• Parity violation probes 

neutrons because weak 
charge of a n À p.

• Elastic scattering of 850 
MeV e from 208Pb at  6◦.

• Measure A ≈ 0.6 ppm to 
3%.  This gives neutron 
radius to 1% (± 0.05 fm). 

• Purely electroweak reaction 
is model independent

• Spokespersons: P. Souder, 
R. Michaels, G. Urciuoli

• Two day test of full PREX 
experiment during this years 
HAPPEX II run.  
•Plan for full PREX to run in 
2007



Pb Radius Measurement
• Pressure forces neutrons out 

against surface tension.  Large 
pressure gives large neutron 
radius.

• Pressure depends on derivative of 
energy with respect to density.

• Energy of neutron matter is E of 
nuc. matter plus symmetry energy. 

• Neutron radius determines P of 
neutron matter at ≈ 0.1 fm-3 and 
the density dependence of the 
symmetry energy dS/dρ.

Neutron minus proton rms radius 
of Pb versus pressure of pure 
neutron matter at ρ=0.1 fm-3.  
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Liquid

Liquid/Solid Transition 
Density

• Thicker neutron skin in Pb means 
energy rises rapidly with density
Quickly favors uniform phase. 

• Thick skin in Pb low transition 
density in star.

Neutron Star Crust vs
Pb Neutron Skin

• Neutron star has solid crust  
(yellow) over liquid core (blue). 
• Nucleus has neutron skin. 
• Both neutron skin and NS 
crust are made out of neutron 
rich matter at similar densities.
• Common unknown is EOS at  
subnuclear densities. 

208Pb
Neutron 
Star



Pb Radius vs Neutron Star Radius

• The 208Pb radius constrains the pressure of neutron 
matter at subnuclear densities.

• The NS radius depends on the pressure at nuclear 
density and above.

• Most interested in density dependence of equation of 
state (EOS) from a possible phase transition.

• Important to have both low density and high density 
measurements to constrain density dependence of EOS.
– If Pb radius is relatively large: EOS at low density is stiff with 

high P.  If NS radius is small than high density EOS soft.
– This softening of EOS with density could strongly suggest a 

transition to an exotic high density phase such as quark matter,
strange matter, color superconductor, kaon condensate…



PREX Constrains Rapid Direct 
URCA Cooling of Neutron Stars

• Proton fraction Yp for matter in 
beta equilibrium depends on  
symmetry energy S(n). 

• Rn in Pb determines density 
dependence of S(n).

• The larger Rn in Pb the lower 
the threshold mass for direct 
URCA cooling.

• If Rn-Rp<0.2 fm all EOS 
models do not have direct 
URCA in 1.4 M¯ stars.

• If Rn-Rp>0.25 fm all models do 
have URCA in 1.4 M¯ stars.

Rn-Rp in 208Pb

If Yp > red line NS cools quickly via 
direct URCA n→ p+e+ν



Nuclear Pasta

In the inner crust of neutron 
stars and supernovae



All conventional matter is frustrated
• It is correlated at short 

distances from attractive 
strong interactions.

• And anti-correlated at 
large distances from 
coulomb repulsion.

• Normally these length 
scales are well separated 
so nucleons bind into 
nuclei segregated on a 
crystal lattice.
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Nuclear Pasta
• At great densities, the attractive 

nuclear and repulsive atomic 
length scales are comparable.  
– Leads to a complex ground state. 
– Can involve sphere (meat ball), rod 

(spaghetti), plate (lasagna), or 
other shapes.

• This “nuclear pasta” is expected 
in neutron star crusts and 
supernovae.

• It should have unusual 
properties and dynamics 
because of the frustration. 



Molecular Dynamics Simulations
• Charge neutral system of n, p and e.  [e provide 

screening length λ for Coulomb.] 
• Thermal wave length of heavy clusters is small 

compared to inter cluster spacing: semi-classical 
approx. should be good.

• n, p interact via classical 2-body pot.  
H = K + ∑i<j v(rij)

v(r)=a Exp[-r2/Λ]+ bij Exp[-r2/2Λ] + eiej Exp[-r/λ]/r
• Parameters a, bij, Λ fit to binding E and 

saturation density of nuclear matter and a 
reasonable symmetry energy.

• Watanabe et al have done similar QMD 
simulations for smaller systems. 
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Molecular 
Dynamics 
Simulation 
with 40,000 
nucleons at 
T=1 MeV, 
ρ=0.01 fm-3, 
Yp=0.2

Isosurface
of proton 
density is 
shown.

