COLOR-SPIN LOCKING PHASE IN TWO-FLAVOR QUARK MATTER FOR COMPACT STAR PHENOMENOLOGY

Deborah N. Aguilera (University of Rostock)

Collaborators: D. Blaschke (GSI), H. Grigorian (U. Rostock), M. Buballa (TU Darmstadt)

• QUARK MATTER EoS FOR COMPACT STARS

- Spin-0: <u>2</u> flavor color <u>SuperConducting phase (2SC)?</u>
- Spin-1: 2SC +"X", Color Spin Locking phase (CSL)

• **RESULTS**:

- Stable configurations for hybrid stars with superconducting quark core
- CSL gaps for cooling phenomenology

A Bowshock Nebula Near the Neutron Star RX J1856.5-3754 (Detail) (VLT KUEYEN + FORS2)

ESO PR Photo 23b/00 (11 September 2000)

© European Southern Observatory

Nonlocal effective action

$$S[\bar{\psi},\psi] = \sum_{p} \bar{\psi}(\not p - \hat{m})\psi + S_{\rm int}[\bar{\psi},\psi]$$

 $S_{\rm int}[\bar{\psi},\psi] = -\frac{1}{2} \sum_{p_1\dots p_{2'}} [\bar{\psi}_1(p_1)[\lambda^a \gamma_\mu \mathbbm{1}_f]_{11'} \psi_{1'}(p_{1'})] g_{\mu\mu'} K(p_1,p_{1'};p_2,p_{2'}) [\bar{\psi}_{2'}(p_{2'})[\lambda^a \gamma_{\mu'} \mathbbm{1}_f]_{2'2} \psi_2(p_2)]$

Separable ansatz

$$K(p, P, p', P') = -K_0 g(p) g(p') \delta_{P,P'}$$

NJL as particular case

$$K(p, P, p', P') = K_0 \delta_{p, p'} \delta_{P, P'}$$

S. Schmidt, D. Blaschke, Y. Kalinovsky, Phys. Rev. C 50 (1994) 435.

Non-local quark interactions: Form factors functions

• 3-D momentum dependent form factors:

- Gaussian $g_G(p) = \exp(-p^2/\Lambda^2)$
- **Lorentzian** $g_L(p) = [1 + (p^2/\Lambda^2)]^{-1}$
- NJL cutoff $g_{NJL}(p) = \theta(1 p/\Lambda)$
- Parameters

A, G_1 and m fixed by vacuum properties $m_{\pi} = 140$ MeV, $f_{\pi} = 93$ MeV, $\phi(0) = 330$ MeV at $T = \mu = 0$

	Λ	$G_1 \Lambda^2$	m	$T_c(\mu = 0)$	$\mu_c^{(S)}(T=0)$	$\mu_c^{(N)}(T=0)$
	[GeV]		[MeV]	[MeV]	[MeV]	[MeV]
g_G	1.025	3.780	2.41	174	965	991
g_L	0.893	2.436	2.34	188	999	1045
g_{NJL}	0.900	1.944	5.10	212	1030	1100

S. Schmidt, D. Blaschke, Y. Kalinovsky, Phys. Rev. C 50 (1994) 435.

H. Grigorian, D. Blaschke and D. N. Aguilera, Phys. Rev. C 69 (2004) 065802, arXiv:astro-ph/0303518.

Thermodynamical potential and gap equations

The total thermodynamical potential (q: quarks, l: leptons)

$$\Omega(\phi, \Delta; \{\mu_{fc}\}, T; \mu_l) = \Omega_q(\phi, \Delta; \{\mu_{fc}\}, T) + \sum_{l \in \{e, \bar{\nu}_e, \nu_e\}} \Omega^{id}(\mu_l, T) , \qquad \Omega^{id} \text{ ideal Fermi gas}$$

Local extrema of $\Omega \leftrightarrow$ **Gap equations:**

$$\frac{\partial\Omega}{\partial\phi}\Big|_{\phi=\phi_0;\Delta=\Delta_0} = \frac{\partial\Omega}{\partial\Delta}\Big|_{\phi=\phi_0;\Delta=\Delta_0} = 0$$

Global minimum of $\Omega \rightarrow$ **Thermodynamics**

$$\Omega(\phi_0, \Delta_0; \{\mu_{fc}\}, T) = \epsilon - Ts - \sum_{f,c} n_{fc} \mu_{fc} = -P$$

number densities

$$n_j = \frac{\partial \Omega}{\partial \mu_j} \bigg|_{\phi_0, \Delta_0; T, \{\mu_i, i \neq j\}}$$

