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Chapter 1.
General Introduction

1.1. Luminosity, Flux and Magnitude

The luminosity L is an integral of the specific flux F)\, the amount of energy at wavelength
A traversing a unit area per unit time:

o0
L= 47TR2/ FydA. (1.1.1)
0

Here R is the effective stellar radius. In the absence of any absorption between a star and
the Earth, the incident energy flux is

fx=Fy <R>2, (1.1.2)

r
where r is the distance to the star. In practice what is measured at the Earth’s surface

is modified by the transmissivity through the atmosphere Ay and by the efficiency of the
telescope F whose collecting area is ma?:

o0
b:mz/ FAANE . (1.1.3)
0

b is the apparent brightness. The transmissivity is affected by the viewing angle.
Historically, astronomers measure brightness using magnitudes. Hipparchus denoted
the brightest naked eye stars magnitude 1 and the dimmest magnitude 6. The response
of the eye is logarithmic. By international agreement, the difference of 5 magnitudes is
equivalent to a factor of 100:
b1

— = 100(m2=m1)/5 — p-Alma—m1) — 9 51gme—m (1.1.4)
by

m refers to a star’s apparent magnitude.
A star’s intrinsic brightness, or luminosity, is related to a star’s apparent brightness
through the inverse square law and a normalization. By convention, this relation is

2
B r
g 1.1.5
b (10 pc> ’ ( )

where B is the absolute brightness. Therefore,

M=m+5—5log—. (1.1.6)
pcC
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Since any detector has varying efficiency as a function of wavelength, one generally
makes a bolometric correction to go from the recorded flux to the actual flux:

incident energy flux

BC =251 . 1.1.7
°8 recorded energy flux ( )
Then, the absolute bolometric magnitude M} can be defined as
L
My, = —2.5logL— +4.72, (1.1.8)

O]

where Le ~ 3.9 x 1033 erg s~

1.2. Distances

The four most-used units of length in astronomy are the solar radius (Rg), astronomical
unit (AU), light year, and parsec (pc):

e R, ~7x10" cm

e1 AU = 1.5 x 10" cm

e 11t. yr. =9.3x 10 cm

e 1pc=31x10"%cm=3.261t. yr. =1 AU/tan 1”

The astronomical unit is based on the mean distance of the Earth from the Sun, a light
year is the distance light travels in one year, and the parsec is the distance of a star whose
apparent angular parallactic shift in three months is 1 second of arc.

1.3. Temperature

The effective stellar temperature is defined by
L =4nR*0T};;. (1.3.1)

Here, the radiation constant o is defined by the integral

21c?h 1 2kt
o= T_4/I>\d)\ = T_4/ 73\05 TN T ld)\ = ﬁ = 5.67x10 %erg cm ™2 'deg ™.
(1.3.2)

The quantity Iy, = 7B, is the specific intensity of radiation at the wavelength A\, and B)
is the Planck distribuion. We could equivalently define

B 2mhy3 1

Iy == 5wt —7 = "Br (1.3.3)

The energy density of radiation in thermodynamic equilibrium is

u = 47r/B,,d1/ = 47r/B)\d)\ = aT*, (1.3.4)
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4o 87r5k%
c  15c3h3
Thus, the effective temperature is obtained by matching the total power output of the star
to a blackbody spectrum.

One can also try to match the shape of the spectra. One example is to look at the
position of the peak of the spectrum. For a blackbody, this is

= 7.565 x 10" Perg cm3deg™?. (1.3.5)

) B he B 0.29 cm K
M s5epT T ‘

(1.3.6)

Matching this to the peak of the observed spectrum is one estimate of the color temper-
ature. Usually, broadband spectral brightnesses or magnitudes can give good estimates
of the stellar temperature. Frequently used broadband magnitudes are U, B and V', corre-
sponding to the ultraviolet, blue and visual bands. The color index is the difference of
two of these, B —V, and is often used instead of the stellar temperature to classify stars..

The excitation temperature is established from the observed relative populations of
excited states in the stellar atmosphere. Since the gases in the atmosphere are Boltzmann
gases (i.e., no interactions or degeneracy) in approximate thermal equilibrium, the relative
population of two states ¢ and 7 is given by the Saha equation

M _ 90 (ei—ej) kT (1.3.7)
njogj
where g refers to the statistical weights of the states. For example, for a non-magnetized
atomic state, g; = 2.J; + 1 where J is the angular momentum. For hydrogen, €, =
~13.6 eV/n? and g, = 2n?
For states of ionization, the same principles apply, except that a third species, the
electron, is involved. The ionization temperature is established with the Saha equation

Nitile _ Git19e (27rm6kBT)3/2 e~ Xi/kBT
n; G; h3 ’

(1.3.8)

The ionization potential is x;. The statistical weights for each ionic state are sums over
all the levels of that state:

Gi = gio + gipe /*ET 4 g, e cia/ksT (1.3.9)

1.4. Spectral Types

There is a correlation between conditions at the stellar surface and the spectral features
observed. Originally, astronomers concocted a spectral typing based on the alphabet.
However, the original 20-odd classes have been combined into the following scheme: O, B,
A, F, G, K, M (Oh, be a fine girl, kiss me is a mnemonic dating from the mid-twentieth
century to remember this.) These are in order from the hottest stars (T' ~ 50,000 K) to
the coolest ones (T' ~ 2200 K). Some details of each type are:



4 General Introduction

e Class O (T > 25,000 K), ionized He dominates, other atoms with high ioniza-
tion potential.

e Class B (11,000 K < T < 25,000 K, Balmer H and neutral He dominate,
ionized C, O.

e Class A (7500 K < T < 11,000 K, H and ionized Mg dominate, but ionized
Fe, Ti, Ca, &c become more important at lower temperatures.

e Class F (6000 K < T < 7500 K, ionized metals

e Class G (5000 K < T < 6000 K, netural metals, molecular CN, CH (Sun is
G2)

e Class K (3500 K < T < 5000 K, molecular bands, neutral metals

e Class M (2200 K < T < 3500 K, complex molecular oxide bands, TiO

1.5. Physical Properties of Stars

Masses of stars can be determined in cases where the stars are in binaries. Kepler’s Law

() () non

where M7, My are the stellar masses, and a and P are the semimajor axis and period of the
orbit. When spectral lines from one star are observed, the period is found from the period
of the Doppler shifts; the magnitude of the shifts yields the stellar velocity times the sine
of the inclination angle. The size of the orbit can thus be inferred. Individual masses can
be determined in cases where two sets of spectral lines appear and the inclination angle
can also be established. The quantity M. = 1.989 x 1033 g is the solar mass. A correlation
(MS) exists between the stellar mass and luminosity, with L o« M", where n ~ 3.

Hydrostatic equilibrium and the classical perfect gas law implies that a star’s central
pressure P., density p. and temperature 7, are related by

GM
P. ~ R”c, P. ~ p.T, (1.5.2)

so that T, ~ GM/R. If T, ~ T.y¢, the relation p. ~ M/R? yields
L~ RTj s~ M*R™>, (1.5.3)

On the other hand, the energy generation rate for the H burning reactions varies roughly
as p>T°, which means that integrated over the stellar volume

R
L~ / pP*Todr3 ~ p2TPR3 ~ MRS, (1.5.4)
0

These relations combined imply that R ~ M2 and L ~ M?3.

Radii of stars are more difficult to measure. Interferometric techniques have yielded
sizes of some stars, but otherwise size estimates rely on the Planck blackbody formula
L= 47rR20Te4f . However, stars are not blackbodies, and stellar atmosphere models must
be constructedf to determine reliable effective temperatures. The radius of the Sun is
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Ro = 6.96 x 10'° ¢cm. Radii of main sequence stars range from 0.3 — 20 times that of the
Sun, but red giants like Betelgeuse have radii greater than 300 Rg, and white dwarfs like
Sirius B have radii of order 0.02 Rg.

1.6. Stellar Energetics

The order of magnitude binding energy of the Sun is
Q=-GM?/R = —4x 10% erg. (1.6.1)
If this energy was liberated at its present rate, the sun would live for a time
T=—-Q/L~10" s=3x107 yr. (1.6.2)

It is known, however, that the Sun is 150 times older. In fact, the energy to power the
Sun comes from nuclear reactions converting H into He, which convert a fraction of its
rest mass into energy. This is now observationally established because of the detection of
neutrinos, produced when neutrons are converted to protons, from the Sun. The total rest
mass energy of the Sun is

Myc? ~ 2 x 10° erg (1.6.3)

which is enough to power the Sun for 5 x 102" s or 1.6 x 10'3 yr. In fact, nuclear reactions
in the Sun only convert 0.007 of the rest mass into energy, and only the inner 10% of the
Sun will convert its H to He. Thus the estimated solar lifetime is 1.1 x 1019 yrs.

The lifetimes of other stars can be estimated from L ~ M?3: The available energy in a
star is proportional to M, so the stellar lifetime 7 ~ M /L ~ M~2.

The estimate T. =~ GM/R leads to the estimate that, for the Sun, 7. ~ 107 K.
Therefore, the average thermal energy of protons at the solar center is

kpT = 8.62 x 10737 keV/K ~ 1 keV. (1.6.4)
But the Coulomb barrier between two positively charged protons is

v e_2 _ 1.44 MeV—fm.

r r

(1.6.5)

Since the proton radius is of order 1 fm, how can protons of energy 1 keV penetrate a 1
MeV barrier? The answer is by quantum mechanical tunneling.

1.7. The Hertzsprung-Russel Diagram

Astronomers discovered at the beginning of the twentieth century that plotting the
observed luminosities of stars versus their temperatures or colors yielded highly significant
correlations. Most stars lie on a narrow swath known as the Main Sequence, going from
high L and high 7" to small L and small 7'. These stars burn H into He. Another group of
stars has much greater L for the T' than main sequence stars; these are generally known as
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red giants, and obviously have very large radii (up to 10000 Rg). There is another group
with the opposite tendancy; these have very small radii (of order Earth-like radii, 0.001
Re), and are called white dwarfs. These different groupings represent stars at different
points in their evolution. Red giants are stars near the end of their lives, and white dwars
are their final dying embers.

Stellar evolution can be easily observed using the HR diagram. Clusters contain stars
presumably formed at nearly the same time and all stars within the cluster are at nearly
the same distance from the Sun. The most masive and luminous stars have relatively short
lifetimes, so they should move off the main sequence first. Once the luminosity of one star
in the cluster is determined, the luminosities of all the stars are then known. The observed
“turn-off” luminosity provides an age for the cluster, which is the main-sequence lifetime
of a star whose mass has that luminosity.
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Fig. 2. A schematic color-magnitude diagram for a typical globular cluster
(33) showing the location of the principal stellar evolutionary sequences.
This diagrarm plots the visible luminosity of the star (measured in magni-
tudes) as a function of the surface color of the star (measured in B-V
magnitude). Hydrogen-burning stars on the main sequence eventually ex-
haust the hydrogen in their cores (main sequence turnoff). After this, stars
generate energy through hydrogen fusion in a shell surrounding an inert
hydrogen core. The surface of the star expands and cools (red giant branch).
Eventually the helium core becomes so hot and dense that the star ignites
helium fusion in its core {horizontal branch). A subclass is unstable to radial
pulsations (RR Lyrae). When a typical globular cluster star exhausts its
Zupplfy of helium, and fusion processes cease, it evolves to become a white
warf.

There are two different types of stellar clusters: galactic clusters which are loose asso-
ciations of hundreds to thousands of stars, and globular clusters which are tight groupings
of hundreds of thousands of stars. Galactic clusters are relatively young, with ages ranging
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from millions to billions of years, but globular clusters are uniformly about 10 billion years
old. Chemical compositions of cluster stars are also different: galactic cluster stars have
abundances similar to that of the Sun, in which the mass fraction of elements heavier than
He is a few percent, but stars in globular clusters have heavy element mass fractions of
hundredths of a percent. The difference in galactic distributions, abundances and motions
of the two types of clusters has resulted in the identification of two major populations
of stars: Type I, stars formed recently like the Sun, and Type II, stars formed when the
Galaxy was formed or even before.

1.8. Stellar Evolution and Nucleosynthesis

The chemical changes in a star are what produce stellar evolution. Stars with a homoge-
neous composition, as a function of mass, will occupy a narrow band in the H-R diagram
strikingly similar to the main sequence. Stars with an abrupt chemical inhomogeneity can
form a different sequence, one that occupies the red giant region. This occurs when about
10% of the star has a heavy core. The burning of H to He slowly generates the heavy
core. Observations are well-fit by structures with both chemical inhomogeneities and a
degenerate or partially degenerate core/non-degenerate envelope configuration. Some of
these structures are prone to pulsational instabilities, observed as regular variabilities in
temperature and luminosity. Finally, completely degenerate stellar structures form a third
sequence that resembles the white dwarf branch. Therefore, stellar structure has to be
understood before stellar evolution can be discussed.

Nucleosynthesis is the natural by-product of stellar evolution. The most bound nucleus
is Fe, and slowly nuclear reactions in stars strive toward nuclei with the greatest binding.
For the most part, however, the heavy elements produced in stars are trapped within un-
less the star can be disrupted. Low-mass stars, unless they are in close binaries, have little
opportunity of disruption. However, high mass stars, and low-mass stars in close binaries,
can undergo supernova explosions in which the star is partially or totally disrupted, accom-
panied by a tremendous release of energy: in photonic emissions and kinetic energy, and,
in some cases, neutrinos. Supernovae involving white dwarfs (products of low-mass stellar
evolution) in binaries are thermonuclear detonations which totally expell all the stellar
material, while gravitational collapse of the cores of massive stars lead to neutron star
(and black hole) formation accompanied by the expulsion of the star’s massive envelope.
These explosions also provide a natural method of enriching the chemical composition of
the interstellar medium with heavy elements, leading to galactic chemical evolution. The
pathways for creating elements heavier than Fe, which are less bound again, have to go
through an extensive neutron or proton capture environment whose sites are still debated.
It could be in gravitational collapse supernovae, in the envelopes of certain red giants or
novae, or in the breakup of neutron stars themselves.



Chapter 2.
Statistical Mechanics

2.1. Classical Statistical Mechanics

A macrostate has N particles arranged among m volumes, with N;(i = 1...m) particles
in the ¢th volume. The total number of allowed microstates with distinguishable particles
in the macrostate is

N! | S |
W = N anzlnN.—Xi:lnNi..

For a large number of particles, use Stirling’s formula

InN!'=NInN - N.

m
W =NIN-N-> (NjlnN; - N;) .
3
The optimum configuration is the macrostate with the largest possible number of mi-
crostates, which is found by maximizing W, subject to the constraint that the total num-
ber of particles N is fixed (6N = 0). In addition, we require that the total energy be
conserved. If w; is the energy of the i¢th state, this is

0 (Z wiNi> = ZwiaNi =0.

With these constraints, the maximization is

; [m (W_aim_ﬁiwm)] “o.

m

Z[lnNi—a—ﬁwiMNi =0.

1

N; = aePvi = ae_wi/kT,

which is the familiar Maxwell-Boltzmann, or classical, distribution function, if 8 is equated
to 1/kgT. The quantity « is found from the total particle number N = >  N; and will
thus depend on the form of w;.
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2.2. Quantum Statistical Mechanics

In the quantum mechanical view, only within a certain phase space volume are particles
indistinguishable. The minimum phase space volume is of order k3. The number of
microstates per macrostate is

w=]]wi.
7

where W; is the number of microstates per cell of phase space of volume h3. Note we have
to consider both the particles and the compartments into which they are placed. If the ith
cell has n compartments, there are n sequences of N;+n—1 items to be arranged. There are
n(N; +n — 1)! ways to arrange the particles and compartments, but we have overcounted
because there are n! permutations of compartments in a cell, and N;! permutations of
particles in a cell (just as in the classical case). Thus

W:Hn(Ni+n_1)!:H(Ni+n_1)!-

Optimizing this, we find
SInW =6 [(n+N; —1)In(n+ N; —1) = N;InN;

i

—(n—1)In(n — 1) — InaN; — pw;Nj]
N; —1
:Z [lnn—kiZ —lna—ﬁw,} ON; =0,
i Ni

or

Ni=(n-1) (aewi/kT - 1)_

The occupation probability is N;/n ~ [aexp(w;/kgT) — 1]~!. This is appropriate for the
case when there is no limit to the number of particles that can be put into a compartment,
i.e., for bosons. For photons, particle number conservation does not apply, and a = 1.

Fermions obey the Pauli exclusion principle, and only 2 particles can be put into a
compartment, where 2 is the spin degeneracy. Thus, phase space is composed of 2n half-
compartments, either full or empty. There are no more than 2n things to be arranged
and therefore no more than (2n)! microstates. But again, we overcounted. For N; filled
compartments, the number of indistinguishable permutations is N;!, and the number of
indistinguishable permutations of the 2n — N; empty compartments is (2n — N;)!. In this
case, we therefore have

W= H 2n — NI’

As before, we optimize:
dInW =6 2[271 In (2n) — (2n — N;) In (2n — NN;)

—h’lOzN'—Bwi z]
2n — N
—Z{ n —Ina— pw;| 6N; =0,
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or )
N; =2n (aewi/kBT + 1) i
The occupation probability is N;/(2n) = [aexp(w;/(kgT) + 1]71.

The quantity In « for all statistics can be associated with the negative of the degeneracy
parameter /T, where p is the chemical potential of the system. The classical case is the
limit of the fermion or boson case when o« — 00, since in this case the £1 in the denominator
of the distribution function does not matter. In the boson case, also, a > 1 since w; > 0
and N; > 0. Bosons become degenerate when o« — 1. For photons, a = 1. In the fermion

case, there is no restriction on the value of «, and fermions become degenerate when
a — —o0. The value of « is determined by conservation of particle number: N = > N;.

2.3. Thermodynamics

The internal energy U is
U=TS-PV+) b
i
and the first law is
dU = TdS — PdV +»_ judN;.
i
This implies
VdP — SdT - " Nydp; =0.
i

The Helmholtz F' and Gibbs G free energies are
F=U-TS; G=)Y uhj.
i
dF = —8dT — PdV + Y jidN;;  dG =VdP — SdT + Y dN;.
[ 7

The thermodynamic potential 2 = — PV obeys
Q) = —SdT — PdV - Ndy;.
i

The following are useful thermodynamic relations:

o, _, oy _ 5, U o
95 V,N; oV S,N; ON; S,\V,Nj=;

oF oF oF

T |y, V|, ONilrvN,,

oo e, mp

oT Vi oV T, Opi T,V,pjzi

Then 8P/8T‘ — S/V and 9P/dp; — N;/V.
Vuu’i T7Vuu’]7£1,
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2.4. Statistical Physics of Perfect Gases—Fermions

The energy of a non-interacting particle is related to its rest mass m and momentum
p by the relativistic relation

E? = m?ct 4 pct (2.4.1)
The occupation index is the probability that a given momentum state will be occupied:
-1
E—
f= [1 +exp <T"’>] (2.4.2)

for fermions, where p = 0¢/dn|s is the chemical potential and e is the energy density.
When the particles are interacting, E generally contains an effective mass and a potential
contribution. p corresponds to the energy change when 1 particle is added to or subtracted
from the system. The entropy per particle is s. We will use units such that kp=1; thus
T =1 MeV corresponds to T = 1.16 x 10'° K. The number and internal energy densities
are given, respectively, by

/ Fd3p: €= % / Efd3p (2.4.3)

where g is the spin degeneracy (g = 2j + 1 for massive particles, where j is the spin of the
particle, i.e., g = 2 for electrons, muons and nucleons, g = 1 for neutrinos). The entropy
can be expressed as

ns = —% fInf+(1—f)In(l—f)dp (2.4.4)
and the thermodynamic relations
0
P =n? (¢/n) =Tsn+ pun —¢ (2.4.5)
on s

gives the pressure. Incidentally, the two expressions (Egs. (2.4.4) and (2.4.5)) are generally
valid for interacting gases, also. We also note, for future reference, that

g oE 3
pP=—— — fd°p. 2.4.6
33 | P, fdp (2.4.6)
Thermodynamics gives also that
oP oP
n=_— ns = — (2.4.7)
o |p oT u

Note that if we define degeneracy parameters ¢ = u/T and ) = (u—mc?)/T the following
relations are valid:

Oe
P=— —
e+nan

oP

P
+ T 0

a—T¢:ns+n¢;

=ns + ni. (2.4.8)

7
oT |,

In many cases, one or the other of the following limits may be realized: extremely
degenerate (¢ — +00), nondegenerate (¢ — —o0), extremely relativistic (p >> mc),
non-relativistic (p << mc).
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2.4.1. Non-relativistic

In this case, one expands Eq. (2.4.3) in the limit p << mec. Defining x = p?/(2mT)
and ) = (u — mc?)/T, one has

g (2mT)3/2 /oo 21240 g (2mT)3/2
B = F 2.4.
! 4m2h3 o 1+ er—Y 472h3 1/2 (w) ( 9)
gT (2mT)*?
¢ = e’ + #Fm (4). (2.4.10)

Here, F; is the usual Fermi integral which satisfies the recursion

dr; () .
=i ). (2.4.11)
_ 2 2\ . _ 5F30 (¥)

Fermi integrals for zero argument satisfy
F0)=(1-29T@GE+1)¢@E+1), (2.4.13)

where ( is the Riemann zeta function. Note that F;(0) —— i!. Fj(¢) may be expanded

1—00
around 1 = 0 with

i(i—1)

- Fi2 (0) Pt (2.4.14)

Fi(¢) = F; (0) +iF;—1 (0) ¢ +

Since Fy(1)) = In(1+e?), Fermi integrals with integer indices less than 0 do not exist. The
recursion Eq. (2.4.11) can be employed to define non-integer negative indices, however.

i F;(0) i F;(0)
-7/2 0.249109 3/2 1.152804
-5/2 0.2804865 2 1.803085
-3/2 -1.347436 5/2 3.082586
-1/2 1.07215 3 774 /120 5.682197

0 In(2) 0.693147 4 23.33087
1/2 678094 5 3176/252  118.2661

1 72 /12 0.822467
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a. Non-degenerate and non-relativistic: In this limit, using the expansion

we find
mT 3/2
n:g< 2) e¥, P =nT, s=05/2—1. (2.4.16)
2mh

b. Degenerate, non-relativistic: In this limit, we use the Sommerfeld expansion

LS G+ 1) ()"
F; = — C, 2.4.17
i (¥) i+17§(i+1—2n)! P mo Yo ( )
Some values for the constants Cy, are Cy = 1,Cy = 1/6,Cy = 7/360, and C3 = 31/15120.
We find )
b T3 1 2
n 9D H_(z) o
6m2nh 8\ ¢
2nyT 1 /7>
. 1(m\", (2.4.18)
5| e <¢> L
e
s Y

2.4.2. Extremely relativistic

This case corresponds to setting the rest mass to zero. Egs. (2.4.3) and (2.4.5) become

T 3

3

P :g — g_:; (%) P (4), (2.4.19)
A9 4
3 (¢) 7

The above limiting expressions for the Fermi integrals may be used in these expressions.
a. Extremely relativistic and non-degenerate: Use of the expansion Eq. (2.4.15)

results in ;
_9 (TN
- (hc) “

(2.4.20)
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b. Extremely relativistic and extremely degenerate: The expansion Eq. (2.4.17)

gives
9 (£ |4 m\?
" =527 (5e) *‘(g) o

2
_np m 2.4.21)
Pl (7Y L (
s *‘<¢> el
71'2 +
§ =—— .
s

2.4.3. Extremely degenerate

This case corresponds to ¢ >> 0. It is useful to define the Fermi momentum p; for
which the occupation index f =1/2, i.e., where y = Ef = ,/m2c? +p?c02. In terms of the

parameter & = pr/mc, we have
p=mc*\1+ a2 (2.4.22)

In the case ¢ — oo, Eq. (2.4.2) becomes a step function, with f =1 for E < u; f = 0 for
E > pu.

