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How can we tell what magnetars are made of?



How can we tell what magnetars are made of?

Try thermal echos as a diagnostic (Eichler and Cheng
1989).



Short-term afterglow (hours): Settling of uplifted
matter

Medium-term afterglow (weeks): Cooling of outer
crust

Long-term afterglow (years): Cooling of inner crust
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ABSTRACT

We consider thermal afterglow from transient energy releases in neutron stars, such as may result from
glitches or gamma-ray bursts. If observable, thermal afterglow may provide important information on the
nature of these events and on neutron star structure. For standard neutron star models, the energy released is
either reradiated within a short time of at most hours for energy release near the surface, or most of the

tion of the total energy release, and enormous cnergy releases ~10%2 ergs are required to make the afterglow

last much longer than a few hours. An observational program to detect afterglow will need to accommodate
short time scales.

Subject headings: radiation mechanisms - stars: interiors -— stars: neutron
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The Storage Problem

research

research

Central
Administration




The change in the magnetic field geometry of 1900+14
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Fig. 3.— Evolution of the pulse profile of SGR 1900414 over the last 3.8 years. All panels display
two pulse cycles and the vertical axes are count rates with arbitrary units. The two middle panels
were selected from Ulysses data (25—150 keV) of the August 27 flare. Times over which the
Ulysses data were folded are given relative to the onset of the flare (T,). See text for further
details: The top and bottom rows are integrated over the energy range 2—10 keV. From top-to-
bottom, left-to-right, the data were recorded with the RXTE, BeppoSAX, ASCA, RXTE, RXTE,
RXTE, BeppoSAX, and RXTE.
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Unabsorbed Flux

The medium term afterglow of 1900+14
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The predicted medium term afterglow

Lyubarsky, Eichler, and Thompson (2002),
especially Lyubarsky

Assume central temperature corresponding to steady emission, 7
x 108 K, uniform energy deposition corresponding to observed
burst energy
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L, erg/s
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L, erg/s
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White dwarf cooling after dwarf nova

Arras, Bildsten ......
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The really long term afterglow of 1627-41

Kouveliotou, Lyubarsky, Eichler, ..... (2003)

Assume deep heating of crust, but not core
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Perhaps the “persistent” emission from some
magnetars is, in fact, long-term afterglow from heating

of the inner crust.

In this case, we may see their steady x-ray emission

decline over a time scale of 5 — 10 years.



The short term afterglow of 1900+14

Thompson, Woods, Eichler and Lyubarsky 2003

Assume outer layer is heated by energy flux from
above surface during initial flare, uplifted by pair
pressure



T=100Ke)

Short Term Afterglow
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Short Term Afterglow

(some time later)

e Pair free zone
T=100KeV - /
| | | Flux = AT/optical depth=ATB/%
Rate of cooling measures magnetic field| 9*/dt = Flux

AT constant, specific enthalpy h constant

Flux = kBt-1/2




Rate of cooliﬁg measures rflagnétic field

Short Term Afterglow

(still later)

to

?

?

Pairs have gone

/ away

Find B=10" Gauss (Thompson, Woods, Lyubarsky and DE

2003)
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Column density is at least about 10'° g in normal
material



Magnetars as Optical Lasers



Dereddened flux >
2 x10-'3erg/cm?s

D=5 to 10 Kpc

Lopt >5 x 1032 erg/s
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Figure 3 Energy distribution for 4U0142+61. At low frequencies (10''=10" Hz), the
points marked V, R and | indicate the observed V-, R-, and I-band fluxes. The vertical error
bars reflect the uncertainties, while the horizontal ones indicate the filter bandwidths. The
set of points above the measurements indicate dereddened fluxes for 4, = 5.4, as
inferred from the X-ray column density'®"". The errors include a 3% uncertainty in the
reddening correction®. At high frequencies (10'"—10"® Hz), the crosses show the incident
X-ray spectrum as inferred from ASCA measurements'®. The diamonds show the
spectrum after correction for interstellar absorption, and the two thick dashed curves
show the two components used in the fit'® a power law of the form
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Magnetars as Optical Lasers

Magnetospheric currents

Magnetosphere

Say the currents are relativistic pairs. Lorentz factor
about 103. Density about 107 charges/cms3.

Plasma frequency as seen in the lab frame 1014-1% hz.
Two stream instability (Gedalin, Gruman and Melrose,
2002) makes coherent optical or IR emission.



Optical Pulses from 4U0412 (Kern
and Martin, Nature May 31 2002)
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Tearing Nucleons Apart



“photo”neutron
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Quark pair materializes
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Relativistic Petschek reconnection

Current sheet
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AAA

o can be 102 to 10" for a magnetar, so I" can exceed 10°



Polarization-induced
charged mesons
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Other indications of baryons in NS peripheries:
GRB X-ray afterglow — nearly always present

Afterglow from 27 December event: Baryons seem
to have been ejected at about 0.6¢c (Gelfand et al 2005



Conclusions

We may actually understand some of the crazy physics of
magnetars.



Conclusions

We may actually understand some of the crazy physics of
magnetars.

Magnetar crusts are consistent with ordinary matter. No
iIce nine scenario implied (yet). More research needed.
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Short term afterglow confirms B =6 x 10’4 Gauss



Conclusions

We may actually understand some of the crazy physics of
magnetars.

Magnetar crusts are consistent with ordinary matter. No
iIce nine scenario implied (yet).

Short term afterglow confirms B =6 x 10’4 Gauss

Magnetars may be free electron optical lasers. Many
predictions (wavefront coherence, photon statistics,
polarization...) can be tested.



Magnetars offer

New quantum electrodynamics
new condensed matter physics,
new nuclear physics,

maybe new laser physics,

and lots of new astrophysics.
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