Constraints for Quark Matter in Compact Stars

CONSTRAINT

CONSERVED QUANTITY

NEW CHEMICAL POTENTIAL

- β -equilibrium
 - $d \longrightarrow u + e^- + \bar{\nu}_e$ $u + e^- \longrightarrow d + \nu_e$
- Neutral electric charge density
- Neutral color charge density
- Conserved baryon number density

Gibbs free enthalpy density

$$G = \sum_{f,c} \mu_{fc} n_{fc} + \mu_e n_e = \mu_Q Q + \mu_8 n_8 + \mu_B n_B$$

Strong conditions for diquark paring!

$$\mu_{dc} - \mu_{uc} = \mu_e + \mu_{\bar{\nu}_e}$$

 $n_B = \frac{1}{3} \sum_{f,c} n_{fc} =$ const.

$$\mu_{qcc'} = (\mu_{uc} + \mu_{dc'})/2 \quad \underline{\mathbf{quark}}$$

 $\mu_I = (\mu_{uc} - \mu_{dc})/2 \quad \underline{\mathbf{Isospin}}$

asymmetry

$$Q = \frac{2}{3} \sum_{c} n_{uc} - \frac{1}{3} \sum_{c} n_{dc} - n_{e} = 0 \qquad \mu_{Q} = -\mu_{e}$$
$$n_{8} = \frac{1}{3} \sum_{f} (n_{fr} + n_{fg} - 2n_{fb}) = 0 \qquad \mu_{qcc'} = \mu_{q} \delta_{cc'} + \mu_{8} (\lambda_{8})_{cc'}$$

$$\mu_B = 3\mu_q - \mu_I \quad \underline{\mathbf{B}}$$
aryon

D. N. Aguilera, D. Blaschke and H. Grigorian, Nucl. Phys. A (2005), in press.

Stable Hybrid stars Configurations

Strong coupling $\eta = 1$

Model obeys the observational constraints

- (M, R) for isolated NS RX J185635-3754 S. Zane, R. Turolla and J. Drake, astro-ph/0302197
- z = 0.35 for CS in EXO 0748-676 J. Cottam, F. Paerels and M. Mendez, Nature 420, 51 (2002)

H. Grigorian, D. Blaschke and D. N. Aguilera, Phys. Rev. C 69 (2004) 065802, arXiv:astro-ph/0303518.

QCD Phase diagram under compact star contraints

D. N. Aguilera, D. Blaschke and H. Grigorian, Nucl. Phys. A (2005), in press.

BUT important changes in the cooling evolution of compact stars could occur if

- ALL QUARKS ARE PAIRED ⇒ prevention of the direct URCA-process ⇒ prevents the star to cool too fast
- GAPS ARE NOT TOO LARGE ($10 \le \Delta' \le 100$ KeV) \Rightarrow processes are effective enough

• pure 2SC ($\Delta_{rg} \simeq 100$ MeV)

– *b* quarks unpaired $\Delta' = 0$

URCA process allowed \Rightarrow *Cooling is too fast*

H. Grigorian, D. Blaschke and D. Voskresensky, Phys. Rev. C 71 (2005) 045801, arXiv:astro-ph/0411619.

Neutron star cooling phenomenology: Hybrid stars with 2SC quark matter cores

• pure 2SC ($\Delta_{rg} \simeq 100$ MeV)

– *b* quarks unpaired $\Delta' = 0$

• 2SC + X

– X-pairing channel $\Delta' \simeq 1$ MeV

URCA process allowed \Rightarrow *Cooling is too fast*

Processes no effective enough \Rightarrow *Cooling is too slow*

H. Grigorian, D. Blaschke and D. Voskresensky, Phys. Rev. C 71 (2005) 045801, arXiv:astro-ph/0411619.

– X-pairing channel with

 μ -dependent gap $\Delta'(\mu) = \Delta_c [e^{-\alpha \frac{(\mu-\mu_c)}{\mu_c}}]$

 $\Delta'\simeq 1~{\rm MeV} \text{ - } 10~{\rm keV}$

Then, processes are effective enough \Rightarrow

Observational data could be explained

H. Grigorian, D. Blaschke and D. Voskresensky, Phys. Rev. C 71 (2005) 045801, arXiv:astro-ph/0411619.

BUT important changes in the cooling evolution of compact stars could occur if

- ALL QUARKS ARE PAIRED ⇒ prevention of the direct URCA-process ⇒ prevents the star to cool too fast
- GAPS ARE NOT TOO LARGE ($10 \le \Delta' \le 100$ KeV) \Rightarrow processes are effective enough

POSSIBLE PAIRING PATTERNS

3-flavor	CFL		gaps are too large appears at very high densities	
2-flavor	2SC+ X	X = spin-1 blue quarks	correct order of Δ'	<i>⇐</i> RESULTS
			destroyed by asymmetry	
		$\mathbf{X} = \Delta' [e^{-\alpha \frac{(\mu - \mu_c)}{\mu_c}}]$	no microscopic explanation	
-	CSL*		correct order of Δ'	<i>⇐</i> RESULTS
			independent of asymmetry	

* T. Schfer, Phys. Rev. D 62, 094007.