P=Ale(22% - 3) V1 + 2%+ 3sinb
e—nmct=A [3:17 (23:2 + 1) 1+ 22 — 82° — 3sinh™! .T] ,
s =0,
where A = (gmc?/4872)(mc/h)3.
2.4.4. Non-degenerate

(2.4.23)

This case corresonds to ¢ << 0. Because pair creation is often important in this case,
we delay detailed discussion of limiting formulae for a later section. If pairs are neglected,
results may be expressed in terms of Bessel functions:

n = (@f 2 e? Ky (mc?/T) ,

h/ 3mc?
P =nT,
mec\3 T
€ — nmc? = (7> §€¢[—K1 (mc?/T) + (2.4.24)

(37 /mc* — 1) Ky (mc?/T)],
mc? K1 (mc?/T)
T Ky (mc?/T)

s=4— — .
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2.5. General Comments About Fermions

Fermions become relativistic under non-degenerate conditions when T' > mc? (T >
5x10° K for electrons) for any density, and, under degenerate conditions, when psc > mc?
(pYe >2x 108 g cm 3 for electrons) for any temperature. Here, p is the baryon density,
and the number of electrons per baryon is Ye. n(= ne) = pN,Ye. N, is Avogadro’s number.

Fermions
‘/P(;_O‘ 7o TS 5,

—

>
Q
2
\

—4 -2 O 2 4
Logy n/ne
Figure 2.5.1: Thermodynamic quantities for a fermion gas. Contours

moving from lower left to upper right are ¢ (solid) and ¢ (dashed). Pressure
contours go from upper left to lower right.

1 ~ 0 demarks the degenerate and non-degenerate regions under all relativity condi-
tions.

(2mT)*/?
n= 9T o Fi2(0);
3/2
T
pY, ~ 2 x10° <m> g em™3  non — relativistic;

3
g (T
— < _ F .
"o <7ic> 2(0):
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3
T
~ 6(__ - -
pYe ~2x10 <5><109 > g cm

separate the degenerate from the non-degenerate regions.

Interacting baryons are far more complicated. At subnuclear densities (p < p, =
2.7 x 101 g cm™3) they cluster into nuclei with internal densities near p,. The nuclei
themselves are dilute, comprising a non-degenerate, non-relativistic gas, but with a strong
Coulombic (lattice) interaction. At very high temperatures, the nuclei dissociate. Above
Po, nuclear interactions and degeneracy effects dominate. Baryons become relativistic
at a density (Mparyon/ Melectron)® times higher than the electrons, or about 10'6 g cm™3.
This is above the transition density to quark matter. At these densities, quarks can be
approximated as a perfect gas due to asymptotic freedom.

3 relativistic

2.6. Fermion—Antifermion particle pairs

Under conditions found in the evolution of very massive stars, the temperature may
be high enough to produce electron-positron pairs, while the electrons are non-relativistic.
During gravitational collapse a degenerate neutrino-antineutrino gas forms when densities
large enough to trap neutrinos on dynamical time scales are reached (p > 10'? g/cm3).

For particle-antiparticle pairs in equilibrium, gy = —p—. The net difference of particles
and anti-particles and the total pressure are
Arg [ , 1 1
I A {1 BT 14 e(E+M)/T] ap; 2.61)
p=p, P =19 [s0F ! + ! -
TS [ P o |1+ eEwiT T 1 BT |

Thus, when pairs are included, and n is positive, u = p4+ must be positive, i.e., there
will not be cases involving extreme non-degeneracy. However, pairs will never be im-
portant whenever /T >> 0, that is, under extremely degenerate conditions. With the
substitutions z = pc/T, z = mc?/T, we may write

3 9 2
g (T ) ) / T
n=—5|-—) sinh dx,
272 (hc ¢ 0 cosh ¢+ cosh V22 + 2 (2.6.2)
qgT cosh ¢ + e~V #+e? o

dz.

=2}

N 7T2 hC 0 \/ZZ + ;[;2

cosh ¢ + cosh v/ 22 + 22

2.6.1. Extremely relativistic case: y >> mc? or T >> mc?
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This case is appropriate for neutrinos. With y = p4 = —p—_, i.e., z — 0,
3
% () [2(5) -2 (-5)]
= —n_=—"5|— =) —-F|——
neneTn 27r2<hc> 2\r) ~ 72U
2
1 )3 7T
= 1 il
(hc - < H )
3
T (T Iz p
3=P=P+P. =2 () [B(L)+mB(-L)] 6.
¢/ ++ 6W2<hc> s\7) + B (-7 (2.6.3)
2
() g (FT) LT (2
472 \he + 1 15 15
2 . 7 (7T\>
15\ p
These expressions are exact. The exponential terms ignored in the Sommerfeld expansion

of the +u/T Fermi integral are exactly canceled by those of the —u /T Fermi integral. The
pair Fermi integral

?

_ 9
672
g

?

_ 9w
6n (hc)®

Gi(n) = F; (n) + (-1)"*" F; (—n) i>0

obeys the same recursion formula as Fj(n) for ¢ > 1.
n(u) is a cubic in p, which can be inverted:

]1/3, (2.6.4)

p=r—qjr, r= [(q3+t2)1/2+t

where ¢ = 372(hc)3n/g and ¢ = (nT)%/3. For T — oo, one has u — 6n(hc)?/gT? — 0.

For all ; and T the adiabatic index
T <dP>2 <d6>—1
+ =\ 5= — =4/3. (2.6.5)
r P\dT') \dTI'),

One may include the lowest order corrections for finite rest mass by expanding the
integrands of Eq. (2.4.3) and using the recursion relations for the Fermi integrals:

_ 9 ﬁ?) -2 _2p2 324
_67r2(hc) {H“’ <T 2" >]

2T2

dln P
dlnn

B dln P
5_ dlnn

r =

~ 2472 \hic I 15 (2.6.6)
2 2 . .
g [ p -2 22 2 4 T T 9.0 1 94
6—@(&) |:1+/,1, (27rT—mc)—|— /,1,4 <B7TT—§mc 5
Tu? 7 1
= _9Tr 3 {1+u_2 (—7r2T2 — —m204>] .
6n (hic) 15 2

The relativistic relationship ¢ = 3P no longer holds. Interestingly, the cubic relationship
between p and n is preserved in this approximation, and the solution is still given by
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Eq. (2.6.4) if we simply redefine ¢ = (77)%/3 — m2c*/2. Including the finite rest mass

terms lowers I'; below 4/3:
4 5 (mct\’
M=-f1-2 (2 2.6.
! 3( 11<7TT>) (26.7)

when photons (see below) are also included.

2.6.2. Non-relativistic case:

In the degenerate case, T — 0, u — (mc?)* and pairs are of negligible importance. We
can use the non-relativistic, degenerate formulas already obtained for particles alone. At
higher temperatures, y reaches a maximum, and then decreases, eventually becoming less
than mc?, so that i/ < 0. The gas is thus at most only partially degenerate when pairs
are present and n = ny —n_ > 0. The non-degenerate expansion yields

na ~ e p—mc N 2.6.8
cxg () 2:65)
Noting that n = ny —n_ and
3
o (( mT —2mc? /T _ 2
nyn_ = e =ni, 2.6.9
Nt : (2:6.9)
we can instead write
n I 2 1/2
ne = T4 (—) | (2.6.10)
2 2
P =(ny+n)T = (n*+ zln%)l/2 T, (2.6.11a)
3
e =(ny+n_) (m02 + §T> ) (2.6.11b)
5 mc®\ (ny+n_) pu
== - = 2.6.11
° <2 7 > n T (26.11c)

n ’I’I,2 1/2
=Tl |— 4 [ — +1
a n 2n1 + <4n% + )

Pairs are important in the non-relativistic case when n < nj. Including photon pressure
(see below), in the case when n << np, one has

2\ 7/2
15 (ch ) e_mc2/T] . (2.6.12)

(2.6.11d)

4
M~ |1-—
3| 2\ AT

Thus I'1 reaches a minimum value (1.02) when T' = %ch, and is always less than %. The
creation of a pair costs an energy of 2mc? which is non-negligible in the non-relativistic
case.
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Fermion—Antifermion Pairs
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Figure 2.6.1: Thermodynamic quantities for a fermion-antifermion gas.
See caption for Fig. 2.5.1.

2.6.3. Non-degenerate:

Consider the region for which cosh ¢ — 1 << cosh z. Since u = T'¢ cannot be negative
when pairs are included, the gas is at most partially degenerate in this non-degenerate
limit. Expanding the cosh ¢ in the denominator terms to lowest order in cosh ¢ — cosh z,

n=mnez> sinh(f)/oo zde
¢ 0 1+coshvz2+ 22

P Tz 3[(cosh ¢ — 1) /Oo whde
=n.Tz —
¢ o 1+ coshvz?+ 22

N 2 /°° zidx 1 ]
e BRI el (2.6.13)

T (x2 + 22) dz

1+ cosh /22 + 2

= nTz ?[(cosh¢ — 1 h
e =n.Tz °[(cosh ¢ )/0

oo .2 2 2
49 / TVERL
0 1+ eVeite?
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where n. = (g/27%)(mc/h)3 = 6 x 105 g cm™3 for g = 2. This is an interesting approxima-
tion because, given n and 7', one can immediately evaluate p or ¢ because they no longer
appear within the integrals. The integrals can be easily evaluated by quadrature, with
relatively few points, using Gauss-Laguerre for z < 30 and Gauss-Hermite for z > 30.

2.7. When are pairs important?

In the relativistic case, n_ = 0.1n is equivalent to F(¢) ~ 10F5(—¢) or ¢ ~ 0.9. In
the non-relativistic case, we find ¢ ~ In+v/10 or ¢ ~ 1.15. ¢ ~ 1 is the effective boundary.
The intrusion of this boundary into the NDNR region means that there are actually five
limiting cases when pairs are considered, as opposed to four when pairs are ignored. This
is an unfortunate complication.

2.8. Generalized Approximation for Fermion Gas

We explore here a technique invented by Eggleton, Faulkner and Flannery to bridge the
limiting regions for a fermion gas. It is essential to maintain thermodynamic consistency
in this approximation. To include pairs we simply apply the scheme separately to electrons
and positrons. The scheme establishes an analytic formula for the thermodynamic potential
(or pressure) as an explicit function of chemical potential and temperature. Then n =
T1OP/0y;ns = OP/OT — nip;e = T(OP/OT) — P + nmc®. Density and temperature
are inputs, so iteration is necessary to determine the chemical potential. Johns, Ellis &
Lattimer improved the accuracy of the scheme and fixed its entropy in the degenerate
limit.
The four limiting cases we have discussed are:

(WSS Gty ™2™ (7)™ BR,ED : ¢T >> mc?, ¢ >> 1
p WTY 35" bty ™™ ()" NR,ED : T << mc?,9) >> 1

% T " " emne™T™" ER,ND : ¢ << —1,T >> mc?
757243 "N " dyne™ T" NR,ND : ¢ << —1,T << mc?

(2.8.1)

\

where n. = (g/27%)(mc/h)3. The coefficients @, bmn, Cmn and dp,, (m,n € 0...00)
can be determined from the limits. The key is to find functions f(1),g(1,T) such that
Eq. (2.8.1) can be rewritten as

)
g*" > ah, f g ER,ED:g >> 1, f>>1
p YN b Mg NRLED:g<<1, f>>1

nemc? 9" chunf™g " ER,ND:g>>1, f<<1

\ fPPY > dy, fmg" NR, ND:g<<1, f<<1.

(2.8.2)
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This is possible provided that

P2 rmpT?™  ED: P >>1

f) = (2.8.3)
e? Zsmemw ND: P << —1
and
) YTy tmp™>™  ED: P >>1 )
g, T) = 2.8.4
TZumemw. ND: P << —1

Tmns Smns tmn and u.,, are additional coefficients. Then

S = L5021 4 g2 20 Zgw mnf g (2.8.5)
nemes 1+ f (1+ )" (1+9g)

has the proper limits for any M, N > 1 when f and g are either large or small. P,,, are
coefficients which are least squares fit to a numerical evaluation of P. From Eq. (2.8.4),

g x T, and
g= (T/mc*) 1+ f (2.8.6)

guarantees the right limiting behavior in Eq. (2.8.4).
On the other hand, it is also clear that df /0% is either /f (f — o0) or f (f — 0).

We choose
of /oY = f/\/1+ f/a, (2.8.7)

where o is an adjustable parameter. Integrating this relation, we find the required relation
between v and f:

V1i+fla—-1
=2v1+ f/a+In . 2.8.8
e L N e T (285)

Explicitly evaluating the density, we find

1 0P 1of (0P dg| OP
n=_—-—| =L [Z=| 22| = : 2.8.9
79| T3¢<3fg 0f |1 09 f> (289

no_ f9° 30" 30 Pund™g"

ne T+ fla(l+ HYT (14 gV (2.8.10)

) a0 2))
l+m+——(-+-—M)+ I E
{ s \aT 2 I+H+g \4 2
From P+ U = T(0P/dT),, where U = ¢ — nimc? is the internal energy density,

U

M N
3/2 E:() E:() Pmnfmgn v
2
neme

:f 5/2 1
sy @+H"T A+t (2.8.11)

3 g 3
— —— [ ==N]}]|.
G Go)
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Given n and T, we invert Eq. (2.8.10) to determine f; g is trivially found. The pressure
is given by Eq. (2.8.5), the chemical potential by Eq. (2.8.8), and the energy density by
Eq. (2.8.11).

The entropy is found from s = n='(9P/9T), — 1. A drawback of the Eggleton et al.
scheme was that in the degenerate limit, although the entropy per particle has the correct
asymptotic dependence 1/1/f, the coefficient is not exact:

1 M Py 2
o4 =2 4 2MLN , /% ED,ER
f a a CLPMJV M,N—oco 2 f (2 3 12)
1 M Py 2 o
s je(sy L M, Pu-io , T /% ED,NR
) f 4 4a a aPM,O M,N—co 4 f

For M, N = 2(3), Eqs. (2.8.12) have errors of 1.35 (0.0165)% and 0.254 (0.0637)%, respec-
tively, for the ER and NR cases. The original Eggleton et al. errors for these cases (they
assumed a = 1) are (2.4 (1.40)%, 1.0 (0.563)%), respectively.

From Egs. (2.8.12), the corner values of P, should be:

P, n=>0 n=N

m =20 e’\/m/32/a e?/(2a)
51 —40+(32M —8)/a | 27 —8+4(M~-1)/a
m=M—1 1521/4 )/ 3((1 )/
m=M 32/ (15a°/4) 4/(3a?)

We constrain the fit so that these corner values and the ED entropies in Eq. (2.8.12)
are exactly fulfilled. For M = N = 3 we find an optimum fit for a = 0.433 with a root-
mean-square error of 8.1 - 107> and a maximum error of 3.0 - 10™* at the fitting points.
The coefficients P,,, are:

5

n n=>0 n=1 n=2 n=23

0]5.34689 | 18.0517 | 21.3422 | 8.53240
1116.8441 | 55.7051 | 63.6901 | 24.6213
2[17.4708|56.3902 | 62.1319 | 23.2602
m = 3]6.07364 | 18.9992 | 20.0285 | 7.11153

SRR
I

To extend this scheme to include pairs, let the subscript + refer to particles and —
refer to antiparticles. Then

n=ny (F1r04) =1 (Frg-) (2.8.13)
where g+ = (T/mc?)\/1 + f+ and
. \/]_—f-f:]:/a—l
Yy =214 fr/a+1n NES S (2.8.14)

One solves the simultaneous equations
A=n—ny (fe,T) +n (f-.T) = 0;

) (2.8.15)
B =14y (f+) + - (f-) +2mc” /T =0,
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where the second follows from p_ = —puy. This is readily handled, since the derivatives
are analytic:

OA[0fs = FOns/0fs;  OBfofs=\/1+ fe/a/fe. (2.8.16)

2.9. Boson Gas

The boson pressure and energy density are obtained by employing the same equations as
for fermions, but using the Bose distribution function

fB= [exp <¥> - 1} _1, (2.9.1)

and a slightly different entropy formula

_9
73

ns =

[fplnfp — (1 + fg)In (1 + fp)]d®p. (2.9.2)

Since the occupation index cannot be negative, a free (non-interacting) Bose gas p < mc?.

If 1 — mc?, a “Bose condensate” appears and there will be a finite number of particles in
a zero-momentum state. Some limiting cases:

2.9.1. Extremely Non-degenerate:

In the non-degenerate limit, /T — —oo, the Bose and Fermion distributions become
indistinguishable, so the limits for thermodynamic quantities evaluated previously for the
Fermi gas apply.

2.9.2. Extremely Degenerate

For bosons, the “degenerate” limit is 1 = mc? or ¢ = 0; the number density is

g o p2
"= 27T2h3 /0 e(E—mCQ)/T _ ldp (293)

The integrals in this case can be written simply in terms of zero argument Fermi integrals:

/oo - Tde = (1-27) " F(0) =T (i +1)¢(i+1). (2.9.4)
0

el —

Therefore we have the following additional limits:
i. Relativistic (T >> mc?,v¢ = 0)

3
4g (T
" 67r2<7?,c> 2(0), ‘ ’

3 2 3 4

49T (T grm*T (T s

P=——=|—) F3(0) = — = ——— ~ 3.601571.
212 (hc> 3(0) =55 (m:) T 15/ (0)
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ii. Non-relativistic (T << mc?, = 0)

32 Fy 5 (0
n:i(mT) 1/2()7 e:nm62+§P;
T2 h?’ \/5_1 2
4gT (mT)3/% Fy5 (0 10 F3/5 (0) 21/2 — 1
p = YT (mT)" Fyy» (0) _ 105, (0) ~ 1.283781.

T3 @ #2-1 7T 3 R,0)0B2-1

Note that in these limits the entropy per boson is constant. The location of the ¢ = 0
trajectory in a boson density-temperature plot is not far from the same curve for fermions.

