Crustal reactions, superbursts and soft X-ray transients Edward Brown

In this talk...

- The quiescent luminosity of transients with long outbursts constrain the temperature in the crust (Rutledge et al 2002)
- The inferred temperature is not consistent with superburst recurrence times
- Towards more realistic models of crust reactions
 - Inclusion of excited states
 - Allowance for $(\gamma, n), (n, \gamma)$ reactions
 - Time and temperature dependence

Deep Nuclear Heating following Haensel & Zdunik 1990, 2003

Distribution of ε_{nuc}

(Haensel & Zdunik 1990, 2003)

- No consideration of excited states
- Only one nucleus present at a given depth
- Zero-temperature

Without deep heating, no superbursts

Ignition columns and recurrence times

Brown 2004 Cooper & Narayan 2005

Two extreme assumptions

i. Thermal conductivity is a lower limit: ignores phonon transport, assumes no long-range order in crust

Cf. estimate of Jones (2004, PRL)

Neglects phonon transport: may be important in the inner crust

$$K \sim \frac{1}{3}Cs\lambda$$

v. No substantial crust neutrino emission ($T_{c,n}(^{1}S_{0}) \gg T$).

D. Page; see talk by A. Cumming, next session

Measuring v-cooling with neutron star transients

- Heat deposited during outburst is « heat content
 - *T*_{crust} changes little over an outburst/ quiescent cycle (if not a strange star!)
 - Colpi et al. 2001;
 Ushomirsky &
 Rutledge 2001;
 Yakovlev et al. 2003
- Two core models
 - *slow*: mod. urca
 - fast: direct Urca for r
 < 5 km

KS1731–260 cooling after a long outburst

Wijnands 2001; Rutledge et al. 2002; Wijnands et al. 2002

MJD-50000

Quiescent evolution, KS 1731-260

Includes L_{v}^{Cooper}

Ouellette & Brown, in preparation

Electron captures in crust

Gupta, et al. 2005, in prep.

JINA project!

- Start with rp-process ashes (Schatz et al. 2004, PRL)
- log(*ft*) for excited states computed from QRPA model (P. Möller), with analytical computation of phase space (Gupta)
- *E*_F is incremented in steps of 0.1 MeV to 25.0 MeV
- Electron captures are evolved at constant *E*_F and *T*(*E*_F) (Brown 2004)

Gupta et al. 2005, in prep.

A new effect

Gupta et al. 2005, in preparation

- Contours of constant Q_{ec} are <u>misaligned</u> from those of constant S_n
 - A composition that is β-stable is not in equilibrium with respect to (γ,n)–(n, γ) reactions
- At a given E_F , a sufficient k_BT will trigger (γ , n), (n, γ) reactions
- $Y_n \approx 10^{-5}$: neutrons are non-degenerate
- Look for the following
 - T rapidly increases to ~GK within 10⁻² s and (γ,n)–(n, γ) equilibrium is attained
 - Further heating from pre-threshold ¹/₂ electron captures

7.3

Summary

- Ignition of superburst in KS 1731–260 is incompatible with observed L_q
- Misalignment of electron capture thresholds, neutron separation energies opens channels for shuffling of nuclei
- A realistic distribution of isotopes is susceptible to heating from (n,γ) - (γ,n) . Unsafe at any temperature

Stay tuned...

EC and (γ, n) Q-values

Schatz et al. 2001, PRL

An Amorphous Crust

- Crust unlikely to be a pure lattice
 - Different phases of nuclear matter may coexist in inner crust (Magierski & Heenan 2002)
 - Fluctuations in composition during cooling from birth (Jones 2004)
 - Distribution of isotopes from burning of H, He
- Estimate relaxation time by setting structure factor to unity (as for a liquid)

$$au_{
m amp}^{-1} pprox rac{4\pi e^4}{p_{
m F}^2 v_{
m F}}
ho N_{
m A} \Lambda \langle Z^2
angle$$

- Cf. estimate of Jones (2004, *PRL*)
- Neglects phonon transport: $K \sim \frac{1}{3}Cs\lambda$
 - May be important in the inner crust