A. Schmitt, Q. Wang and D. H. Rischke, Phys. Rev. D 66, 114010 (2002).

Interaction channels:

Mesonic $\phi = -2G_1\varphi \quad \varphi = \langle \ \psi^T \ \psi \ \rangle$

Spin-1 CSL
$$\Delta' = -H_v \eta$$
 $\eta_u = \langle u^T C \gamma^3 \lambda_2 u \rangle = \langle u^T C \gamma^1 \lambda_7 u \rangle = \langle u^T C \gamma^2 \lambda_5 u \rangle$
 $(u \to d)$

Thermodynamical potential $\Omega(T,\mu) = \Omega_u(T,\mu_u) + \Omega_d(T,\mu_d) + \Omega_{leptons}(T,\mu_Q)$

$$\Omega_f(T,\mu_f) = \frac{\phi_f^2}{8G_1} + 3\frac{|\Delta_f'|^2}{8G_3} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr}\ln(\frac{1}{T}S_f^{-1}(i\omega_n,\vec{p}))$$

$$S_f^{-1}(p) = \begin{pmatrix} \not p + \mu_f \gamma^0 - M_f & \Delta_f(\gamma^3 \lambda_2 + \gamma^1 \lambda_7 + \gamma^2 \lambda_5) \\ \Delta_f^*(\gamma^3 \lambda_2 + \gamma^1 \lambda_7 + \gamma^2 \lambda_5) & \not p - \mu_f \gamma^0 - M_f \end{pmatrix}.$$

then

$$\Omega_f(T,\mu_f) = \frac{\phi_f^2}{8G_1} + 3\frac{|\Delta_f'|^2}{8G_3} - \sum_{k=1}^6 \int \frac{d^3p}{(2\pi)^3} (E_{f,k} + 2T\ln\left(1 + e^{-E_{f,k}/T}\right))$$

D. Aguilera, D. Blaschke, M. Buballa and V. Yudichev, Phys. Rev. D (2005), in press.

6

Energy dispersion relations

$$\begin{split} E_{f_{1,2}}^2 &= (\varepsilon_{f,\text{eff}} \mp \mu_{f,\text{eff}})^2 + |\Delta_{f,\text{eff}}|^2 \\ E_{f_{3,5}}^2 &= (\varepsilon_f - \mu_f)^2 + a_{f_{3,5}} |\Delta_f|^2 \\ E_{f_{4,6}}^2 &= (\varepsilon_f + \mu_f)^2 + a_{f_{4,6}} |\Delta_f|^2 \\ \varepsilon_{f,\text{eff}}^2 &= |\tilde{\omega}_f|^2 + M_{f,\text{eff}}^2 \\ M_{f,\text{eff}} &= \frac{\mu_f}{\mu_{f,\text{eff}}} M_f \\ \mu_{f,\text{eff}}^2 &= |\mu_f^2 + |\Delta_f|^2 \\ |\Delta_{f,\text{eff}}|^2 &= |\Delta_f|^2 \frac{M_f^2}{\mu_{f,\text{eff}}^2} \end{split}$$

 $x = p/\mu_f$

Gap Equation solutions for CSL - NJL models

CSL not affected by asymmetry \rightarrow

→ Could support compact stars constraints!

D. Aguilera, D. Blaschke, M. Buballa and V. Yudichev, Phys. Rev. D (2005), in press. Set 1, Set 3 from M. Buballa, Habilitationsschrift - arXiv:hep-ph/0402234.

Gap Equation solutions for CSL - density dependent coupling

Density dependent coupling constant

D. Aguilera, D. Blaschke, M. Buballa and V. Yudichev, Phys. Rev. D (2005), in press.

Gap Equation solutions for CSL under compact stars constraints

• **RESULTS**

Under compact stars constraints

- Pure 2SC unlikely for usual coupling constants.
- Spin-1 channels like *Color Spin Locked (CSL)* phase seem likely to occur.

• **CONSEQUENCES** in the observables:

- Hybrid stars:

Stable configurations for hybrid stars. Model obeys the observational constraints of compact object like RX J185635-3754.

– Cooling of compact stars:

CSL compatible with neutron star cooling phenomenology

- * independent of asymmetry
 - \hookrightarrow could fulfill compact stars constraints