2.9.3. Extremely Relativistic

In this case, we take m — 0, and we arrive at the simplest bose gas, the photon gas,
for which p = 0. With g, = 2, one obtains

3 T (T®
€y = 3P, = 4T5’7 =15 <hc> , (2.9.5)
which is (8/7g) times the value for a relativistic fermion gas. Here S is the entropy
density. In any regime where electron-positron pairs are important, the photon pressure is
also important. In the non-degenerate, relativistic domain, the total pressure from photons
and electron-positron pairs is therefore 11P, /4, Under situations when neutrino pairs of
all three flavors are trapped in the matter, the total pressure increases to 43P, /8. In the
regime where electrons are degenerate, however, photon pressure is negligible.

2.9.4. Conclusion

In the regime where the electrons are non-degenerate and pairs are not important,
the non-degenerate gas pressure of nuclei must be included, and photon pressure may or
not be important. The pressure due to photons is important at lower temperatures than
pair pressure, owing to the expense of creating electron-positron pairs. Since the photon
pressure is (8/7g) times the relativistic non-degenerate pair pressure, the boundary to the
region in which photon pressure is significant is simply obtained by a continuation of the
straight line relativistic boundary p oc T2 to low densities and is akin to the line ¢ = 1 in
the fermion-antifermion pair case.

Even excluding the contribution from electron-positron pairs, the adiabatic index of
a non-relativistic gas changes from 5/3 to 4/3 as the temperature is increased and the
contribution of radiation pressure increases. Denoting the fraction of the total pressure
due to gas pressure (assuming complete ionization) by f3,

32 — 243 — 332
I =
24 — 210

(2.9.6)

This ultimately sets an upper limit to the mass of main sequence stars.



Chapter 3.

Stellar Structure

3.1. Hydrostatic Equilibrium

Spherically symmetric Newtonian equation of hydrostatics:

dP/dr = —Gmp/r?,

m(r) is mass enclosed within radius r.
Conditions at stellar centers Q = P 4+ Gm?/8mr:

dQ _dP | Gmdm Gm? _
dr  dr Amtrd dr 2rrd 27D

Q(r—=0)—=P, Q(r— R)— GM?*/8rR.

dm/dr = 4w pr?.

m? Gm?

M and R are total mass and radius.

3.1.1. Milne Inequality

Central pressure P,

Average density is

Estimate of T, from perfect gas law:

T, ~

cH

PLNo

<0

P M\ (R
21x108( — ) [ =2 ) K.
N~ X0<M®><R)

1 is mean molecular weight. T; too low by factor of 7.
3.1.2. Better Estimate

p = pe [1 - (T/R)Z] :

2\R

P=P.— %”szRZ F (1)2 -

c =

_ 15GM?
16w R*

—=35x 10 [ —
8 <M®

725,

M = (87/15) p.R>.

@) @)

2 4
M
) (%) dynes cm™2,

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)
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P=P {1—(%)2}2 {1—%(%)2] :%<£>2<1+£>. (3.1.8)

The central density is

3
15M ) M R
Pe = = 5[3 ~ 3.6 (—) <—®> g em ™3, (3.1.9)

and the central temperature becomes

Pep 6 M\ (Ro
Te~ ——~7.0x10" | — — | K. 3.1.10
= =100 () (3 @110
3.1.3. Mean molecular weight
Perfect ionized gas (kp = 1)
P=T) (14 Z)n;=pN,T/pu= NT, (3.1.11)

1

Z; is charge of ith isotope. Abundance by mass of H, He and everything else denoted by
X,Y,and Z =),  g.niAi/(pN,). Assuming 1+ Z; ~ A;/2 for i >He:

-1

3 n; (1 + Zi) 4 4
= [2X +-Y _— ~ = . 3.1.12
H ¥+ N, 216X +Y 345X —2Z (3.1.12)
i>He
Solar gas (X = 0.75,Y = 0.22, Z = 0.03) has pu ~ 0.6.
Number of electrons per baryon for completely ionized gas Z;s e =~ A;/2:
Y n; Z; Y 7 1
Yo =X+ — ~ X4+ —+—-—==-(14+X). 3.1.13
g +2+ZpNo +tot s =50+X) ( )

i>He

3.2. The Virial Theorem

Position, momentum, mass of ¢th particle: 75, p;, m;.
Newton’s Law F; = p; with p; = m;7;:

d— . . L d . 1dT

%Zpi T = Z (Pi i T m) = EZmiri = 5 (3.2.1)
Moment of inertia: I =3 m;i?.
Static situation: d*I/dt* = 0.
Non-relativistic gas: mzf'lz =Y pi -7 = 2K.
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Total kinetic energy:

1 L L 1 S 1 -
K:§Zpi-m:—§Zpi-ri:—§ZF1~-T¢:—(1/2)Q. (3.2.2)

Sum is virial of Clausius. For perfect gas, only gravitational forces contribute, since forces
involved in collisions cancel.

SEC = YRSy = Y G g (3.2.3)

- - Tij
pairs pairs

() is gravitational potential energy, r;; = |75 — 7]
Perfect gas with constant ratio of specific heats, v = ¢,/c,:

K=(3/2)NT, U=(y-1"'NT, E=U+Q=U-2K.
U is internal energy, F is total energy.
3y —4
3(v—1)
Fory=4/3, E =0. v < 4/3, E > 0, configuration unstable. v > 4/3, E < 0, configuration
stable and bound by energy —F.

Application: contraction of self-gravitating mass AQ < 0. If v > 4/3, AE < 0, so
energy is radiated. However, AU > 0, so star grows hotter.

Relativistic gas: > p; -7 =c) pi = K = —Q.
Another derivation:

E=U+Q=U(4-3y)=0Q (3.2.4)

vip — _LGm
3 r

1
dm = —2d9, (3.2.5)

where V = 4773 /3. Tts integral is

R
1
/V(r) iP=pV| - /P(r) v =30 (3.2.6)

from Eq. (3.2.5). Thus Q = =3 [ P(r)dV.
Non-relativistic case:

P =2¢/3, Q= -2K, E=Q+ K =Q/2.
Relativistic case similar to non-relativistic case with v = 4/3:
P =¢/3, Q=-K, E =0.

The critical nature of v = 4/3 is important in stellar evolution. Regions of a star which,
through ionization or pair production, maintain v < 4/3 will be unstable, and will lead to
instabilities or oscillations. Entire stars can become unstable if the average adiabatic index
drops close to 4/3, and this actually sets an upper limit to the masses of stars. As we will
see, the proportion of pressure contributed by radiation is a steeply increasing function of
mass, and radiation has an effective v of 4/3. We now turn our attention to obtaining
more accurate estimates of the conditions inside stars.
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3.3. Polytropic Equations of State

The polytropic equation of state, common in nature, satisfies
P=Kpnthin = g7 (3.3.1)

n is the polytropic index and +' is the polytropic exponent.
1) Non-degenerate gas (nuclei + electrons) and radiation pressure. If 3 = Pyus/Piotal
is fixed throughout a star

N, [3N, 1/3
-3 [iﬁa (1-— 5)] p*3 (3.3.20)
1/3
T = [ig; (1— B)] pt/3 (3.3.2b)

Here 1 and a are the mean molecular weight of the gas and the radiation constant, respec-
tively. Thus n = 3.

2) A star in convective equilibrium. Entropy is constant. If radiation pressure is
ignored, then n = 3/2:

2mT

B2 [ pN,\ /3 2 5
P (Puf)) exp (58— 5) — K. (3.3.30)

/
s = g —1In {( R )3 2 PNo//ﬁ} = constant (3.3.3a)

3) An isothermal, non-degenerate perfect gas, with pairs, radiation, and electrostatic
interactions negligible: n = oco. Could apply to a dense molecular cloud core in initial
collapse and star formation.

4) An incompressible fluid: n = 0. This case can be roughly applicable to neutron
stars.

5) Non-relativistic degenerate fermions: n = 3/2. Low-density white dwarfs, cores of
evolved stars.

6) Relativistic degenerate fermions: n = 3. High-density white dwarfs.

7) Cold matter at very low densities, below 1 g cm™3, with Coulomb interactions
resulting in a pressure-density law of the form P p10/3, ie, n=3/7.

Don’t confuse polytropic with adiabatic indices. A polytropic change has ¢ = dQ/dT
is constant, where dQQ = T'dS. An adiabatic change is a specific case: ¢ = 0.

y_0lmP ¢ (c—cp)
OlnV 7cp (c—cy)’

v

where the adiabatic exponent v = (0lnP/0InV)|,. If v = ¢,/c,, as for a perfect gas,

v = (c—cp)/(c — ¢y). In the adiabatic case, ¢ = 0 and 7' = ~ regardless of v’s value.
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3.4. Polytropes

Self-gravitating fluid with a polytropic equation of state is a polytrope, with

Q= / Gm (Tldm (r) _ = f nG]}\z/lz = —3/PdV. (3.4.1)

For a perfect gas with constant specific heats,

3y—4 1 GM?

E = 3.4.2
y—15—n R ( )
For the adiabatic case n = 1/(y — 1),
n — 3 GM?
E = . 3.4.3
5—n R ( )
For a mixture of a perfect gas and radiation,
4—-3
U= / {il +3(1- ﬁ)] PdV = /ﬁ ;/PdV — Q. (3.4.4)
Y- Y-

For 8 = constant, Eq. (3.4.4) gives 3 times the result found in Eq. (3.4.2). A bound star
has E < 0 and v > 4/3. If y =5/3, E = —(38/7)(GM?/R).
A nested polytrope has
P=Kpt/" e=npP p < pt
P = Kptl/n_l/nlp1+1/”1; e=mP+(n—n)P; p>p.
pt and P; are the transition density and pressure between indices n and ni. € is the energy

density
E

- n—3 GmQ_GMt2 n1—3GMt2
5-n| R Ry 5—n1 R?

My 4m 5| (n—1 mnp—1
3P, |— — —R — .
sl ==

My and R; are mass and radius interior to transition point. When (n; ~ 0) and n ~ 3,

(3.4.5)

_3GM
5 Ry

(3.4.6)

This could apply to a proto-neutron star with relativistic electron gas up to p;, and rela-
tively stiff matter beyond. The energy depends on inner core size only.
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3.4.1. Structure of polytropes and Lane-Emden equation

/n
r=A¢ 0= <£>1 , A= [(n+1)Kp1/” '/ (4n@) " (3.4.7)

Pc
1d (. ,df .
€ de (5 d£> - -

Boundary conditions for are =1 and 0’ = df/d¢ = 0 at £=0. The radius is found from &;
where 6(¢) = 0.

no| 9 0 & | —€301 | —&1/36 | [Am(n + 1)67]
0 | o 1—¢€2/6 V6 | 2V6 1 3/87
1 2 sin(&)/¢ 7r 7r m2/3 /8
3/2| 5/3 3.654 | 2.714 | 5.992 0.7704
3/2 4.353| 2.411 | 11.40 1.638
4/3 6.897| 2.018 | 54.19 11.05
3.25(17/13 8.019| 1.950 | 88.15 20.36
5/4 14.97 | 1.797 | 622.3 247.5
5 1 6/5 [1//1+€2/3| oo | V3 00 0
Analytic solutions exist in the following cases:
f=1-¢62/6; & =vV6 n=0,7=o0; (3.4.9a)
O=sinf/¢; &G =71 n=1,9=2 (3.4.90)
6
O=1/\/1+&%2/3; & =00 n:5,fy':g. (3.4.9¢)
Radius: R = A& (3.4.10a)
Mass : M = —4nA3p.£30] (3.4.100)
Density ratio: p/p. = —301 /& (3.4.10¢)
Central pressure : P, = GM/ [4m (n+ 1) 9'12R4] (3.4.104d)

M n—1 R 3-n]l/n

For n — oo, we have the isothermal Lane-Emden equation:

1 d do _
i (@)= 0 (3412

G
n+1

K =

p=K/21Gr*; R =oco;m = 2Kr/G n =007 =1. (3.4.13)
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For n = 3 mass does not depend on central density, but only on equation of state. For
a relativistic degenerate electron gas,

h
P== (372) "/ (ny,)*? (3.4.14)
which implies a mass
3/2
My, = —4m (E) X 2.018 = 5.76Y.2 M, (3.4.15)

This is the famous Chandrasekhar mass, the limiting mass of a white dwarf as p. — oo.
A degenerate mass larger than M, cannot be stabilized by electron pressure alone. For
T # 0, the pressure has a small thermal component,

2

T
Py, = —— (37°pY)

2/3
8hc ’

(3.4.16)

For a massive stellar core just prior to collapse, T ~ 0.7 MeV and p ~ 6 x 10° g cm™3,

and the P,j,/P ~ 0.12, and the effective M, is (1.12)3/2 = 1.19 times larger. The negative
Coulomb lattice pressure, which is about 4% of the total, lowers this. At densities in excess
of 105 g cn™3, electron capture decreases Y,. For a 5%Fe white dwarf, the zero-temperature
Chandrasekhar mass is only 1.17 Mg,

As the cores of massive stars evolve, there is a general tendency for “core convergence”
to occur, i.e., the evolved cores of all massive stars, regardless of mass, tend to be nearly
M.;,. We see that this is a result of the general requirement for stability. In fact, there is
a slight trend for more massive stars to have larger cores, but this can be traced to the
higher entropies in these stars (recall that Eq. (3.1.5) predicts that 7'~ M/R) and their
larger effective Chandrasekhar masses.

3.5. Standard Model Stars — The Main Sequence

Those stars converting H to He. Standard model assumes 8 = constant.

K= <%>4/3 <§ (1- 5)) " (3.5.1)

8] a
1/6
1-p
Vi-B
M = 18———M
22 0 (3.5.2)
pe/p = 54.2
BuM R 7
T, =1.96———— x 10'K.
¢ MoR

For n = 3 polytrope, mass is independent of p. and for given composition y, is parametrized
by 3.
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For Sun, with M = 1Mg and p ~ 0.6:

21 2 3
11.18
Bol— (%) = 0.9006; po= ——— =T6.7 g em™”, (3.5.3)

T, =1.307 x 10" K.

But p. > p since some H—He has occurred.
Luminosity will depend upon nuclear energy generation é and transport (opacity k).
ForT > 8- 106p1/ 35 electron scattering dominates:

Kk~ 0.4Y, cm? g L. (3.5.4)
Where T > 10* K, x dominated by bound-bound and bound-free processes:
Kk~ 2.5-102ZY,pT 3 cm? g L. (3.5.5)
For Z < 10~* have free-free opacity:
k~8-10%2 (1 - Z2)YopT ™32 em? gL,

The dependence x o< pT 3 is known as Kramer’s opacity. For T' < 10*K, matter barely
ionized:

K~ 10732 (2/.02) pT° cm? g~ 1. (3.5.6)
Energy Transport:
dac | odT
L(r) = —dmr?——T%—. 3.5.7
(r) T emp ! dr (3.5.7)

L(r) is luminosity, g is the “Rosseland mean” opacity, averaged over frequencies. (kp)~*
is photon mean free path, d(acT*/4)/dr is radiation energy density gradient. Multiplied
together gives energy flux, and multiplied by area 47r? gives net energy flow. Use hydro-
static equilibrium:
dP,  kL(r)
dP  4mcGm (r)’

Luminosity function n(r) = L(r)M/m(r)L, with M and L totals. n is sharply peaked at
origin.

(3.5.8)

L

d[(1-p)P]= ey VAL (r)n (r) dP. (3.5.9)
L= 4”2_57”\/‘[ (1 - Be) (3.5.10)

K7 is a pressure average. (ssm: k7 = cons.) With Eq. (3.5.5)

. _(4 )3 dac lfchG 7.5 M55 5_1 0.5
ssm — (& 3kome \ 4N, (_6%9,1)4.5 R
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. 5.5 0.5
(pcBe) "™ <M> (R@>
~ .667 — Ls. 3.5.11
ncZX/e,c M@ R © ( )
With Eq. (3.5.4), appropriate instead for more massive stars,
1 W M\?
L~975 — | Lg. 3.5.12
e’ (3 ) Lo (3512

For Sun: p. =0.73,Y. .= 0.75 (i.e., X ~ 0.5 and Y ~ 0.5),
L~ (2.8/n.) Lo.

Alternatively, use proton-proton rate (Tg = T/10°):

_ sy M
n =20 x 10°pX°T5 P exp (-33.875 /%) 2. (3.5.13)
©

With p, = 76.7 g cm™3, Tt = 13.07 from ssm 7.=4.05. Try using knowledge of polytropic

structure. Assume ideal gas and
A v
.. (P T >
€e=¢ | — — | . 3.5.14
‘ <pc> (Tc ( )

For polytrope, p = p:0™ and T = T.0:

/2 _
L = 41 A%p.é, / €207 MV e ~ A A3pé, % (2nA + )72, (3.5.15)

since 2n\ + v >> 1. With 0 ~ exp(—¢2/6),n = 3,

e = éc% = — (¢%9), ,/% (2nA + )32 = 0.31 (6A +1)*/? (3.5.16)
m

P-p cycle has A =1,v ~ 4, so n. >~ 9.8.
CNO cycle has A =1, v ~ 20, so n. ~ 41.

3.6. Scaling Relations for Standard Solar Model
For Kramer’s opacity, & o< Z(1+X)pT~35. For electron scattering,  oc (1+X). Suggests

ko (14 X)Z%"T ™2, (3.6.1)

with 4 = 0, 1. Similarly
€ oc XEmzm ATy, (3.6.2)

with m = 0(1) for p-p (CNO) cycle. Using

L < RT*/kp < M, T x uBM/R, poc M/R3, (3.6.3)
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we find - o oy 0 Loy
L o< MM (pp)™ XX (1 4+ X)) 297,
R oc MPm (Mﬁ)ﬁu xBx (1 +X)’31 Zﬁz7
3.6.4
1/4 o MM (Mﬁ)w XX (1 + X)71 AL ( )
1)

Loc T, (uB)’ XOX (1+ X)™ 207,

With i = (M, p, X, (1 + X), Z,T), vi = ai/4 = Bi/2, 6 = 2(amBi — ifm)/(anmr — 2Bm),
D=v—-s+3(n+M\):

T.ts o< (L/R?)

T — M 1 T
a;D|v(34+2n) +9X+3n+s2A—1) | Tv+3X(4 +s) 0
BiD Ad+v4+n—s—2 v—4—s 2D
T — X 1 Z
a;D m(3n —s) —u(3A + s) —(s+3)\) | (Bn—13s)(2—m)
BiD U+ m 1 2—m
an oy ax aq ay ar
low | 71/13|101/13|-2/13 |-14/13 |-16/13 0
high | 3 4 0 1 0 0

By Bu Bx B1 Bz Br
low | 1/13 | -7/13 | 4/13 | 2/13 | 2/13
high | 19/23| 16/23 | 1/23 | 1/23 | 1/23
Y™ | W x | m vz Y7
low |69/52| 87/52 | -3/26 | -9/26 | -7/13 | -2
high | 31/92 | 15/23 |-1/46 |-25/92| -1/46 | -2
o Ou Ox 01 YA op
low | 0 | -4/3 |44/69| 8/23 | 68/69 | 284/69
high| 0 [-56/31| 6/31 | 44/31 | 6/31 |276/31

Values refer to low-mass (v = 4,A = 1I,mm = 0,u = 1,n = 1,8 = 3.5) or high-mass
(v=20,A=1,m=1,u=0,n=0,s =0) M-S stars.

1) As H consumed, X decreases and p increases
p~4/(5X +3)

and (3 is nearly constant. So L increases and T, increases; stars evolve up the main
sequence. This explains why in globular clusters the M-S turnoff luminosity >> L even
though M < M. Also, the early Sun was less luminous, and cooler, than present. If
initial (present) X = 0.75(0.7),

Ltoday ~ 1.4 Teff,today ~111
Linitial " Teffinitial ’
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Totoday 4 g9, Ltoday g5
Tt initial initial
2) Stars on the p-p cycle (¥ = 4) have R nearly independent of M: R MY for

Kramer’s opacity. For stars on the CNO cycle, however, R o« M 11/15 for Kramer’s opacity
and R oc M'9/23 for electron scattering opacity.

3) Population II stars are characterized by low metal compositions, Z < 0.001. For a given
Tepp, L o 79z dominates the composition dependence. The Population IT M-S is shifted
to lower L than the Population I M-S. Also, for a given M, T, ;¢ oc Z77 implies a shift of
the M-S to higher T¢ .

4) For a given M, L oc Z*Z which is larger for Population IT than for Population I stars.
Stellar lifetimes 7 o« M /L are nearly o« Z since k o< Z(14X). Thus, lifetimes of Population
IT stars are substantially less than Population I for a given mass. This is observed in H-R
diagrams of globular clusters.