Not shown, 
low density 
neutron gas 
between 
clusters.



Proton 
density at 
ρ=0.025 fm-3
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Simulation 
with 100,000 
nucleons at 
ρ=0.05 fm-3

showing 
pasta phase.  



Static Structure Factor Sq

• Neutrino pasta scattering 
in SN

• Effective cross section 
per nucleon is 
dσ/dΩ = S(q) dσ/dΩ|free

• Sum over all possible 
reflections.
S(q) ∝ ∑i,jexp[iq· rij]

• S(q) gives the degree of 
coherence.

Scattering 
plane 1

Scattering 
plane 2

Incident beam

Reflected 
beam



0.05

0.075

ρ=0.01 fm-3 0.025

Coherent cluster scattering

Nuclei
Pasta

Nuclear matter



Liquid Vapor Phase Transition
• In a first order phase transition, low density vapor is in equilibrium 

with high density liquid.
• Large density fluctuations arise as liquid is converted to/ from vapor.
• Static structure factor at q=0 related to density fluctuations.

• Expect very large S(0) in two-phase coexistence region of simple 
first order phase transition → very short neutrino mean free paths in 
a supernova [J. Margueron, PRC70(2004)028801].

• We find no large enhancement of S(0) → system is not described 
by simple first order phase transition because ratio of liquid to vapor 
fixed by charge density of electrons. → mixed phase

ρ

P
gas

liquid

There is no large first order liquid-vapor phase transition during a supernova.



Neutron Rich Matter in the 
Neutrino Atmosphere of a Proto-

Neutron Star



Model Independent Virial
Expansion for Neutron Rich Matter

• Neutrinos in a supernova decouple from the neutrino-
sphere or neutrino atmosphere.  

• Properties of this atmosphere determine the neutrino 
spectra and can be very important for SN dynamics. 

• Conditions at neutrino-sphere:
– Temperature ~ 4 MeV crudely observed with 20 SN1987a 

events.
– ρ ~ 1011 to 1012 g/cm3 [~10-4 fm-3] follows from known ν cross 

sections at these energies.
– Proton fraction starts near ½ and drops to small values.

• What is the composition, equation of state, and neutrino 
response of nuclear matter under these conditions?  

• Virial expansion gives model independent answers!    



Universal Behavior of Neutron Matter

• Consider a low density fermi system with large scattering 
length  a→∞, and effective range r→0 much less then 
inter-particle spacing.

• There are no length scales associated with interaction.  
Therefore system will exhibit universal behavior 
independent of details.

• To what extent does real neutron matter at low density 
approach this “unitary limit”?  Real a=-19 fm, r=2.7 fm.

• Use Virial expansion to simply relate energy of neutron 
matter to nn scattering properties.

• A number of cold atom experiments to test universal 
behavior of fermions in this unitary limit.



Virial Expansion 101
• Assume (1) system in gas phase and has not undergone 

a phase transition with increasing density or decreasing 
temp.  (2) fugacity z=eµ/Twith µ the chemical pot is small.

• Expand grand canon. partition function Q in powers of z:     
P=T lnQ/V,                      n=z d/dz lnQ/V 

P=2T/λ3[z+b2z2+b3z3+…],      n=2/λ3[z+2b2z2+3b3z3+…]

Here λ=thermal wavelength=(2π/mT)1/2

• 2nd virial coef. b2(T) calculated from 2 particle partition 
function:     Q2=∑states Exp[-E2/T]
E2 is energy of 2 particle state.  Thus b2 depends on 
density of states.



Density of states
• Put system in big spherical box of radius R
• Relative mom. k from E2=k2/2mreduced.
• ψ(r1-r2=R→∞)=0=sin[kR+lπ/2+δl(k)]   or          

kR+lπ/2+δl(k)=nπ.
• Distance between states ∆k=π/(R+dδ/dk) so 

dn/dE ∝ 1/∆k ∝ R + dδ/dk
• b2=21/2∑B eEB/T +21/2/π ∫0∞ dk e-Ek/2T ∑l

0

(2l+1) dδl(k)/dk ± 2-5/2

with + for bose and – for fermions.
• b2 Includes both bound states and scattering 

resonances on equal footing.



Neutron Matter
• Integrate by parts and 

include spin,
• bn=1/(21/2πT)∫ dE e-E/2T δ

tot
(E) 

-2-5/2

• bn(T)=0.301, 0.306, 0.309
at T=2, 4, and 8 MeV

• bn almost T independent, as 
s-wave phase falls with 
increasing energy, higher l 
contributions rise to almost 
cancel.