3.7. Idealized Stars

3.7.1. Radiative Zero Solution

Besides the standard model, we could consider an idealized star in which the energy
generation is uniform throughout, i.e., n(r) = 1, and the equation of state is that of an
ideal gas alone. If such a star is in radiative equilibrium, we can write

dinT 3LkP _ 3KoL p\" pmtl 671)
dinP  16macGMT%  16macGM \ N, ) T4+t+m A
where the opacity is assumed to scale as
K= kop"T %, (3.7.2)

The radiative zero solution is obtained if dInT/dIn P is constant. Eq. (3.7.1) then implies
that dInT/dInP = (n+1)/(n+ s+ 4) and

Y

P o TUFsT/(n4D). p o p(d+stn)/(s43) (3.7.3)

For a Kramer’s opacity law (n = 1,s = 3.5) we find the effective polytropic index to be
3.25, and, from Eq. (3.7.1),

dac [ 4G 75 55 & 0.5 i oy
L = (47)3 ) ~0.8n. (= ) Loom.  (3.7.4
' e () Camyeln) =0 () (3 (370

(Note that &1 and 0] are evaluated for the n = 3.25 polytrope, and not the n = 3 polytrope
as for the standard model). Had we used the Thomsen opacity (n = s = 0) instead, we
would have just found Eq. (3.5.12) with g.=1.
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3.7.2. Completely Convective Stars

To conclude this section, we now consider the idealized completely convective star. This
case is especially relevant to the pre-main sequence phase of stellar evolution. For a perfect
gas, an n = 3/2 polytrope must result for constant entropy. We immediately find

pc/p =6,
pM R 7
T, = 1.2 x 107K,
‘ MoR (3.7.5)
2 pd
P, =87——"erg cm™3.
M2 R*

It is also clear that, dimensionally (c¢f. Eq. (3.4.10))

M K3/2p(1;/2
R o K270 o KMY3 o 2573 (for fixed M) (3.7.6)
M
— %GR o MTBK™Y o e 28/3 (for fixed M)

where K is given by Eq. (3.3.3). In the last two equations, s is the entropy per baryon,
not the temperature dependence of the energy generation rate.

It is straightforward to show that both the heat flux and luminosity vary as the 3/2
power of the difference of the actual temperature gradient from the purely adiabatic one
(e.g., Ref. @Ref.Clayton@, p. 257). Typically, near the outside of a star, this difference
is only 107% of the temperature gradient itself. Therefore it is impossible to determine
the luminosity from the transport equation as we did in the radiative case. But because
radiation eventually escapes, the transport must become radiative just below the surface.
Using the photospheric condition for the optical depth 7 = [ kpdr ~ 2/3 one may deter-
mine the surface temperature and hence the luminosity. Hydrostatic equilibrium can be
rewritten as

dP/dT = —g/k (3.7.7)

where g = GM/ r? ~ GM / R?, the surface gravity, is nearly constant throughout the thin
surface region. As a zeroth approximation, we may write

29, 2
Py~ 2 2GMR 2k o T (3.7.8)
3Kp 3

where the subscript p indicates photospheric values. Only if x varies rapidly in the surface
region will this result be inaccurate. Combining Eqs. (3.7.8) and (3.4.11), using values
for a n = 3/2 polytrope, and employing the perfect gas law, we can find the photospheric
temperature:

/(564+3n—2s)

2GM \ 2 3n+s ' 1/(5+3n—2s)
< > (i) K3+3n] x (M3+nRI?;n—1) n 5. (379)

T, = ||+
P 3koR2) \ N,
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The luminosity follows immediately from L = 47rR12,0TI;1:

s 3k, 4 5No 104-6n 5\ 242n T}?+18n—4s
L= |(4m) 5 ) \2Gu (=6201)" " v

- ] 1/(5+3n—2s)

] 1/(3n—1)

(3.7.10)

=0

8 20+12 4 _4
(47T)13+11n—25< 5 ) <2MG> 12 12440 po+18n-1s

3k, 5N,

i (_ £ 5 9,1 )4+4n
This relation shows the tremendous sensitivity of the luminosity to the photospheric tem-
perature: typically in the low density surface regions, s ~ —10.

In general, a star is convective if its luminosity is large enough to force a superadiabatic
temperature gradient. Thus, there must exist a minimum luminosity below which a star

cannot be completely convective. A star in convective equilibrium has dInT/dIn P =
2/5(n =3/2), so from Eq. (3.4.11),

5/2
NoTc —-3/2 —2 /LGM
P, = K32 1,=_— """ 3.7.11
C ( M > ) (& 5519/1 NOR ( )
On the other hand, a star in radiative equilibrium, from Eq. (3.7.4), satisfies, at the center,
dInT 3 P.L
n_ fieZ e Zlle (3.7.12)

dln P 16mracG TAiM

If the logarithmic temperature gradient at the center falls below 2/5, the star will cease to
be completely convective. Therefore from the previous two equations, we find

32racGM T*

Lyin =
e 150, KPP
dac v (2Gp 4+s s—3n Ms—nt3
— (4m)" ( T (3.7.13)
3Ncko 5N, (_ %9/1) R
7.5 M/M 5.5
_ o (MM
ne (R/Ro)

where the last equality holds for Kramer’s opacity. This can be compared with the lumi-
nosity from the standard solar model (for 1 M and 1 Rg), which behaves on the physical
variables in a similar way:

. 45 05
me/Lssm:< 8u )75< €501 5 ) <§1,3/2Rssm> NssmYe,ssm

2. 2
56/1155771 5173/291,3/2 51’3R 7701/6 (3714)
7.5 R 0.5 Y.
:6.518( a ) < 55’”) llssm Ze,s3m
Lissm R NeYe

We expect, that nssm/ne = 2, and p/pssm =~ 0.82, so with R ~ 3R we find that L, ~
1.6 Lgsp, for a solar-type star. This is larger than the actual minimum luminosity reached
along the Hayashi track, but the star overshoots this minimum luminosity as it gradually
becomes more and more radiative.

We will further explore pre-main sequence stars in the next chapter.
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3.8. Implicit Integration — Henyey Method

3.8.1. Non-relativistic case

In this exercise, you will solve for the structure of a star of mass M for a poly-
tropic equation of state P = Kp7. (However, for the case v = 4/3, one must have
M = (3/v27)(K/G)*? so that K and M cannot both be arbitrary.) It is convenient to
reformulate the original equations as

dlnr 1 .

dm  dmwpr3’

dln P B Gm
dm —  4nPrt’

We substitute £ = Inr, y = In P and ¢ = Inp and input an equation of state p(P) or
equivalently ¢(y). We rewrite these differential equations as finite-difference equations to
be zeroed at each position :

G Lt V(s
i =yi —yi-1+ 3 (m% — m%_l) e~ 2Wityi-1) 2(ﬂcz+acl_1)7
1 —S(witwi 1) —5(gi+qi-1)
1!%' =T; — Tj—1 — E (ml — mi_l) e 2\ 2\3iTi-1)

These equations are valid for 2 < ¢ < N — 1, where ¢ is the zone number and N is the
number of (radial) zones into which we divide the star. Thus, m;,y;, z; are the values of
the respective variables at the outer edge of the ith zone. Note that the values of m; are
set in advance for the star and will not change during the iteration. Also note how the
finite differencing is done so as to reduce errors:

1 1 1
mdm = §dm2 — 3 (ml2 — m%_l) B e~ P _, e—%(yﬁyi—ﬂ.

At the inner and outer boundaries, these equations must be rewritten since at ¢ = 0,
r — —o0, and at ¢ = N, y — —o0o. The inner boundary can be approximated using the
incompressible fluid result

P(r)=F. - G (4—Wﬂﬁm (7")2>1/3; = <3m (T)>1/3,

2\ 3 41 pe

which are valid near the origin. Thus, using the subscript ¢ for the origin,

2 3
1 3M
1/)1:$1—§ <1H {4—%1] —QO> .

1/3
$1=1y1 — Yo+ “ <4—7r> M;/Petao/3=w
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The surface can be approximated in several ways. For example, the polytropic index
might be nearly constant there, with a value g, and the mass in the outermost zone is
negligible compared to the total mass M. (In fact, we are assuming vz = 7.) Then it is
easy to show that two independent equations for the behavior of P and r near the surface
are
_ GM (M —m(r))

N 4ryrd ’

P

These lead to

¢n =yn—1+2 (N +2N_1) —In

wN — @YN-174N-1 _ GmN (1 _ =

Thus, in total, there are N values of x; and y; to solve for, and we have N equations each
for ¢ and v to do it with.

Since we want to solve ¢;(z;, i—1, ¥i, yi—1) = 0 and ¥;(x;, zi—1, yi, yi—1) = 0, we expand
them in Taylor series:

¢i + aiAxi—1 + bjAyi—1 + ¢;Ax; + diAy; = 0;

Vi + alAzi_y + Vi Ayi—1 + Az + d;Ay; =0,
where the notation Ax; and Ay; refers to the changes in the values of z; and y; that will
zero the ¢ and 1 equations. That is, we need to solve the above equations for these A’s

in order to determine how much the z’s and y’s should be changed for each iteration. The
quantities a, b, ¢ and d are the derivatives

u = 0¢; - ;i o ;i g - ;i
(2 325';'_1, (2 3yi_17 (2 337,-7 (2 ayl 9
;i ;i ;i i
= - = =
@i = 0xi_1’ bi Oyi_1’ i ox;’ di oy;

These are functions of the x’s and y’s. These equations are linear in the A’s, so we can
assume
Az; = —v; — a;jAy;; Az = —vi-1 — @i—1Ayi—1.

By substitution and elimination into the equations for ¢ and 1, we find

(b; — ajevi—1) (¢i — aivi—1) — (bi — aici—1) (i — ajyi-1) |

Yi = ;
! ci (b — alai—1) — ¢ (b — a;ovi—1)
- d; (b — atai—1) — d} (bj — ajci—1)
a’_.b/_/ — (b — aicv: ’
Ci ( i aiaz—l) Cl( i azaz—l)
We also can find
(i — alyio1 + Az + d}Ay;)
Ay = — :

/ !/



40 Stellar Structure

Now we are in a position to determine new guesses from the original ones. Note that
ro = 0 implies Azy = 0 since the radius at the origin is always zero. Thus we must have
Y0 = ag = 0. We can loop through the above equations for v and « to now find a; and ~;
from their values for ¢ — 1. From the fact that the pressure vanishes on the outer boundary,
Ayn = 0 which also implies Azy = —yy. We can find Ayy_1 in terms of Azy, Ayy and
the coefficients a’y_,, by _1, dy_1, dn_q, and then employ Azy_1 = —yn_1 —an_1AYN—_1.
In this way, one can loop back to find the remaining Ay’s and Ax’s. Note that this is a
form of Gaussian elimination.

When the changes Az; and Ay; become small enough, we have convergence. It is
important to note that this is a Newton-Raphson technique, and therefore its success
depends upon suitable initial guesses. I have found that an initial guess based upon the
analytic solution for an incompressible gas works adequately. For the incompressible gas,
we have

_ 47Tpcr3. 2T 9 9

m (r) 3 P(r)=P.— —Gp“r-.

These can be expressed also as

1/3 9\ 2/3
r(m):<4?;n;> ; P(m)ch—G2—”<3m”C> |

The values of P, and p, in this approximation are found from P,/ pﬁf/ = (210G /3)(.7T5M [m)?/3 =
K437p =437 which follows from P(M) = 0:

P = K4/4=3) 2nG 31/G7=4) 3M 2v/(3y—4)
o 3 47

Y

for any v # 4/3. If y = 4/3, then K = (2rG/3)(.75M /m)?/3.
3.8.2. Henyey Technique for Relativistic Stars

To include the effects of General Relativity, one must distinguish between the gravita-
tional mass m(r) and the baryon mass b(r), where b(r) is the number of baryons within a
radius r times the baryon mass (mp). Because in GR the gravitational mass is dependent
upon the local gravitational field, but the baryon number is an invariant quantity, we must
use b(r) as the independent variable instead of m(r). The relevant equations become

dlnr /1 —-2Gm/rc?

db Arnmprs
dinP G (m+4rr’P/S) (p+ P/

(3.8.1)
db drrinmpP\/1 — 2Gm/rc?
dm p
an_ P 1 2,
& “nma Gm/re

Here, the total mass density is p = n(mp + e/c?) where n is the baryon density and e
is the internal energy per baryon. Employing y = In(P/c?),z = Inr and ¢ = In p, with, in
addition, z = In(nmp), we find
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G b —bi—
bi =yi — Yi—1 + RZT“ 1+ e%(qz'+qz>1—yi—yi71)]
<7mi i1 + 4W6%($i+$il)+%(yi+yil)> 6_%(zi+zi71)_2(xi+$i71)
2 (3.8.2)
i =i — iy — 4— (bi — bi—1) e~ 2@iFTm) T3 Gz

1 - —_ .
Xi =M — Mj_1 — (bl — bi—l) ei(%"’%*l_zz zl*l)A,

where

A:\/I_g(ml+mz 1)6 2( iTTi— 1)_
C

At the inner and outer boundaries, the first two equations must be replaced by equa-
tions similar to before, but the third equation is well-behaved at these boundaries and does
not have to be replaced. Thus, at the inner boundary,

1/3
b1 =y1 — yo + E (ﬂ) 63(10 Yo (1 + ebo— qo) (1 + 3ey0—q0) 7

) =11 — % [ln <3m1> 0] (3.8.3)

1/3
L 7rm
5(q1+gq0—21—2 1
X1 =mq — byez(@+o—z1-2 \/1 - — —) eto/3,

and, at the outer boundary,

N =ynN—1+2 (-TN +.’17N_1) —1In

G (my +mpy-1) (bxy —bn—-1)
8m/1 — 2Gmpye=%N [c? ’

1 1—-2 —IN-1 /o2
wN —eYN-17%N-1 +=-11- %‘ In GmNe /C : (384)
2 dy ly—0 1 —2Gmye N [c?

XN =my —my—1 — (bxy —bn—1) \/1 — 2GmNe_1'N/cz.
To implement the boundary conditions, it is convenient to use the linear relation
Ay; = —vi — ajAz; — BiAmy, (3.8.5)

and the corresponding expression for ¢ — 1. At the inner boundary, we must have Axy =
Amg = 0, so Ayg = —~p. Similarly, at the outer boundary, the condition Ayy = 0 implies
that yv = ay = By = 0. Therefore, we seek relations for v;_1,;—1 and S;_; in terms
of v;,; and B;. In addition, we need expressions for Ay;, Ax; and Am; in terms of
Ayi—1,Ax;—1 and Am;_1. Therefore the recursions will proceed oppositely to the scheme
we employed for the Newtonian calculations.
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We expand the functions ¢;,1;, x; in Taylor series in the variables y;_1,yi, x;—1, x;,

mj—1, mj, which will define the coefficients a;, a}, a; and so forth for b, c,d, e and f:

¢i + a;Ayi—1 + biAxi_1 + c;Ami_1 + diAy; + e;Ax; + f;Am; = 0,
v + aéAyi_l + b;A$i_1 + chmi_l + d;Ayi + egAJJ‘i + f{Amz =0, (3.8.6)
Xi + al Ayi—1 + b Axi_y + ! Ami_q + d Ay; + el Ax; + f'Am; = 0.

We assume the linear relation Eq. (3.8.5) exists among the As. One finds the relations

B'U — B® + B"X 4 ; [0/ A" 4 b; A — b, A
Yi-1= B'D' — BD + B! D" ’
_BIE'I—BE—}-B”E”

_B/D/ — BD + B!'pD"’
BIFI _ BF+BIIFII

ai—1

ﬁi_l :B/D/ — BD + B//D//’ (3'8'7)
Az _'Yi (A - (I)) - Ayi_lD - A.’Ei_lE - Ami_lF
Ti = C'"B' — C'B" ’
A =P8~ ¢iB" + i (a;b; — ajb;) — Ay;1G — Az _1G" — Am;_1G”
! ;B — C;B + B; (a;bi - aib;) ’
Where 1" !/ 1" !
¢ =h;C" — x;C", VU =¢;,C" —xiC, X =;C—¢C,
A=aC" -d/C', A'=a,C"—Cdl, A"=aC —alC,
B =b; — aja;, B =1V — aia;, B" = b;’ — a;a”,
C =ci — fiai, C'=c;—pia;, C"=c]— Biaj, (3.5.8)
D =d,c" -d!C', D =d,C"-d/C, D"=d;C"-dC,
E =e,C" —¢elC', E' =¢C"—e/C, E'=e¢eC —eC,
F=fiC" - fIC', F'=f[iC"~fIC, F'=[,C'~ fiC.
G =d;B' - d;B, G =¢B —e/B, G"=fB - flB.
These are supplemented by Eq. (3.8.5).
The polytropic pressure law is usually taken to be
1/
P U P

where ug is the energy per baryon of zero pressure matter, measured relative to the baryon
mass mp. Usually, we have mp = 939 MeV/c? and uy = —9 MeV/c?. One also finds

dq_pc2+P dz

! (3.8.10)
dy P dy v o




Chapter 4.
Radiative Transfer and Luminosity

dE = I,(%, l;)dS dw dv dt is energy crossing dS perpendicular to k in dw in dv in dt.
This defines I,,. As radiation moves distance ds along k, I,, changes

1. Absorption: dl,,s = —kplds.
2. Scattering: dls.. = —oplds + opds f[ k k Ndw'.
Scattering is into and out of beam; p 1s probability function.
3. Emission: dley, = jpds = (jspon + J Stim)pds in near thermal equilibrium.
Stimulated: jgtim = kI exp(—hv/kT)
Spontaneous: j' = Jspon = J — Jstim
With &' = k[1 — exp(—hv/kT)], j/ and &' are isotropic.
ar _ § = KT —0ol+ O'/I <IZI> P (IZ, lZ') dw'. (4.1)
pds
In thermal equilibrium, I = B, j' = «'B.
Interior is close to thermal equilibrium:

I (;E 12) —B(@) +0 (f 12) (4.2)
i =K'B+¢ (4.3)
Substitute (B is isotropic, [ p(k, k')dw’ = 1):
dB it ! 7! = /
@—5—(fi+a)6+a/§(k>p<k,k>dw. (4.4)
Most scattermg _processes are symmetric between forwards and backwards scattering:
p(k, k') = p(k, —K'). If true, then
1 dB ¢
d=—F7F7—""—+ —. 4.
(n’+a)pds+m’ (4:5)
Note iB
e o7 r_
/ —p (kk ) dw' = 0, (4.6)
so that . B s
I(k)=B— —— "+~ 4.
() (Ii'+0’)pd8+lil (47)
In spherical symmetry,
B _ oS Gd—B oS Gd—Bd—T (4.8)
ds dr dT dr ’

Luminosity:

L(r) = / L, dv= / [zmz / I (E) cos@dw] dv. (4.9)

743,



44 Radiative Transfer and Luminosity

With dw = sinfdfd¢ and [ cos® fdw = 4 /3,

16x°r?dT [dB _ dv

L(r)=—— —_— . 4.10
(r) 3p dr ) dT (k' + o) (4.10)
Define .
1 [(dB/dT) (K 4+ o) dv (4.11)
KR [ (dB/dT) dv ’ '
so that T "
KRLp
—_— = 4.12
dr 16Tacr2T? (4.12)
Opacity kg related to thermal conductivity:
dT 4acT?
L = —4nr’Agp—; = : 4.13
AR G R 3pAR (4.13)

4.1. Convective Energy Transport

4.1.1. Schwarzschild criterion for convective instability

Consider a rising bubble. Pressure equilibrium maintained if v < vgyynq. If no energy
exchange with surroundings (bubble is adiabatic). Bubble exands and cools. Upward
motion will continue if Typpe > T at new position, since perfect gas law P = NypT/up
implies ppuppie < p at new position (p unchanged). If locally in radiative equilibrium, this
occurs if

ar dr
— — (4.1.1)
dr ad dr rad
since gradients are negative. Convective instability occurs if
dinT dinT
Vad = < = V- 4.1.2
“=dmp|, dopP|,, ™ (4.1.2)
Adiabatic temperature gradient:
oF oF
dQ) =dE + PdV, Cy = — Cp=—1 . 4.1.3

With PV = N,T and V = pu/p, find Cp = Cy + N, (kg = 1). Define v = Cp/Cy. For
adiabatic change d@) =0
dinT

dnP|,,
For monatomic gas, Cy = (3/2)N,,Cp = (5/2)Ny, v =5/3, Vg = 2/5.

1
Vo= 1— =~ (4.1.4)
v
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Convection can occur if either Cy becomes large (e.g., ionization) or |dT/dr|.q.q be-
comes large (e.g., intense nuclear energy generation).
Instability condition rewritten:

daT _ 3kgp L(r)

-1

— = — — —— 4.1.5
dr |, .4 dacT3 4mr? > ( " ) Pdr’ ( )

16macG T4
L(r)> 11—~ = : 4.1.6
(1) 2 5 (1= Fm () (4.1.6)

For ideal nondegenerate gas,

pTy M Lg
>0.62—>——. 4.1.7
1) > 062t 8 52 (417

This is, for the ssm using electron scattering for the opacity at the center, 7. > 30.6(1\/%)3 (LTQ)
For the Sun, 7. is much larger than the value for H burning, 9.8. For lower masses, electron
scattering is not a good approximation. For higher mass stars, 7. is smaller, while n for
CNO burning is 40. Thus, stars of greater than 1.5Mg have convective cores.

With convection, energy flux carried by both radiation and convection:

9 4ac Aac 3dT aT

L (T) = Lygd + Leonv, Lyga = —4mr (4.1.8)

3kpp dr

Convecting matter has upward and downward mass flows (g/cm?/s): p, qv, 4. Heat con-
tents per g: e, 4 = cpT), q. For no net mass flow, and p, = pg = p, one has v, = vg = .
Net energy transport is

Leony = 412 piicp (T, — Ty) = 4nr’pocpAT. (4.1.9)

4.1.2. Mixing Length Theory

T T

>£:£Avp (4.1.10)

)EzEAVT, Ap:—<@—@

dr dr|,, dr dr|,,
For perfect monatomic nondegenerate gas, since AVP = 0,
Avp =L (1= BN A9 — gavr (4.1.11)
P=7 dInT - ' o

Velocity determined by buoyancy force per unit volume: F' = gAp with g = Gm/r? the
local gravity. Net acceleration per gram is F'/p.

2
/)—M_gQAVTg (4.1.12)

4 gQAVT
v =g (4.1.13)
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£2
Leony = 47r7"2p0p\/ % (AVT)?’/2 7

Choice of ¢:

dr N, T (r) Mg < r )2

l~ = ~ —
dIn P gp To m(r) \Re

In interior, £ &~ R /10. The constraint that Leyn, < L implies

2/3 1/3
1502N, kg g

For the interior of the ssm, this is

AVT < 4-107 K em™! << [dT/dr;

when convection occurs, the temperature gradient is effectively adiabatic.

(4.1.14)

(4.1.15)

(4.1.16)

(4.1.17)



Chapter 5.
Nuclei and Nuclear Matter

5.1. Nuclear energies: The Liquid Drop Model

Nuclei have internal baryon densities n ~ n, = 0.16 fm™2, corresponding to mass
densities ps = ngm, ~ 2.7-10" g cm™3. They also have roughly equal numbers of

neutrons and protons: z = Z/A ~ 1/2.

E (Za N) = EpurA + EsurfA2/3 + ECoulA5/3 + -

2
K n
Eyr ~ —16 + — <1——> +Sv(1—2$)2+---
18 Ng
K =~ 240 MeV is incompressibility parameter, Sy ~ 30n/ns MeV is volume symmetry
parameter.
Egyr ~18 — Sg (1 — 235)2 MeV,

where Sg ~ 45 MeV is the surface symmetry parameter.

3 x2e?

Ecou = R ~ 0.752%> MeV,

To

where rg = (47ng/3) /3 ~ 1.12 fm.
Consider an infinite nucleus. Saturation density is where energy per particle for a given

composition is minimized:
OEpuii,

on

This occurs where pressure vanishes, or n = ng if x = 1/2. If x # 1/2, then

Por K (1 n) dSy

P
_ Soulk _

n2

x

+ 2V (1 202,

n2 ~ 9ng Ng on
9IS, (1 — 2z)?
oy ISy (1= 2) ~1-1.1(1-22)%.
Ng K e
Optimize energy per particle with respect to composition:
O Ly,
8” = — (pn — pp) = —4Sy (1 —2z) =0,
z n

that is, x = 1/2 for all n. However, we’ve neglected electrons. Optimum composition
determined by:

P — fp = pte, 4Sy (1 —2x) = he (37r2n$)1/3 i

747,
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Sy is assumed to be Syn/ng, so as n — 0, x — 0. But for n — oo,

3/2
_ 9 \2/3 hens
n=(37%) <4SO 1- 2:1:))

where Sy = 30 MeV. Thus x — 1/2 in this limit. When n = ng, z &~ 0.04.

Fe

(4eV)

o
Q@

\\H\\\\H\‘\H\\\\\H\\‘\H\\\\H\

Z/A, A/200

Binding Eneggy per Baryon
. > ‘
©

©

N
\\H\\\H\‘\\H\\\\H\\H\\\\H\\‘\\H\\\\H\‘\\H’\\\\H\

0.00 AT A
o 10° 106° 10" 200 10
p (gem™)
A finite nucleus has an optimum mass, for a given x:

o

=

8E/A _ _Esurf 2E¢ou -0
0A |, 3 A4/3 3A1/3 )

This becomes Eswa2/3 = 2B A%/3, the so-called Nuclear Virial Theorem. So

Aopt = Esurf/ (2E00ul) . (5.1.1)

This increases with decreasing = near 1/2 roughly as 2. For 2 = 1/2, Ay = 18/.375 ~
48. A nucleus also has an optimum charge, for a given A:
OE/A
ox

::—4(SV——Sy44B>(1—2x)+2E0wppm/x::Q
A

0.75A2/3 i

Lopt = [2"‘ 2(Sv—SsA_1/3)

This path represents the Valley of Beta Stability in the Chart of the Nuclides. If there
was no Coulomb energy, or the mass is very small, then z,,; = 1/2. For larger masses,

(5.1.2)
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Topt decreases from 1/2. The simultaneous solution of Egs. (5.1.1) and (5.1.2) yields
Topt ~ 0.432, Agpr >~ 61, Zops ~ 26, or 61Fe. Along the Valley of Beta Stability, the nuclear
energy is
EJA=—16+ 18473 4 0.3752,,,A%/®
16 + 1
3A2/3 Sy — SgA~1/3

-1
=16+ 184713 4

This rises steeply with A to the maximum, then decreases relatively slowly beyond the
maximum.

The binding energies of *He and 56Fe, per baryon, are about 7.1 and 8.9 MeV, re-
spectively, relative to individual neutrons and protons. The nuclear energy release in H
burning is far greater than the energy released in all subsequent burning stages, which end
in Fe formation.

Behavior of Nuclei at High Density

We treated nuclei in isolation. By the end of stellar evolution in massive stars, p ~ 107
g cm™3. The filling factor of nuclei is u ~ p/ps ~ 3.7-107%, so the distance between
nuclei is about 2u~/3 &~ 600 nuclear radii. This is large enough that the effective nuclear
Coulomb energy is diminished because of electron screening. For uniformly distributed

electrons, the Coulomb energy becomes:

3 x2e? 3 1 U
Ecow = = 1—SuP4+ 2.
Coul =570, ( 2" +2>

Therefore, at high densities, the average nuclear size increases as
(1-— %ul/?’ +u/2)~1/3. However, decreasing proton fractions in nuclei lead to:

5.2. Neutron Drip

The energies of the last neutron and proton in nuclei are j, and p,:

o OEnuc o Ernuc . ga (Enuc/A)
=N |,” A A4 0(z/A) |,
o 8Enuc . Enuc 1— g 0 (Enuc/A)
="z |\~ 4 A) Toz/A) |,

So

jin, = — 16 + 184%/3 + (SV —~ SSA_1/3> (1—42%) — EgouA®?,
(2 — =)
T

fpy = — 16 + 184%/3 4 (SV — SSA_1/3> (1—2) 2z —3)+ EcouA?®.
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OSO: I rrTTT T LN \\\\\\:/‘5
B 7T * A
0.40 i
S 0.30F E
N L -
S~ r ] .
<C B . <
= ook z
5 0.20F |
0.10 F -
0.00: \\\\\\‘ \\\\\\‘ L \\\\\\‘ \\\\\\‘
10° 1010 10" 10
o (g em™)

When p, is positive, neutrons exist outside the nuclei. In this case, the relation u = n/ng
is modified to u = (n — n,)/ns. The curves in the figure have a singularity at Z/A ~ 0.18
where Fg,, ¢ vanishes, due to its oversimplified representation.



Chapter 6.
Thermonuclear Reactions

6.1. Non-resonant Reaction Rates

Schrodinger equation:

h2
—— V204V (r)¥ = EU.
2p
p=mima/(m1 + ma),
71 Zoe?
e (7") _ 149€ /7“ r>R

-V r<R

U — X¢ (T) nm (9, QS)
r
Assume radial symmetry, ignore angular parts.

B 00+ 1) R h?
"y &—l—‘/(r)—E Xé(r):—ﬂxlé—kf(r))@(r):o.

_ﬂxé 2pur?
<0 r > Ry
>0 r <Ry’

f(r)

 Z1Zse? LU+ )R

E
R() 2 MR%

xe (1) = Ae0/T
ing’ — (¢')° + f = 0.

Lowest order approximation: Neglect ¢:

o) =2you [ VE-V @,

which is valid for » >> Ry or r << Ry. The integrand is real for » > Ry and imaginary
for r < Ry. The constant A is set by normalization, so x*(r)x(r) gives the probability per
unit radial distance that incoming nucleus is at 7. The penetration factor Py(E,r) is then

xwxm o
BB = S X ) p( 2 [yt e )

751,
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Setting R ~ 0, r =~ Ry (the solution oscillates for r > Ry), and for the case £ = 0, the
argument of the exponential is

Ro 2 V2uE Z1Zse? AVAL
_2/ __Iu’f(,r/)drlz /1’ 1 263_ 1 26

i E 2 " ho

using v? = 2F/u. This forms the Gamow factor.

6.2. Cross Section and Reaction Rate

(Reactions/s)/(Incident Flux), units of area.
Number of reactions per unit volume per unit time at a given energy is

r =mningvo (v) / (14 012) .
But number densities of nuclei n1,ny depend on energy (relative velocity v), so
r= /m (v) ng (v) vo (v) dv.

Maxwellian distributions:

m )3/2 el s
d
2nkT ¢ vt

ni (v1) =nq (

Note that

oo
/ ny (v1) d3v; = ny.
0

The relative velocity v and the center-of-mass velocity V are:
m m
:V—izv, Vo=V 4+ —1

mi + mso m1 + ma

ni (v1) d3v1 no (v2) d3vy =

3/2 2
mi+m _ (m14+mo)V
ning [<71 2) e % A3V

b2 _w? g
omkT {(2wkT> e FTdv| .

First bracket is unity, and
mny [ (5 )3/2 ~ i o

= d
r= 1+612/ vo (v) L e v

__mng / /OOEO' _£TdE
1—|—512 /MTkT ’

The Gamow factor is most significant part of nuclear cross sections. Also, since maxi-
mum quantum mechanical geometrical cross section oc A2 oc 1/E, it is convenient to write

U(E)::§é§2e—wVF,
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where S(F) is slowly varying. For £ =0, A = u/my,

\/_ZZ
p= TVERALZ2 gy 37 70/A keVY/2,

_ ning / o—E/KT=0/VE g7

14 01 2 /L?TkT k‘T

2
nins 8 1 —3E0/kT /OO E — E()

= S (E — dE

1+ 010\ kT KT (Eo) | - exp AJ2
. ning 2 A —3E0/kT
"1+ 010\ pnkT kT S (Bo) -

Here we approximated the integrand as a Gaussian with centroid

b1\ */*
Ey = (7) = 1.22 (222241 keV

and width
EykT
A =4y Z5 =075 (R 23AT]) " Kev.
Define .
8By _ . - (23234 /3
7— pu—
kT 6
one has A = 4,/7kT/3 and
nins 2 7'
= —S (E
T 146123090 (Eo)e”

g ming S(Ey) o

=4.5-10"
1+ (5172 AZ1Z2T

6.3. Electron Screening

Modified Coulomb potential because of electron screening:
1€ =i o, D16 Dre
r r )\D
with Ap the Debye length

kT _ Ts
A\p = ~9.2-10 9,/— cm.
b \/47r (Z1 + 1) e2n, pY. (Z1+1)

Then reaction rate increased by

Z1Z262 pYe (Zl + 1)
~ 01721794 | ————2) .
exp < KT Ap ) P ( MR\ TR

53
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6.4. Effective Thermonuclear Rate

Near a temperature Tp, one can write r = ro(7/Tp)", where

- dlnr B dinT dlnr
 dlnT T  dlnTdlnt

T—2

To 3

To

6.5. Nuclear Reactions and Resonances

Consider the reaction
a+X —>2Z"->Y+b or (X (a,b)Y)

with a the projectile, X the target and b and Y the products. Z* is an intermediary stage,
the compound nucleus. Often there are many b, Y possibilities, and each has a probability
of occuring, P; = 7/7; where 7; is the mean-life for reaction i and 7 = [ 7;7']~!. Among
the exit channels is the one in which b, Y=a, X which represents scattering.

Energy width I'; defined through the uncertainty principle,

Tii=h, T=) T

The cross section can be written as

oo (B) :W<i>2 L.y

where

A\®  wh? 0.657 MeV 1
g <27T> - 2Emy, E I e
with 1 barn=10"2* cm?. ¢ is a spin-dependent factor. The so-called ”maximum cross
section® is geometrical. A particle ¢ with linear momentum p approaching X with impact
parameter b has a quantized angular momentum bp = £h. Then the fractional cross section
of the ring defined by £ and £ + 1 is m(A/27)%(2£ + 1) where (\/27) = h/p.

The shape factor f(F) is controlled by whether the reaction is resonant or non-resonant.
For non-resonant reactions,

S(E) _
o (E) = %e b/VE,
For resonant reactions, we have the Breit-Wigner formula

F2

IO =G gy

which is sharply peaked near the resonance energy F,. Supposing that I' doesn’t vary much
within the energy I'/2 of E, and that f is sharply peaked, we can write the Maxwellian
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average of the cross section and velocity as

whlg [ 8 32 _popr [ T,[ydE
— (kT) e 5 5
2m  pmy, o (E—E.)"+(/2)

< Ogpl >=

3/2
:h2< 27'[' ) / gFane_Er/kT

mka r
—956 % 1013 (W), o 11.605E, /Ty 13 (—1
o (nTy)*/? |

Here we’ve used

R r,r, R
= (@), -

oo
E)dE = _
/0 %ab (B) mE, |7°T mE,

This is useful since a poor resolution experiment only yields an integrated cross section. K
and (wy), are in MeV. Note that near a temperature Ty the effective temperature exponent

for a resonant rate is
_ 11.605E; B 3

n —.
To 2

6.6. Weak Interaction Rates
Fermi’s Golden Rule #2:
2
= f|Hmi|2,o.

Here H,,; is the perturbed part of the time-dependent Hamiltonian and p is the density of
final states. The Fermi theory of weak interactions for the reaction n — p + e + v has

H,i = Gp / i ddr.

The wave functions of the electron and antineutrino are plane waves with de Broglie
wavlengths much greater than the nucleon dimension, so ¥.195 ~ 1. We have

Hy, = Gr / Prpndir,
The overlap integral is nearly unity for nucleon decay, but can be much less than one

for other weak interactions, and zero for one in which 3 decay is not allowed. Here
Gr ~ 1.4 x 107 erg cm3. The density of final states results in the transition rate

2
dl' = %M2p6p176 (Ee +E; — By + Ep) dE.dEy,
where M? = > spin |Hpn|?/2. Integrating over Ejp,

2
dr = %szep,;dE'e.
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Neglecting spin, the density of electron and antineutrino states:

_ dap? dp.  4AmpeEe . 4n(E, - E,- E.)’
Pe= "33 4B, ~— s 0 T 133 '
Thus o
644G M
dl' = Whifmzc4 €2 — e (eg — €)* de,
where
E, E, - E,
€ = —2, € = 72
meC meC

For neutron decay, E,, — E, =~ (m, — mp)c2 = 1.297 MeV and ¢y ~ 2.53. The integration
over energy yields

€0
f(eo):/ Ve2 — 1e(eg — €)% de
1
4 2
3€ 2 €0
—Je—_1(L 2 _2) 9 Je2—1
0 <30 20 15) Tat|etVaT

which is 1.64 for neutron decay. The cross section is o = I'/v.
For the proton-proton reaction, ey = (2m, — mp)/me =~ 2.33. The cross section also
involves the Coulomb barrier penetration, and M? is not unity:

2
2me” o 6—27T62/h1)

hv

o~4x 1074 cm?.

opp =P (E)o =



Chapter 7.
Advanced Evolutionary Stages

Beyond helium burning, stellar evolution becomes increasingly dominated by neutrino
processes: thermal pair creation and electron captures on protons in nuclei:

e++e_—>1/e+ﬂe

7.1
e AY v+ AN =

Temperatures and lifetimes of burning stages are determined by equilibrium between nu-
clear and neutrino rates.
Neutrino pair energy generation rate:

€vp = N +n,—(cVE 7.2
e e

where E is the total energy of the pair and the average is with respect to the e= — e™

velocity distribution. The annihilation cross section ¢ is of order G%, proportional to
energy squared, and the relevant velocity is c:

2
ov =1.42 x 107%¢ [(%) — 1] cm?, (7.3)

MeC

where w is the center of momentum total energy. General result is complicated, but
simplifies in NDNR and NDR limits.
NDNR (Ty < 1). Recall that

Nt o= = 2.3 x 10°8T3e 19T ¢y =6, (7.4)
Also, in the non-relativistic case w ~ E ~ 2mc?. Thus
vy = 4.9 x 101873 119T0 org cm™3 71, (7.5)

NDER (Ty > 3). e~ — et pairs are slightly degenerate even at high T'. For pe — 0,

6
1 (T
nyn- = — <%> F3(0) ~ 2.3 x 10°°T9 c¢m™5. (7.6)

The average energy is w ~ 2[F5(0)/F»(0)]T.
€y = 8.74 x 10Ty erg cm™3 s71. (7.7)

More accurate calculations gives 5.2 instead of 8.74.

757,
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7.1. Electron capture rates

Depend sensitively on the Q-value (capture on free protons oc A, on heavy nuclei
o A3 where A = e — pp + tp is available energy. For C or Ne burning, pre >~ p, — pp
and the matter is in beta equilibrium. But for Si burning and beyond, beta equilibrium is
not maintained, A > 0, and electron capture increases. Although °°Fe has Z /A ~ 0.464,
(ZJA) = Y. ~ 0.42 after Si burning. Because of thermal excitations, inverse processes
(positron capture) can also proceed on some nuclei:

e+ Ag — Ve + Agfll,
NG (7.1.1)
e+ AT =+ Ag.

This cyclic process occurs in spite of the fact that the available energy for one of the
reactions is formally negative, because some of those nuclei are in excited states at finite
temperature. The neutrino production rate from these so-called URCA processes is pro-
portional to 7, but their importance has to be considered on a case-by-case basis. Gamow
named these processes URCA from a casino in Rio: you always lose (it also seems the name
is similar to a Russian word for thief). For our purposes, it is sufficient to ignore electron
capture and URCA processes until gravitational collapse itself sets in.

In general, there is a well defined sequence of stellar burning stages leading to an
“onionskin-like” layering. T and the duration of the burning are found by equilibrium
between neutrino and nuclear rates.

7.2. C burning

X
éc ~ 7 x 10* <0—§> p2T927 erg cm s} (7.2.1)

near Ty ~ 1, where X¢ is the C mass fraction. (Note that this rate is still uncertain to
perhaps a factor of 2 or 3.) Equating Egs. (7.2.1) and (7.5):

X
2 <O_g> T924€11'9/T9 ~ 7 x 10" gZemS. (7.2.2)

For p ~ 10% g cm™3, Ty ~ 0.74. This is an underestimate because of the extreme temper-
ature sensitivity of the rates. Consider instead the total emission from a rate

¢=¢ <p—’;>A (%)V (7.2.3)

near p, and T,. In Lane-Emden variables, ¢ = é,60™*" and

&1 &1
(€) = & /0 OV E2de / /0 £2de. (7.2.4)
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n is the polytropic index. If nA 4+ v >> 1, the integrand is sharply peaked at the origin.
2
Approximating 0 ~ e~¢ /6 (valid for all n) and extending the numerator’s integral to oco:

3, \/2T7/2

(é) = Sy (7.2.5)

Assuming the core structure of massive stars is approximated by an n = 3 polytrope, the
right hand side of Eq. (7.2.2) should be multiplied by [(3X 4+ v)¢/(3) + v),]*>/2. We have
Ao = 2,vo = 27, and for Ty ~ 0.8 A, = 0,1, = 3+ 11.9/.8 ~ 18. Thus the ratio is
(33/19)3/2 ~ 2.5 and the solution of Eq. (7.2.2) gives Ty = 0.82.

The C burning duration is

pAB

T =

X, (7.2.6)

€nuc

where AB =4 x 107 erg g~ ! is the specific energy released in C burning. Thus
T~ 10/T3" yr~ 2100 yr, (7.2.7)

which is about 7 times too large compared to detailed calculations.

Following C burning are the Ne, O and Si burning stages. For the first two, 3 > Ty > 1
and neither the ER or NR limits apply. But the ER rate Eq. (7.7) is closer.