• Use b3 for error estimate.  3 n can’t be in s state so expect      
b3 to be small.  Use |b3|· b2/2.



Neutron matter Equation of State

Error bars 
(dotted) from 
estimate of b3

Crosses from 
microscopic 
FHNC calc. by 
Friedman + 
Pandharipande

• Neutron matter virial nearly independent of temperature.
bn(T)=0.303, 0.309, 0.320  at T=2, 10, and 20 MeV.



Scaling of Neutron Matter EOS
• If bi(T) are independent of T the EOS will scale                  

P/T5/2 = f(n/T3/2). 
• Neutron matter P is only a function of n/T3/2 instead of a 

function of n and T separately 
• From P/T=g/λ3[z+bnz2+…]  and n=g/λ3[z+2bnz2+…] with 

λ∝T-1/2.
• Unitary Limit:  calculate bn with only s-wave and a=-∞, 

r=0.  δ(1S0)=π/2 
bn(T)=3/25/2=0.5303 independent of T.

• In unitary limit system clearly scales.  
• Real neutron matter scales, to a very good approx., but 

with a bn≈ 0.3 that is 40% smaller then unitary limit.
• In scaling limit energy density ε=3/2P [Thomas et al have 

tested this for a universal system of cold 6Li  atoms.]

.



Nuclear Matter
• Is very different from neutron matter             

because of cluster formation.
• Deuterons appear as bound state in b2.
• α particles will appear as bound state in b4.
• Large α binding Eα=28.3 MeV gives large e+Eα/T

contribution to b4.
• Nucleon only virial expansion may be accurate only 

over a very reduced density range because of the 
abnormally large b4.

• Solution: include α explicitly and work with system 
of p, n, and α s.  Chemical equilibrium 2µp+2µn=µα
gives zα=zp

2zn
2 eEα/T.

• Work to 2nd order in zp, zn, zα.  Can include heavier 
nuclei at even higher densities. 



n, p, α system

• Need four virial coefficients:
– bn for neutron matter, 
– bnuc for symmetric nuclear 

matter, 
– bα for alpha system, 
– bαn for interaction between an 

α and N.
• Virials from NN, Nα and αα

elastic scattering phase 
shifts. α−α Elastic Phase Shifts



T=2 MeV

4

8
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Virial

SumiLS
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Alpha mass fraction vs density for T=2, 4 and 8 MeV.  Also shown are 
predictions for Lattime Swesty and Shen (Sumioshi) EOS models.  These 
have xα that drop at high density because of the formation of heavy nuclei.

Yp=0.5



Neutrino Response in Virial
Expansion

• ν cross section per volume for 
scattering from n, p and alphas 
σ = G2Eν

2/4π [ 3ga
2(nn+np)Sa

+ (nn + 4nα)Sv ]
• Here Sa is axial or spin 

response from virial expansion 
of spin polarized matter. 

• Sv is vector or density response 
= static structure factor Sq in 
q→0 limit    

Sv=Sq=0=T/(dP/dn)

T=4 MeV, Yp=0.3



Future Work
• Calculate nucleon 3rd virial b3 for neutron and 

nuclear matter.  Example Paulo Bedaque + G. 
Rupak cond-mat/0206527

• Include heavy nuclei in addition to n, p, and α
– As a single heavy nucleus with ave.  <Z> and <A>.
– As a distribution of many heavy nuclei (perhaps with 

simplified N-nucleus scattering).
• Include coulomb interactions.
• Study role of inelastic scattering.
• …



Conclusions
• Virial expansion provides model independent equation of state, 

composition, entropy, energy, and long wave length responses for
neutron rich matter at low densities.

• Neutron matter EOS scales: P=T5/2f(n/T3/2), ε=3/2P
• Low density nuclear matter forms clusters and does not scale.
• We describe nuclear matter in n, p, and α coordinates with virial

coefficients from NN, Nα, and αα scattering.
• Incorporate d and α bound states and scattering resonances 

including 2He, N-α p-waves, and 8Be. 
• Model independent results for α mass fraction disagree with all 

existing phenomenological EOS models.
• All existing microscopic calculations of low density nuclear matter 

EOS fail because of neglect of cluster formation.

J. Piekarewicz, M. A. Perez-Garcia, D. Berry, A. Schwenk, C. Horowitz