7.3. Ne burning

This is a nuclear rearrangement 2Ne— O + Mg. For Xp = 0.7

X
€~ 2 X 1024p (—(ﬁ;) T9126_54'9/T9 erg cem ™3 57!

AB ~1.1x 1017 erg g7 L.

(7.3.1)

Note the single power of density, since this is a photodisintegration reaction. From
Eq. (7.7), Ay = 0,1, = 9, and Ay = 1,vne = 54.9/Ty + 12. We thus find the implicit
equation for Ty:

(7.3.2)

15 + 54.9/T9>3/2 _,
9 - bl

3.8 x 108 pTge=549/To (

which gives Ty ~ 1.4 if p = 2 x 10° g cm™3. The neon burning duration is about 17 yr,
but will be increased by convective mixing.
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7.4. O burning

2010 28Si+ He or 32 S via a large number of secondary reactions. In this stage almost
all nuclei heavier than Fe photodisintegrate into Fe peak nuclei, and a general increase
of the neutron excess (N — Z)/A ~ 0.01 occurs. A good approximation for the energy
generation is 20—S

€~ 10°X30% T3 erg cm™3 571, AB ~ 5 x 107 erg g7t (7.4.1)
Using Xp ~ 0.7, p ~ 2 x 10% g cm™3 we find
3.8 x 107972* (39/9)%/? = 1 (7.4.2)

or Ty ~ 2.0. The indicated lifetime is about 2 months.

7.5. Si burning

Essentially photodisintegraton rearrangement into Fe-peak nuclei. Si fusions are pro-
hibited by the high Coulomb barrier. « particles released by photodisintegrations are
added to heavy nuclei, pushing the distribution toward the optimum binding state, or nu-
clear statistical equilibrium. Only the density, temperature and neutron excess or Y, are
needed to find nuclear abundances (if binding energies and partition functions are known).
Energy generation is

¢ ~d x 1077 X g;pTSPe 1421/ To
To \ 47
=20 s <3_Z> erg cm ™5™, (7.5.1)
AB ~1.9 % 1017 erg g_l

near Ty = 3.5. The implicit T equation is

38 3/2
T 50
7.8 x 1078 Xg;p <3—%> <§> =1 (7.5.2)

or Ty ~ 3.3 if p ~ 107 g cm™3. The indicated lifetime is about 1.5 days.

7.6. Nuclear Statistical Equilibrium

The free energy per baryon of a nucleus (Z, A) is

T omh? 2 n(Z,A)
F(Z,A)=B(Z,A)+ 1 In (mAT) GZA)| 1 (7.6.1)
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where B(Z, A),G(Z, A), and n(Z, A) are the binding energy per particle, partition function,
and number density of the nucleus, respectively. Nuclei and nucleons are treated as non-
degenerate and non- interacting. The baryon mass is m. The total free energy density is
then

f=> F(Z An(ZA). (7.6.2)
Z,A
Two constraints, mass and charge conservation:
> An(Z,A)=n > Zn(Z A)=nY,. (7.6.3)
Z,A Z,A

Minimizing f with respect to each n(Z, A), subject to these constraints, gives

F(Z,A) +T/A—MA— XZ=0. (7.6.4)
The total free energy density is therefore
n(Z,A)T

f=-P+pmn(l—Ye)+ ppynY, = — Z e Ain + AonY,. (7.6.5)
Z,A
Thus, A1 = py, and Ay = —(pp — p1p) = —f1. The number densities of each nucleus are then
AT\ 3/ AB(Z,A)+ Npn + Z
n(Z,A) = G (Z, A) <m 2) exp {— (2, 4) + N+ Zity (7.6.6)
27h T
Number densities of nucleons are
3/2
mT
Npp=2[—5] etnr/T 7.6.7
w=2(2) 767
SO
7\ T 1\ A AB(Z,A)
_ m 3/2, A-7 7 —2520)
At low temperatures, G(Z, A) ~ 1, but above a few MeV,
T aT
~ 7.6.9
6aT6 ( )

where a ~ A/9 MeV~! is the usual level density parameter. The partition function will
begin to dominate the composition when aT > AB/T, or when T' > v/9B ~ 9 MeV. Nuclei
are dissociated by such large T', except near nuclear density.

The optimum nucleus satisfies 3n/3Z‘A = 3n/8A‘Z =0, or

(0B
“—A(a—N

E)B‘ > 0B

-z.) = 7Em|, (7.6.10)

using Eq. (7.6.9). With electronic energy also minimized, we have ji = p., the usual con-
dition for beta equilibrium. For densities above 105 g cm™3, the electrons are relativistic.
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In stellar cores, the electrons are degenerate as well. Eq. (7.6.2) should properly include
the rest masses of the neutrons and protons, so an extra term (m, — mp)c2Y6 appears:

i+ (mp, —myp) 2 = e

Since Y. = (Z/A), we see that the most abundant nucleus is the one that has the largest
binding energy for a given neutron excess. Thus, although 62Ni has a larger binding energy
than °0Ni (8.795 MeV compared to 8.790 MeV), 5N;i is more abundant near the valley of
beta stability.



Chapter 8.
Stellar Birth and Main Sequence Evolution

8.1. Jean’s Mass

Criterion for stability — neglect magnetic fields. Critical mass is called the Jean’s mass
M, where a cloud’s potential energy equals its kinetic energy. If spherical with uniform
temperature,

Q=GM3/R ~ Mjv?/2 (8.1.1)
or 3/ 1/2
v? 5v2 3
My~ —=2R==% ) . 1.2
Ve <6G> (47r,0> (8.12)

vs ~ /2NoT is the sound velocity, v ~ 1 km/s for T = 100 K. For a mean density
p=10"2*gcm™3, My ~ 2-10* M. Eventual star formation must occur by fragmentation
of more massive collapsing clouds.

Apply virial theorem to a cloud bounded by the ISM with pressure P,.

M M

G P

/ Mdm = 3/ —dm — 47rR3P0 .
0 r 0o P

For an isothermal gas, using the fact that m oc r, this is

GM? 3N,TM GM?

= 3N,TM — 47 R3P, , P, = o i
For small R, P, < 0. For large R, P, > 0 but tends to zero. There is a maximum of P,, at
R,,, which represents a stability limit. Reducing R from R,, lowers P, and the ISM will
force compression of the cloud, triggering collapse. This won’t happen if R > R,,. From
(0P,/OR)yr = 0 one finds

4G My INyT
= o M=
IN,T 4G
where we identify the mass with the Jean’s mass. Note that M is 4.5 times larger than
the preceding estimate.
Clouds exceeding the Jeans mass are stabilized by magnetic fields.

B? _ 3GM?
— >
8t — 4mwR4
M < BR?/V6G ~ 50 (R/pc)* Mo,
if B ~ 30 puG. A solar mass originates from within a region of less than about 0.14 pc.
Another source of support is rotation. For an Oort constant of 16 km/s/kpc, the
angular rotation rate is 2-1071¢ s71. The Keplerian frequency is Qx = /GM/R3, implying
a limit

R, R

(8.1.3)

M > Q%R3/G = 0.8 (R/pc)® Mg .
This gives a limiting radius of about 0.9 pc for 1 solar mass.

763,
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8.2. Collapse

How does collapse occur? Rotation is removed by magnetic fields, and magnetic fields
are dissipated by ambipolar diffusion over times of 10* — 10 years, which is 10 times the
dynamical time scale 1/4/Gp. It is more likely that clouds are dissipated before collapse
ensues, so star formation is essentially inefficient, and gas remains in the Galaxy today.

Hydrostatic equilibrium for an isothermal gas gives

v? 202y

Ample observational evidence exists for this 7—2 density dependence. ”Jean’s® mass is
close to previous estimate.

The cloud initially collapses isothermally because photons freely escape. M; decreases
and smaller condensed regions of the cloud become unstable to collapse: it fragments.
The free-fall timescale is 745 = /3/(87Gp). The total energy to be radiated is of order

GM?/R, giving an estimated luminosity

GM? [87Gp oy [ M\
L~ —Vog3? [ = .
R 3 = V20 <R>

This can’t be larger than the blackbody luminosity 47rR2aTe4f 2 giving

M < (8P R0*TS;;/G3) .

Fragmentation stops when R < Ry = 4GMj/(9N,T,ss). Thus

8IN2 (9IN,T,¢¢
32G \ 27202G?

1/4
) ~ 0.005T* M.

For a temperature of 100 K, we find M; > 0.03 M, greater than planetary masses, but
of order of smallest stellar mass.

8.3. Self-Similar Description of Collapse

The Euler equations of hydrodynamics:

dp 1 9rpu B
o
dv v 10P  Gm(r)
b — = ,
ot or p Or r2

where m(r) = [ 4mpr?dr is the mass contained within the radius 7. Applied to a polytropic
equation of state P = K p7, these coupled partial differential equations can be replaced by
ordinary differential equations. Define the self-similar variable

X (r,t) = K~V2G0=D2p ()72 (8.3.1)
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The convention is that the collapse begins at ¢ = —oo and the central density reaches
infinite values when ¢ = 0. The collapse continues through positive values of t.

The hydrodynamical variables p,v and m can be written as dimensionless functions of
X, with scale factors depending on K, G, v and (Ft). Thus

p(rt) =G (F)" D(X),
v(r,t) = K'2GU-D/2 ()7 v (X), (8.3.2)
m(r,t) = /47rpr2dr = K332 (2043 M (X).

Thus, a solution in terms of X tells us the behavior of a quantity at all times at a given

place or at all places at a given time.
In dimensionless variables the Euler equations are:

D' 1%

5[ViX(2—7)]+V’z$2—2f, (8.3.3)
D7D+ VIIVEX(2— __ M -1V 8.3.4
Y + V' C-N=-FmFOo-HV. (8.3.4)

The upper (lower) sign refers to t < 0 (¢ > 0).
In spherical symmetry, mass can only move radially. The equation of continuity is

dm (r,t)  Om(r,t) om (r,t)
i o o Uar

This equation is easily integrated:

ArX2?D[X (2 —7) £ V]
4 — 3y '

M (X) = / ArDX2dX =

If v = 4/3, however, we must have either V = F2X/3 or D = 0.

The dimensionless Euler equations possess a singularity analogous to the one encoun-
tered in steady-state accretion and stellar winds. The physicaly acceptable solution is the
one which is regular at the critical point where the determinant of the coupled equations
Eq. (8.3.4) is zero,

[V (X0) £ Xo 2= )P = /D7 (X,), (8.3.5)
and which has the correct behavior as X — 0 and X — oo.

In the limit (F¢) — 0, or r — oo for ¢t # 0, in order to ensure that all variables are
non-singular, one must have the asymptotic behavior

D X722, v & x0T/
M o x@=39/2=) X =00 (8.3.6)

For v = 4/3, the mass becomes constant at large radii and tends to infinity for v < 4/3.
This is no problem since the solution can be terminated at large X. In the case v > 4/3,
the mass tends to zero in the large X limit which seems unphysical. For 1 < v < 2 both D
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and V tend to 0, and also V oc \/M/X as X — oo, s0 V o Vi = \/2M/X, the free-fall
velocity.

In the limit X — 0, which is 7 — 0 for ¢ # 0, or (—t) — oo for finite r (i.e., the initial
system), one can show

D :Do; V=-(2/3)X

_ (4n/3) D, X X =0, t<O0. (8.3.7)
D, is an integration constant which depends only on . The central collapsing regions
are homologous, i.e., v varies linearly with . A boundary separates the two asymptotic
behaviors for V', and the inner core from the outer core. (For v = 4/3, there is no outer
core; D falls to zero by the value X = X, = 2.77.) The boundary is near the maximum
velocity point, |dV/dX| = 0, and where the velocity equals the sound speed,

v=uvs=+/0P/0p; V =A=~Y2p0/2 (8.3.8)

The dimensionless sound speed is A. Homology breaks down at larger radii because infor-
mation travels at a slower rate than that of the collapsing matter.

At t = 0 the asymptotic power-law relations Eq. (8.3.6) hold everywhere, and form
initial conditions for a self-similar solution valid for ¢ > 0 (lower sign of ¢ in Eqgs. (8.3.3)
and (8.3.4). There is no singular point, the initial conditions determine the solution. The
asymptotic relations Eq. (8.3.6) for X — oo are still valid, but for X — 0 a new set of
asymptotic relations applies:

YD) X =0, t>0 (8.3.9)

b= 4 X3/2

The constant M, is determined by integration. This limit corresponds, for a given r, to a
sufficiently long time after the center has collapsed to infinite density. For ¢ < 0, the outer
core cannot go into free-fall because the inner core is collapsing too slowly. This obstacle
is removed at t = 0, after which the outer core builds up momentum, and approaches
free-fall as X — 0. The free-fall collapse of the outer core is made possible by a reduction
in the pressure gradient relative to gravity due to a substantial reduction in density.

The case v = 4/3 is special in that there is no finite solution for the case ¢ > 0. The
solution for t < 0 ended at X, = 2.77, with D = 0 for X > X.. This cannot be matched
to the asymptotic behavior unless D = 0 for X > 0 when ¢ > 0. The hydrodynamics
equation for ¢ < 0 can be written as

M 2X
D28p = = 422
X2 9

4

Taking a derivative after multiplying by X2, and substituting M’ = 4rDX?2, one finds

1 d dD'/3 1
¢ [ x2 — _1D+ -
X?dX( dX ) s
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Letting @ = (D/D,)'/3,¢ = X\/zD,, we have

Ld (pd0\ 5. 1
?d?(g d_£>_ O 5Dy

The constant D, = 8.11 from numerical integration. This is the just the Lane-Emden
equation for v = 4/3 except for the constant term. The first zero of 6 now occurs at
& = Xev/mD, = 9.99 as opposed to 6.854 when this term is absent. It is interesting that
the value of the constant term, (67D,) ™!, is the largest value that will still produce a zero
of 0; thus, when ¢ = &, we have 6; = 0] = 0 and 0] = (6xD,)"!. Near the origin, the
density dependence is nearly identical to that of a static v = 4/3 polytrope, but deviates
from this for X — X.. Thus a collapsing v = 4/3 polytrope has a finite extent, which is
not the case for other polytropic exponents.
Now examine the behavior of the dimensionless energy

1 K
e(r,t) = /47rp7“2 [51}2 + - lp'y_1

= K°2GB=M12 (1) g (X).

_Gm (r)

r

dr

As X — oo, the behavior of E satisfies E oc X(6=57/(2-7) which results in finite total
energy for X < oo if 2 > v > 6/5. The effective range for physical collapse solutions is
then 6/5 < v < 4/3.

8.3.1. Isothermal Case

However, a physical solution for the isothermal case, v = 1, exists also for t > 0. We
have K = v2, s0 X = v;1r/t. A solution can be found that has the steady state solution
Eq. (8.2.1) as an initial condition for ¢ — 07 or X — o0,

D=K(2rX?)"', V=0 M=2KX. (8.3.10)

Near X = 0, Eq. (8.3.9) gives
3 2movdt 2G
m (r,t) :%mot; v(r,t)= \/ Mo¥st _ m;
,

" (8.3.11)
(r.1) 1 [mevd 1 [Gm
r =— = —A\/ —F=-
PUY=me N 2t ~ an\V 43

The parameter m, = 0.975, determined by numerical integration, represents the mass that
accumulates at the origin (where the density is infinite). It grows linearly with time, i.e.,
a constant accretion rate 1 = v3m,/G exists.

In this case, a singular point is reached for V' — X = —1, seen from Eq. (8.3.5). Since
for X > 1, the solution is the steady state solution itself, Eq. (8.3.10), for which V" = 0.
Therefore we have that X. = 1. A physical interpretation of these results is that the
collapsing region begins at the center and expands linearly with the sound speed. The

bottom falls out of the cloud and the collapse is inside-out. The total infalling mass, the
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mass within X =1, is m;, = 2v§’t/ G, just over twice the mass accumulated at the origin,
Meore = MUt/ G.

While the infall will be radial near the origin, at some point the centrifugal bar-
rier becomes appreciable. With angular momentum conservation, the angular velocity
Q = Q,(r,/r)? of each mass unit increases during infall (o refers to initial values).
reaches Keplerian magnitude, where centrifugal barrier balances gravity, when r = R¢o =
(GM)/3 Q%3 = Q22 /GM. For 1 Mu, Q, = 21071 s~ and r, = 0.33 pc, one finds
Rc ~ 20 AU. The formation of an extensive disc, of the order the size of planetary system,
is inevitable. A protostar forms at the center, with a central density that increases in a
runaway that is halted only when the core becomes optically thick.

The opacity in the collapsing cloud core, while small, nevertheless is large enough to
ensure optical thickness when

1AU

For a core mass M = movg’/G, this occurs for R ~ 1 AU if T ~ 15 K. Beyond this point,
the collapse will be nearly adiabatic since the surface temperature is so small. The abrupt
halt of the central collapse unleashes a shock, which runs out through the infalling matter,
raising its temperature and ionizing it.

With the Virial Theorem, n = 3/2, and assuming complete ionization (kinetic energy
equals ionization energy),

2
_ R
ko~ (Rp) "t~ 5x1077 < ) cm?® g1, (8.3.12)

1 3GM?
K=--Q=2
2 7 R

where the ionization potentials x g (xre) = 15.8(19.8) eV. For a solar composition, I /M N, ~
17 eV. Inverting, we find R ~ 50 R = 0.23 AU, close to the above value. From the rela-
tion K ~ 3MN,T/(2u), with = 0.6, we find T ~ 9 x 10* K.

=I=MN, (XHX + XHeY) ) (8313)

8.4. Convective Protostar: Hayashi Track

Consider slow contraction of a convective protostar. For T, < 5000 K, where ionization
is incomplete and s ~ —10, T}, is extremely insensitive to L and M. With the correct

constants o7 16/7
M R
L ~0.024  — — L
<M®> <R®> ©

4 32
M T,
~1.64-10% = P Lo.
( M ) (3500 K) ©

Therefore, in an Hertzsprung-Russell diagram, a collapsing protostar moves vertically along
a line of nearly fixed temperature, the so-called Hayashi track. The luminosity L o
M*TRS/T decreases with contraction. For fixed M, an n = 3/2 polytrope has R ox vV K

e%/3: the star contracts only if the entropy per particle falls. The contraction timescale is

easily found from
10/7 —23/7
E M R
Teont = ——F = 5.3 x 108 <M—®> (R—@> yT, (8.4.2)

(8.4.1)
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which increases rapidly as the star shrinks. It also decreases rapidly with mass, since for a
given value of I/M, R o« M: thus T.ppt M~13/7. At the beginning of the Hayashi track,
when R ~ 50R for a 1M protostar, T.on: =~ 1400 yr, but much greater than the free fall
time.

For very massive protostars, accretion occurs all the way to the main sequence. For
less massive stars, accretion ceases during protostar collapse. How does a star know when
to stop accretion? Essentially, this happens when the central temperature rises to the
value needed to ignite deuterium, about 10° K. Thus, using the perfect gas law with
the n = 3/2 polytrope relations, we find the “stellar birthline” R/Rs ~ 8.3M /Mg and
L~ 3(M/My)?/7 Lg. Deuterium ignition drives stellar winds that effectively halt further
accretion.

The protostar leaves the Hayashi track when L falls below the minimum for a fully
convective star. With y = 0.6

5.5 .5
58 (M R@>
Lyyin=— 1| — — Lo, 8.4.3
min - (M@) (R © ( )

A fully convective star does not quite have a uniform energy generation, but one that is
proportional to the temperature. For a perfect gas law, T = Pu/N,p pl/” x @, where 0
is the Lane-Emden variable. Therefore
2 2
LM o 29,

B [TdM [ 6d(£20") - [ €20m+1dg (8.4.4)

UL

which is approximately 2 for all polytropes. (Direct integration gives 5/2, 2 and 16/3x for
the cases n=0, 1, and 5, respectively). Using n.~2.5 and equating Eqgs. (8.4.1) and (8.4.3),

60/13 23/13
M M

Although this luminosity is about 50% too large, the minimum radius too large by an even
greater factor, compared to more detailed calculations, probably owing to poor assumptions
about the opacity. Also

Temin = ~14-10° | — K, 8.4.6
e N, (TL + 1) Riin (_61911) < M ( )

which is comfortably above the temperature where deuterium burning occurs. From
Eq. (8.4.2), the time needed to collapse from infinity to a given radius is (7/23)7Tcont,
so the time needed to collapse to R, is

399/91
tmin ~ 7.6 x 10° (ﬁ) yr. (8.4.7)
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8.5. From the Hayashi Track to the Main Sequence: the Henyey
Track

During collapse, the Virial Theorem says that half the energy goes into radiation and
the other half into heat (if n fixed):

1dE  n—3GM?*dR

2dt  5-—n 2R? dt’
dL  1d’E  n—3GM?*

dt ~  2di2 " 5—n 2R?

R

dt

dt?

9 (dR)Z d?R

Constancy of T,y with L = 4o R*T}; ; implies dL/L = 2dR/R and d*R/dt* = 4(dR/dt)*/ R.
This leads to a solution

6L, R,t\ /3
GM? )

where R, and L, refer to the initial radius and luminosity.

Continued collapse to the main sequence involves a change in the polytropic structure
from n = 3/2 to n = 3 (the standard model). If we neglect this, however, and use the
hydrostatic condition d2I/dt? = 0 where I o M R? is the moment of inertia, one finds that
Rd’R/dt* = —(dR/dt)?. This implies that dL/L = —3dR/R, which is now positive, and

to a solution
/ 4R, Lt
R=R,\/1-— e

This also implies that dInT,¢s/dIn R = —5/4 and dInL/dInT,¢; = 12/5. This phase of
collapse is known as the Henyey phase, and results in an increase in L and T,y ; with stellar
shrinkage. The stellar radius, for a one solar mass star, must shrink from R,,;, to Rq, the
effective temperature rises from about 3500 K to 5500 K, 0 Lyin ~ (3500/5500)'2/5 ~ 3
Lo and Rypin ~ (5500/3500)%5 ~ 0.7 Re. The slope in the H-R diagram of the Henyey
track is 2.4, smaller than that of the main sequence, so the Henyey trajectory will eventually
intersect it.

Note from the above that L,,;, varies with mass less steeply than does Lg,,. Since we
expect that for solar mass stars that Lyin/Lssm < 1 (although we didn’t get this result in
the above), in principle as mass is decreased there will be a point at which Ly,in = Lssm.-
For small enough masses, the Henyey phase essentially disappears, and a lower limit to
stellar masses occurs.

R:Ro<1+

8.6. Main Sequence Structure

The main sequence is defined as those stars that burn hydrogen to helium in their cores.
Lower mass stars do this via the pp cycle, and higher mass stars via the CNO cycle. The
latter is much more temperature sensitive, and leads to convective cores in massive stars.
The adiabatic temperature gradient is

drT 2TdP 87 uGper

arl,” 3Pdr 15 N,

(8.6.1)
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for a perfect gas near the center. Diffusive transport leads to

dr

3 kp L N
dr

T dacT34wr? T acl3

(8.6.2)

rad

where we used the Thomsen opacity (valid at high temperatures) and approximated L(r) =~
(47 /3) peecrd. The condition for convective instability is simply |dT/dr|,qq > |dT/dr]|.q, or

871 uGacT? 4 (Tes 3 (150 g cm™3 1.1
P27 e ~1.2%10 d . 8.6.3
€c > 15 Nykope 14 Pec ae s s ( )

For comparison, the pp cycle has an energy generation rate of

4
T P -1.-1
~ 17 — _ 8.6.4
“rr <14> <150 o cm_3> ‘e e s (8.6.4)
so the Sun’s core must be radiative. In a massive star, for CNO, we have
17

Ts P —1.-1
~4x10° [ =2 ———)er s 8.6.5
cCNO (25) <150 o cm_3> 8 (8.6.5)

these stars have convective cores.

If energy generation is very temperature sensitive, approximate the core as having a
point-like energy source. Thus, for r > 0, we have L(r) = L. We look for a power-law
solution for T outside the convective core: T = br™. With the radiative transport equation,

1 4 SKopclL
m = —— b =
4 16mac

(8.6.6)

if p is constant. The convective core’s radius will be determined by |dT'/dr|,qq = |dT'/dr|qq:

3R\ 15N\ s (3.6.7)
core = \ 16mac 200G ) P a

Using the relation p. occ M/R3 we have

Tcore/R X 111/9/1\41/3 X M5/18 (868)

using the standard solar model for L(M). Convective cores increase with stellar mass.

8.7. Red Giant Structure

The large expansion of the outer layers is attributed to the abrupt change in the mean
molecular weight and entropy and the large energy production at a hydrogen-burning shell
exterior to the helium core. A red giant has two basic components—a core and an extended
envelope. If the envelope/core mass ratio is negligible, and envelope transport is diffusive,
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the radiative zero solution is valid for the envelope (n = 3.25). If transport in the envelope
is convective, n = 3/2. In either case

dpP GMp pPdT
— = — = 1) ——. 8.7.1
dr r2 (n+1) T dr ( )
Using the perfect gas law P = N,Tp/p we find
dT uGM
—_— = 8.7.2
dr Nor? (n+1) ( )
since M varies little in the envelope. Also
uGM 1 1
T(r)y=—|-—= 8.7.3
") = N D [r R (8.7:3)
The diffusion equation implies that
) ApGM N\ (16mac\ Y21 1784 (.7.4)
r) = - — = . 7.
P 17N, 3KkoL r R

As L increases, p decreases rapidly, meaning a large expansion of the envelope occurs.
Estimating the core-envelope interface density p; = a(3M/4wR3), where o < 1/10, we

find
256m3ac [ 4uG \ P2 M2 266 ( M \*? (R, 1/2L
202k, <17NO> RIZ — 2 <M®> (f) ©

A huge L is needed to sesure this expansion. To check that the envelope has negligible
mass, integrate Eq. (8.7.4) from R; to R:

L= (8.7.5)

13 R;
M,/M ~ 12c <1 + §#> : (8.7.6)

Another approach is to posit power law solutions to the diffusion and hydrostatic
equilibrium equations in the envelope:

P =P, <i>_a T =T, <i> B (8.7.7a)

R, R,
r —c r d
B M=M= 8.7.7b
p = ps <RS> s <R3> ( )

With Kramer’s opacity, a = 43/11,b = 10/11,¢ = 32/11,d = 1/11, so the polytropic index
is n =c¢/b=3.2. We find

1M 11 uGM,
447 R3 ® 42 N,R;

Ps (8.7.8)

so the value of a from above is 1/33. Utilizing the diffusion equation to solve for the
luminosity, we find

16mac 10 R,T7-5 M\ P? R\ Y2
L= sTs 9490 20) L. 8.7.9
3Ky 11 p2 <M® R, © (8.7.9)
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With Ty ~ 10" K, My ~ M, we find Rs; ~ 0.4R. Substituting into Eq. (8.7.7a) we find
(T, ~ 5000 K) R = 1711Rs = 8 AU, very large indeed. This model has flaws. We find
the total mass is M = 2.1Mg, so the envelope mass exceeds the core mass. Nevertheless,
it illustrates how large L and R are inevitable.

Discontinuities in the mean molecular weight and entropy exists also. Because of P
and T continuity, an abrupt decrease in p is accompanied by a corresponding decrease
in p and |dP/dr|. An abrupt increase in s also results in a decrease in p. Both result
in expansions of the outer layers and L in a kind of runaway. The core of a star with
a molecular weight or entropy discontinuity is denser than the core of a star withut one,
since p must increase. The virial theorem

3N,IM/ji+ Q=0 (8.7.10)

where T and [i are global averages. As the core contracts, T, and €2 barely change for a
given L. Core shrinkage means expansion of the envelope.

Expansion factors of red giant envelopes are 100-500 times, but p gradients or core
shrinkage produce only 50-100% change. This large factor can be traced to isothermality
of the core.

Assume T', M and R obey power law relations just outside the core and well into the
envelope as in Eq. (8.7.7). Then

pGMs

No(n+1)Rs
Since T is fixed by nuclear requirements during shell burning, this suggests that Rg oc M.
However, M increases as the shell slowly burns outward in mass, and the core’s center
contracts due to the higher gravity. Nevertheless, Rs slowly increases. The quantity

_dlnM  3p(r)  4mr3p(r)

~dlnr  p M(r)
is very small just beyond the shell. Expanding p(r) and M(r) about the origin in an
isothermal core,

T, = (8.7.11)

(8.7.12)

2rGpeps o dm g 2T pelt o
=p[1-220ER M="pR(1- R 8.7.13
P pc( 3N, T, * g Pelts 5N, T, * (8.7.13)
we find
ATpuGpe o 3x 10K [ Rs\?>
U=3(1-22CCR2) ~ 31— 0.07p, 20— [ =2 8.7.14
( 15N, T, * P, Ro ( )

which rapidly decreases as p. increases and Rj increases. For comparison, for an n = 3
polytrope, the factor of 0.07 will be reduced a factor of 4 for the same conditions. The
radius of the star swells as a result, since In R o [ U ldln M.

An isothermal core develops in stars whose mass is less than about 6 M. For larger
stars, the core mass fraction, when hydrogen shell burning begins, exceeds the so-called
Chandrasekhar-Schonberg limit

2
M., = 0.37 (“—) M, (8.7.15)

e
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for which an isothermal core is unable to support the envelope’s weight. Here p. and u.
are the mean molecular weight of the envelope and core, respectively. These stars do not
expand as dramatically as less massive stars.

The relation Eq. (8.7.15) can be motivated from a dimensional analysis of the core and
the virial theorem. Apply the virial theorem to the core alone:

3N0TMC+ 3 GM,

—ATR3P, 8.7.16
nfbe 5—n R. et ( )

The term on the right-hand side stems from the pressure P. at the edge of the isothermal
core (with temperature 7', mass M., molecular weight p. and radius is R.) does not vanish.
Solving for P, yields:

P, =

3 [N,TM.  GM?
4tR3 | npe (5 —n) R,

The maximum core radius that can be supported is found by maximizing P, with respect
to R., which gives

R npucGM: p 3 5-n)\° N,T 4
“ (5—n)N,T’ OMEE T 4 M2\ G npe )

Since T' o< pM /R, and P. o M?/R*, where M and R are for the whole star, one finds that

_ M. (nY
G =737 )
An isothermal core supports at most 37% of the stellar mass, but if the core is mostly He,
this is reduced to about 10%.
Stars less than about 15 Mg develop degenerate cores, which leads to the well-known
Helium flash behavior at the tip of the red giant branch. Partially degenerate cores don’t

obey the Chandrasekhar- Schonberg limit and support larger masses. As red giants expand,
and T}, cools, they approach the Hayashi track and are nearly completely convective.



Chapter 9.
Compact Stars — White Dwarfs, Planets, Neutron Stars

White dwarf structure dominated by P(p) for degenerate electron gas.

n+1K1/2 _n)/(on
R:[( 47er ] REOUCEN

n+ 1) K]V —n)/(n—
7>] (B-m/=1) (g2

_ (3=n)/(1-n) |
M =47R [ G

n+1K3/2 _n)/(2n
e[ e

Non-relativistic v = 5/3:

(3#2)2/3 h?

K = (NY) = 109V g
e
R=1.121x10* /% 2¥,)*/% km o)
M = 049605 (2Y.)"* Mo '
R \°
=0.701 ([ ———) (2%.)° Mo.
070 (104 km> (2¥e)” Mo
Relativistic y = 4/3:
3 2 1/3
K 87 (N,Y)*3 = 1.24 x 105Y/? cgs
_ 9.2
R=3.35x10%p 3 (2v.)/* km 6.2)
M = 1.457 (2Y,)* Mo.
Very low density (Thomas-Fermi regime v = 10/3):
3.2 10/3 6 10/3
. e 1/3 47TNO hC @ . 13 B
K = ETS 3 <—A > (3—mecz oz = 1.05 x 10 1 cgs
5/3
12
R=1.18x 10° (Z) p2? km
(9.3)

A

A0\ 52 R 9/2
_ -8 (A
—=2.88 x 10 (12> (104 km) Mo

12\°
M = 0.001915 <—> P> Mg

775,



76 Compact Stars — White Dwarfs, Planets, Neutron Stars

9.1. Physical reasoning behind the Chandrasekhar mass

Consider N degenerate fermions in a star of radius R, so that number density n o
NR~3. Momentum of a fermion is ~ hn'/? and Fermi energy is Ep ~ heNY3R™1. The
gravitational energy per fermion is ~ —GMmpR™" if M = Nmp. The total energy is

E = Ep+ Eg = heNY3/R— GNm?/R.

Equilibrium is reached when this is minimized. Both terms scale as 1/R.

When E is positive, ' can be decreased by increasing R. This decreases Er so that
eventually the fermions become non-relativistic: then Er ~ p% ~ R™2. This then decreases
faster than Eg, so E becomes negative. However, as R — oo, £ — 0. This implies there
is a minimum of E at a finite value of R.

When FE is negative, E can be decreased without bound by decreasing R so that no
equilibrium state is possible and a black hole forms.

The maximum baryon number for equilibrium is determined by setting £ = 0:

Nmam ~ <—G 2) ~ 2 X 1057

my,
Moz ~ Nmazmp ~ 1.5 M@'

Note that the mass is independent of the fermion’s mass.
The radius at equilibrium is set by the condition Er > mc?, so

R < he ( he )1/2N 5x 10% km, m =me
~ mc? \ Gm% 3 km, m=m,.

At sufficiently high density, neutronization and pyconuclear reactions can occur. Thus,
both A and N —Z will increase with density. The neutronization threshold for %6Fe is about
10° g cm™3. At this density, the Fermi energy of an electron is about m.c? + 3.695 MeV,
the threshold for the inverse beta-decay *°Fe + e~ —%Mn + v,. The Mn immediately
electron captures: Mn + e~ —5Cr 4 v,. The Cr is stable until densities above 1010 g
cm ™3 are reached.

Lighter nuclei have other thresholds: *He is at 20.6 MeV, 12C is at 13.4 MeV, 160 is at
10.4 MeV and 2°Ne is at 7.0 MeV. The loss of electrons softens the EOS: the Chandrasekhar
mass decreases. A white dwarf at these densities will begin to gravitationally collapse.
Thus the maximum density < 100 g em™3, with a minimum radius 2 1500 km.

9.2. Electrostatic corrections and the Low-Density Equation of
State

In a degenerate system in which the nuclei are ordered in either a solid or liquid, there
is Coulomb energy associated with the ordering. If the nuclei are equally spaced and
surrounded by a uniform density electron gas, we proved that the interaction energy per

electron is 13
9 Ze? 9 [4rm 5 1/3
E. |7 =—— - _ 7 (= 72/3 2,1/
o/ 10 R, 10 ( 3 > ¢ Me
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where n, = 37Z/(47R2). The corresponding pressure is

OE./Z 3 (4n\3 43
pcznz 326 =7 (?) Z2/3ezne/ _

In the extreme relativistic limit this is just a constant fraction (a few percent) of the

degeneracy pressure:
P _ _i/?) 3 v i 72/3
Pd 5! ™ hc .

In the non-relativistic limit, P. becomes more important at lower and lower densities:
P mee2Z2/ 3
Py (2ne)1/3 Th?

At low enough density, P. = —Py:

A (meeQ)3

57 37,0 (pc ~0.47% g cm_3) ,

Nec =

and the total pressure vanishes. For iron this is about 250 g ¢cm™3, which is not the
laboratory value of 7.86 g cm™3 because it is incorrect to treat the e~ gas as uniform.
The Fermi energy of the electrons is modified by the Coulomb potential:

PF
2me

Ep=—eV (r)+

and is constant in space, otherwise electrons would move to a lower Ep. The electron
density is

s s 3/2
= 25ph = o5 2me (Br + eV ()],

The potential is determined by Poisson’s equation

e

V2V = 4men, + nuclear contribution

where the last term is effectively a delta function at the origin. Omitting it for r > 0, we
have the boundary condition: rV(r) — Ze as r — 0. The electric field should vanish at
the outer boundary, since this volume must be overall neutral: dV/dr|p = 0. Poisson’s
equation in spherical geometry becomes

d2¢ ¢3/2
= o (9.2.1)
where 13
Ze2p (r) 1287 mee?
EF—FGV(T):f, $:T<97r2> ;2 .
Eq. (9.2.1) has boundary conditions
dé ¢ (o)
0)=1 =27 =
b0 =1 ) =] =2
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where z, corresponds to r = R.. The latter condition can be seen by evaluation of
Z = 4x [ nertdr over the entire volume. The equation Eq. (9.2.1) has a unique solution,
when ¢/(0) = —1.588071, in that as z, — o0, ¢(w,) — 144x,3 — 0. Otherwise, for larger
values of ¢'(x,), ¢ doesn’t vanish anywhere and diverges as * — co. At some point, the
second boundary condition will be satisfied.

The pressure at the outer boundary is the free particle expression

po ST s py = L (1287 V3 mee2\* [ (20)1%°
T BBm T T 1o0n 92 1 o '

The density is the total mass in the volume divided by the volume:

3Amp 1287 <m662>3 4dAmpZ <2m662>3
p= =

4 92 \ B’z 3 rhiz,

For low densities, the solution approaches the unique solution with ¢(z,) — 144z, 3. Thus,
we have that P « p!0/3, with a constant K given by Eq. (9.3).

9.3. Mass-Radius Relation for Degenerate Objects

C ‘\‘ [ 1

0 [ relativistic_ B

> —1F E
= - ]
o - ]
) C 7
o —2 = —
= C n
o - -
9 —3C =
:\ | | | | | | | | | | | [ f | | | | | | | | | ]

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Log,, Radius (km)

Figure 9.3.1: The mass-radius diagram for cold compact objects. The
solid lines are the limiting expressions; the dashed line is the full result for
a composition of pure 2C.

The maximum radius configuration has the properties, approximately, of the planet
Jupiter.
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In the relativistic limit, for radii much smaller than 5000 km, the equation of state will
deviate from that of a v = 4/3 gas. Electron capture will reduce Y, and the value of the
Chandrasekhar mass. Therefore, a regime where dM/dp, < 0 will exist. Such a regime is
dynamically unstable. At sufficiently high density, where nuclear forces become important,
the effective value of v will increase, the mass will reach a minimum value (M, =~ 0.01
Mg, where R ~ 300 km), and stability is restored. As the central density increases further,
dM/dp. > 0. This is the neutron star regime. As the mass increases, and the radius
shrinks, general relativity, which we have heretofore ignored, becomes important. The
most important feature that general relativity introduces is that at densities well in excess
of the nuclear saturation density, ps = 2.7 - 10* g cm™3, the mass reaches a maximum
value, in the range 1.5-3 M. Larger density configurations are once again dynamically
unstable. The maximum mass is discussed in a subsequent lecture.

9.4. Cooling of white dwarfs

The interior of a white dwarf has energy transport dominated by conduction. The
electrons are extremely degenerate, nowever, so they must have very large mean free paths.
The thermal conductivity is very high. The temperature gradient must be rather small.
The interior is roughly isothermal. Near the surface, isothermality breaks down as the
opacity increases. The surface regions are diffusive, with a temperature gradient

dI 3 kp L
dr  4dacT3 47r2’

At the high densities, Kramer’s opacity is dominant: & = k,pT3°, with k, ~ 4.3 x
10%4Z(1 + X) cm? g~1. With hydrostatic equilibrium,

dP  4ac4nGm (r) T6/5
dl 3 KoL p

The surface layer is thin, so m(r) = M. Using the nondegenerate pressure P = NypkT /i,
and eliminating p, we have

pap = 20 AmCM ENo 754,
3 KoL p

This can be integrated from P =0 at 7' = 0 to the interior, which gives

2 dac4nrGM p 73.25
8.5 3 kKoL kN, '

p =
The surface approximation breaks down in the interior when matter becomes degenerate.
This occurs when the non-degenerate pressure equals the degenerate pressure at radius r.

where one has p, and Tx. This results in

pr =2/4 x 1078722y g em™3,
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or
pY?

Z(1+X)M

Tf"5 ergs L.
®

L=5.7x10°

This is similar to the blackbody law L = 47TR20T64f £ but involves the interior temperature,

not the visible temperature of the surface. It suggests a relation like T, f f TZ /8 exists.
From L and M, and the composition, one can deduce T, the interior temperature. L of
1072 — 1075 Ly, imply Ty = 105 — 107 K and ps < 103 g cm™3. One can find also that

R —r, RNKT, 9
~4.25—— S 107~
GMup

The energy that is radiated as thermal energy by the white dwarf is the residual ion
thermal energy, since the electrons are degenerate and the star can’t release any gravita-
tional energy. For a monatomic non-degenerate ion gas, with ¢, = 3k/2 the total thermal
energy is (with T, = T))

3 Nyk
= — TM.
2 A
The cooling rate is L = —dU/dt. Using L = CMT"/2, one finds

U

Taking T' << T,, the cooling time is

3NKT M 3 Nok CMO/T
"5 A4 L 5CA L
For L ~ 1073 L, we obtain 7 ~ 107 yr.

It is interesting to compare the cooling theory with observations. Like cars on a
highway, the slower they go, the more congested the freeway (or vice versa). The number
of white dwarfs of a given luminosity should relate to their relative abundance, especially if
the birth rate of white dwarfs has been roughly constant in time. The luminosity function
is ¢(L) which is the space density of white dwarfs per unit interval of log L. Thus, with a
uniform production rate,

o(0) o | T -

If 7 o« L™, where our theory suggests « ~ 5/7, one finds
log$p = —alog L + constant.

It turns out this is approximately matched by observations, until L < 1074 L. Theoretical
corrections to the specific heat of very cold white dwarfs imply that o — 0 below this
luminosity, but observations actually reveal that o << 0 when L < 10™%%. This deficit
of white dwarfs of low luminosity is due to the finite age of the galactic disc. The cooling
time of the white dwarfs where the sudden drop in « occurs then yields an estimate of the
age of the galactic disc, about 10 billion years.



Chapter 10.
Stellar Atmospheres

10.1. Basic Assumptions for Stellar Atmospheres

A stellar atmosphere is by definition a boundary, one in which photons decouple from
matter. Deep in an atmosphere, photons and matter are in strict thermodynamic equilib-
rium. Near the surface, however, the photon mean free path becomes comparable to the
length scale (temperature scale height or pressure scale height) and the photons decouple,
eventually becoming freely streaming. Nevertheless, the matter itself is maintained in lo-
cal thermodynamic equilibrium nearly up to the physical surface itself, by which point the
photons are nearly completely decoupled.

It is often useful to discriminate between the continuum and lines in the emergent
spectrum, although the continuum is in reality the sum of many weak lines.

The thickness of the atmosphere will generally be very small compared to the radius
of the star. Then the geometry will be that of a semi-infinite slab, in which the gravity is
constant: g = GM/R?. The equation of hydrostatic equilibrium is then

dP/dz = gp,

where z = (R —r) is the depth. In addition, no appreciable sources or sinks of energy exist
in a normal atmosphere, so the conservation of energy is

V.-F=0=dF/dz, F= constant =0T, = L/ (47R?),

where I is the flux and T, is the effective temperature.

10.2. Equation of Radiative Transfer

The flow equation for photons is derived from the Boltzmann transport equation. In
general, if f represents the density in phase space (both spatial and momentum), we can
write

3
of . of . 0f
—L i—— 4+ pi— | =85, 10.2.1
3t+zi:<$8$i+p8pi> S (10.2.1)

where S is the source function which governs the creation and destruction, locally, of
photons.

The specific intensity describes the flow of energy in a particular direction (7), through
a differential area (dA), into a differential solid angle (df2), at a specific point:

4B,
~ dAcos0dQdvdt’

I, (p, 1)

781,
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The momentum p is related to the frequency v by p = hv/c. The number of photons
travelling in direction 77 and crossing dA in a time dt comes from the volume dV = cdAdt,
while the number of photons occupying that volume is

dN = f (4mpdp) (cdAdt).
Therefore the energy contained in those “travelling” photons, moving in the direction 1,
is

dE, = hvcos0dNdQ/4Ar.

Therefore i3 5
. h*v c .
I, (pvn) = 7]07 f: WII/ (p7n)

Eq. (10.2.1) can be written
of
ot

which can be simplified because we will be assuming no time dependence for our atmo-
sphere, and that there are no strong potentials influencing the photons, so that p’ = 0.
Using 7 = cfi, and i - V = cos0d/dr

7 Vf+p Vpf =5,

ng h*u3
cosf— =
dr c3

S.

Photons are lost from the flow due to absorption and to scattering, but are added to the
flow due to emission and to scattering. This can be summarized by

h43

— (ky + ov) ply (Q) +

p"”/ / v (,Q) Iy () dSYdo/.
47

Here, R = %(%)37%, where R is the scattering redistribution function, normalized so

o0 o0
/ / / Ry (V,0) dQdQd dv = 1.
0 Jo JarJar ’

Also, j, is the volume emissivity, , is the opacity (mass absorption coefficient), and o, is
the scattering opacity (mass scattering coefficient). In thermal equilibrium, Kirchoff’s law
stipulates that

(10.2.2)

Jv = KkuBy (T)
where B, (T') is Planck’s function. The optical depth is defined
(note it is frequency dependent) and we may now write the equation of radiative transfer

dl, (p, 1)

=1, (1, 7) — Sy (11, 7) - 10.2.
. (s 1) — Sy (11, ) (10.2.3)
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The source function S, is the ratio of the total emissivity to the total opacity

Ky By Oy

Ky + 0y AT (K, + oy

S, =

0
/ RVI7VIVI (QI) dQIdVI.
) 0 4

To appreciate the meaning of the source function, note that if scattering is unimportant,
S, = B, since all photons locally contributed to the radiation field are thermal. If pure
absorption processes are negligible, then the source function depends only on the incident
radiation field, and is just an average of the specific intensity over angle and energy. In this
case, the source function is not dependent on local conditions (i.e., p and T'). This is the
situation in a fog: the light transmitted through the fog carries no information about the
physical conditions in the fog. But the transfer equation can be solved without knowing
anything about the fog.

The redistribution function can have the following limits:

e Coherent scattering: no energy change, but a directional change. Then R
contains 6(v — /).

e Noncoherent scattering: frequency of scattered photon is uncorrelated with
that of the incident photon. Then R is independent of both v/ and v.

e [sotropic scattering: direction of scattered photon is uncorrelated with that of
incident photon. Then R is independent of both Q' and Q.

e Coherent isotropic scattering: R = d(v — v/). This is the situation prevailing
in normal stellar atmospheres, and one has

. Ky By Oy / ’
Sv = Ky + oy * A (Ky + oy) /47T[V (€) ds’
10.3. Moments of the Radiation Field

Mean Intensity (Zeroth Moment)

f4w (py 1)) Q_ 1

Jy (Tu) = f 10 = E I, (/j,, Ty) d§2
A " (10.3.1)
1
= 5/ L, (p, 7v) dp,
-1
where the last holds in a plane-parallel atmosphere.
Flux (First Moment)
. -1y (p, 7)) TS 1 .
H, (TV) = f4 f d;l E L, (/% TI/) 1idS}
am (10.3.2)

i 1
= 5/ Ly (p, 7)) pdp
-1
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We will use the radiative flux, defined by

1
F,(n) = 2/ L, (p, 1) pdp. (10.3.3)
-1

Pressure (Second Moment)
In the plane-parallel case, one can define

1

1
C
K, (r) = 5/11,, (1.70) W = Py (7). (10.3.4)

10.4. Radiative Equilibrium

Integrate the radiative transfer equation over all v and €2:

1d
——/du/ I,,,udQ:/dV/ (Ky + o) I,,dQ—/ dQ/(n,,%—a,,) Sydv =0. (10.4.1)
de 47 4 4

This vanishes because in local equilibrium the energy gained from the beam must balance
the energy lost. This means both

F
/ (K + 0y) Jydv = / (K + 0y) Sydv, diz /F,,dl/ = Ccll—z = 0. (10.4.2)

10.5. Moments of the Radiative Transfer Equation

In turn, we multiply the transfer equation by powers of u, then integrate over pu.
Assume coherent isotropic scattering, for which

Ky Oy
S, = B Jy.
v Ky + o0y V+/<;,,+a,,”
Now integrating the transfer equation over pu yields
1dF, (1) Ky
- = B —J .
4 dr, Koy + O [By (1) v ()]

Scattering contributions have disappeared. Multiply by © and integrate to obtain the first
moment equation:

dK (1) 1
2 = . F, 5.
i~ atv () (10.5.1)

as the integral of uS, vanishes.
Note that if we integrate the zeroth moment equation over all frequencies, the right-
hand side must vanish since no energy is gained or lost in the atmosphere. Then we
have
dF ()
dr

=0, F (1) = constant. (10.5.2)
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10.6. Boundary Conditions

Imagine that one can expand the radiation field:

L, (p, 7)) = Z I; (1) ’ui,

which is especially useful when Iy dominates (isotropy of radiation field). Then, J,, ~ Iy,
F, ~(4/3)I1, K,, ~ Iy/3, which will apply deep in the interior. Thus in conditions of near

isotropy we have that

1
Ky (r) = 3dy(r), 7 =00 (10.6.1)

which is known as the diffusion approximation. It can be used to close the moment
equations:

dF, (1) 4k, dJ(m) 3

dr,  kyto, By (1) = Ju ()], r, ZFV (7). (10.6.2)

Consider instead conditions near the surface. Generally, there is no incident radiation
field. Assuming the emergent intensity nevertheless to be nearly isotropic in the forward
direction, we have

1 .
JV(O)ZE/O Iy(u,o)duzlzh(o) N [0(0)7

2 2 - t+1 2
1
1; (0)
E0) =21 I (u0) udp=2> 2 ~ 1(0).
©) =2 [ 1, (5.0) S g =0
Therefore,
J, (0) = F, (0) /2, T, — 0 (10.6.3)

which is the Eddington approximation.
10.7. Solutions of the Radiative Transfer Equation

10.7.1. Classical Solution

For simplicity, we will drop the v subscript (but remeber that it is there!).

dI (p, 7)

o =1 (u,7) =5 (k1) (10.7.1)

I

This equation has an integrating factor e /1,

—_— _T/M —_ — _T//j’
Ho I(p,7)e S(r)e .
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Integrating: 0
I(p,7)e/n = —/s et (10.7.2)

to within a constant. Suppose we evaluate this between two optical depth points, 71 and
9. Then

= dt
T (p,71) =1 (p,m2) €m0 +/ S () e =/n= (10.7.3)
m H
The emergent intensity of a semi-infinite slab can be found if we take 71 = 0 and 7 = oo
o dt
I (p,0) = / S (t)e /=, (10.7.4)
0 H

which is a weighted mean of the source function, the weighting function being the fraction
of energy that can penetrate from depth ¢ to the surface. If S is a linear function of depth
S(t) = a + bt then I(u,0) is the Laplace transform of S, I(0, u) = a + bu.

Now suppose that we have a finite atmosphere of thickness 7" within which S is con-
stant. Then the emergent intensity is

r dt
I(MaO)ZI(MaT)e_T/H+S/ eti—
0 1% (10.7.5)

=1 (p,T)e T4+ 8 (1 —e_T//“‘> .

If T'>> 1 we have I(u,0) = S: the intensity saturates and is independent of angle.
It is most convenient to discuss this equation at an arbitray point when we impose one
of two boundary conditions, either at 7 =0 or 7 = co. If 71 = 0 we have

F0) = T(u e+ [ s @i,
0

or
I(p,7)=1(u0) e/1 _/ S (t) e(r—t)/u@_
0 Iz

In particular, for ;1 < 0 when there is no incident radiation (I(u,0) = 0),

uit

—1<p<0 (10.7.6)
I

-
e

0
For p > 0 we can take 7 = 0o, on the other hand, and using 7 =7

I (p,7) :/ S (t) e(T_t)/“%. 1>p>0 (10.7.7)
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10.7.2. Schwarzschild-Milne Integral Equations

Consider the mean intensity

+1
J(r)zlf T(u7)dp

s [ st

Interchange the order of integration:

1 [ 0 dw 1 /" 0 dw
_ - w(t—7) 4 - w(r—t)
—2/T S(t)dt/1 e w+2/05’(t)dt/1 e e

where we used w = 1/p in the first term and w = —1/p in the second. The w integrals
are called exponential integrals:
o0 o0
E, (z) :/ t~ e Mt = a:"_l/ t~ et dt. (10.7.8)
1 x
Note that
E! (z) = —E,_1 (z) (10.7.9)
and 1
E, (z) = : le™" —xEp_1 (z)], n> 1. (10.7.10)
n J—

For large arguments, an asymptotic expansion exists:

e ” 1 2t 3
E =— 14— —+---. 10.7.11
1 (@) x [ x + x2 3 + ( )
For small x, we can use
Ei(v)=—y—Inz+» (-1)! >0, (10.7.12)

where v = 0.5572156. ... Obviously, F1(z) is singular at the origin, but E,(0) = (n—1)~!
is finite for n > 1. However, Fo(z) has a singularity in its first derivative at the origin:
E}(0) = — 1 (0).

It is useful to collect also these results for the integrals of elementary functions with
FEq:

1 > p p' & Tk p+1
2/ Byt - r|tdt = = kz_o 0+ (1) Bpra (1) (10.7.13)
where 6, = 0if @ = p+1—k is even, and d,lpha = 2/a if o is odd. For p =0 [1] (2), the
right-hand side of Eq. (10.7.13) is 1 — Ey(7)/2 [+ E3(7)/2] (2/3 — E4(7) + 72). Finally,
for a > 0 and a # 1,

1 o8] e ot
— / Erlt — 7le”dt = [ln
2 0 2a

a+1
a—1

Eq (1)
2a

‘—El(T—aT)]—F
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The mean flux can be written now as

J(T):%/OOS(t)El(t—r)dt+%/0TS(t)E1(T—t)dt

. (10.7.14)
1
_ —/ S () Eult — r|dt.
2 Jo
Similarly, we can find
F(r) = 2/ S (£) By (t— ) dt — 2/ S () By (7 — 1) dt, (10.7.15)
T 0
and | e
K (r) = 5/ S (t) Byt — r]dt. (10.7.16)
0

Recall that the source function, in the case of coherent isotropic scattering, can be
written as

S=—" B+ 7 J=J+eB-J), (10.7.17)
K+o K+o
so we can find an integral equation for the source function itself:
1—¢ [
S(r)=€eB(1)+ 5 S (t) Eq|T — t|dt. (10.7.18)
0

The Planck function makes this equation inhomogeneous. This equation is more general
than the assumptions indicate. As long as the angular dependence of the redistribution
function is known, it is possible to do the solid angle integrals and express the source
function as moments of the radiation field. The moments can be generated from the
classical solution, which yields an integral equation like the above.

Since S can be written in terms of .J, we also have

oo oo
1_
J(T):/O %B(t)E1|7-—t|dt+/0 5T (6) Bl — tlt. (10.7.19)

Remember that € is a function of 7 and has to be inside the integrals.

10.7.3. Asymptotic Form of the Transfer Equation

The condition of radiative equilibrium demands that at each point

/000 (ky +0u) Jy (1) dv = /Ooo (ko + 0,) Sy (1) dv.

For isotropic coherent scattering, we have

(0.) (0.) (0.)
/ (ky +0y) Jy (1) dv = / Ky By (1) dv + / oyJy (1) dv,
0 0 0
or simply
(0.) oo
/ kydy (1) dv = / Ky By (1) dv. (10.7.20)
0 0
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The scattering has cancelled out. This suggests that at large optical depth, the source
function is nearly the Planck function. Also, the thermal emission is set by the local
radiation field.

Now consider great depths in a semi-infinite atmosphere, where we expect that S, =~
B,. Making a Taylor expansion:

S, (t) = i (t=n)"d"By (1) (10.7.21)

! drm
n. T
n=0

Substituting into the classical solution Eq. (10.7.2) we find for g > 0

o0 00

1d"B o0 _ dt d"B, 1 [ ., dx

I (p,7) = E ] dT”V/T (t—T)ne( B/nZ" — E dTnVH e T/ .
n=0

n=0 H — 0
% (10.7.22)
Z ,d"B, B, (r) + dB, N 2d?B,,+

P War T e

For 11 < 1, to within terms of e™7/# << 1, the same result for I, (s, 7) exists. Therefore

d”B 1 d*"B, 1d%B,
J =B — 10.7.23
0= 0B [ - §32n+1dT2n S(7) 4T (107.98)
o0
4 d**lp, 1dB, 1d°B,
F, (1) = == - 10.7.24
() §2n+3 dr2n+l 3d7’+5 d7'3+ (10.7.24)
and - ) )
1 dB, 1 1d2B,
:E; = - 10.7.2
2 ()+5dT + (10.7.25)

02n+3 dr2n 3

Note the relation to the diffusion approximation Eq. (10.6.1) established earlier. We can

wite 4 (1 dB,\ dT
F,=—— v = 10.7.26
v 3 <f<a,,p dT > dr’ ( )

where the coefficient of dT'/dr is the radiative conductivity. This equation is simply the
stellar structure luminosity equation established earlier.

It turns out to be conceptually simplifying to keep u positive for all rays. Thus, where
it < 0in the above, we will write —u henceforth. The classical solution, using 71 = 0,79 =7
and I,(—p,0) =0 for 4 < 0, and 71 = 7,79 = oo for u > 0 is then

I, (+p, 1) = / SV—(t)e(T_t)/“dt p>0
ok (10.7.27)

I, (—p,7)= /0 Sylft)e_(T_t)/“dt. <0
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10.8. Mean Opacities

For each a given atmospheric equation, it is possible to write the general frequency-
dependent equation in a gray form by defining a different mean opacity. For example, if
we wanted a correspondance for the fluxes

o0
/ kyFy,dv = KpF),
0
we could define a flux-weighted mean:
o0
KE :/ ky (B, /F) dv. (10.8.1)
0

However, a practical difficulty is that we don’t know F}, a priori.
A correspondance for the integrated flux

o0
/ F,dv=F
0
would instead imply the mean &:
1dK F * 1 dK,
= / —dV = / — dv. (10.8.2)
Pk dz 0 Pky dz

Obviously, we don’t know K, a priori either, but at great depth, where 3K, — J, — B,,
we can define the Rosseland mean opacity

1 dB, o0 1 dBy
KR foo By gy, %

This choice is especially useful, since the frequency-integrated form of the structure equa-
tion Eq. (10.7.26) would involve precisely this mean.

10.9. Gray Atmospheres

In a gray atmosphere, there is by definition no frequency dependence. The condition
of radiative equilibrium then states simply that

S(r)y=J(r)=B(r) = —, (10.9.1)
illustrating that the individual roles of scattering and absorption are irrelevant. The inte-

gral equations for the source function and the moments of the radiation field become:

B(T):—/OOOB(t)E1|t—7'|dt, J(T):%/OOOJ(t)E1|t—T|dt,



Stellar Atmospheres 91

Fﬁj:2/mB@ﬂh@—Tﬁﬁ—2AjB@Ebﬁ—wdu

Kﬁj:%AmB@ﬂ%ﬁ—ﬂﬁ. (10.9.2)

The zeroth moment of the transfer equation is now

1dF

—-——=J-J=0 10.9.3
4 dr ( )
and the first moment equation is

d F

- =, 10.9.4

dr 4 ( )
These are integrable:

1

K (1) = ZFT + constant. (10.9.5)

At very large depth, the diffusion approximation gives J(7) — 3K (1) — 3F'7/4, and at the
surface the Eddington approximation gives J(0) = F'(0)/2. Therefore, a general expression
for J is

th:ZFh+qﬁﬂ. (10.9.6)

From Eq. (10.9.2) one sees that then

1 oo

ra@ =g [l a@) Bl -l
0

In addition, the constant in Eq. (10.9.5) must be g(co) since K = 3.J as 7 — 0o. A general

solution of the gray atmosphere is equivalent to solving for ¢(7). We will look at some

approximate solutions.

10.9.1. Approximate Solutions

Evaluating the expression Eq. (10.9.6) at the surface, we find

3F F
TO) =" q0)~
or ¢(0) ~ 2/3. The simplest solution to the gray atmosphere problem is simply to choose
q(T) =2/3.

Formally, the Eddington approximation consists of assuming K = .J/3 everywhere.
This has already shown to be true at great depths, but in fact is true in a wider variety of
situations also. Consider:

a) I(p) expandable in odd powers of p only (except for Iy which is still dominate).
Therefore only the Iy term contributes to J or K and we generally obtain J = 3K.

b) I(u) = Ip for > 0 and 0 for g < 0. Then

Iy [* I Iy [, I
J=20 dau=2 k=2 j2du="2.
2 J, T2 2/0 HER ="
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¢) Two-stream model. I(pu) = Iy for > 0 and I_ for p < 0. Then

Iy [t - ° I, +1 I, [t (%, I, +1_
o | g | e 5 2/0uu+2/_luu G

An exception is provided by a beam, in which I(u) = 0(u — pp), for which J = I and
K = Ipud.
When J = 3K, we can write the result Ky = F7/4+ C as

Jg(t)=B(r)=3F1/4+C'. (10.9.7)
Using Eq. (10.9.2) for the flux at the surface, we have

F((0)=2 /Ooo GFt + C”) Es (t)dt = 2C"E5(0) + Sp {

4

g 9B, (0)] _F

With E,(0) = (n —1)7!, we find C' = F/2 and

JE(T):ZF (r+§>.

Since B(7) = oT*/m, we also have

3 2
T =21 -
qleff <T+ 3>,

so T(0) = 2_1/4Teff. Also note that when 7 = 2/3 that T' = T,¢¢, so the effective depth
of the continuum is often taken to be at optical depth 2/3.

10.9.2. Limb Darkening

From the gray result for the mean flux in the Eddington approximation, Eq. (10.9.7),
we can immediately calculate the angular dependence of the emergent intensity using the
classical solution’s properties of Laplace transforms:

3_ [ 2 dr 3 2
[ = — — —T//L_ — —F - .
e (11,0) 1 /0 <T+3>e T <u+3>

Applied to the Sun, the center of its disc is at u = 1. The relative intensity as one traverses

the Sun’s disc is therefore s 0 5 )
M e /,1/ + — ,
Ig(1,0) 5 3

with an intensity of the Sun’s limb only 40% of its center. This is not in serious disagree-

ment with observations.

Since the source function is determined by 7', the depth dependence of T can be
determined by measuring the angular dependence of limb darkening. Measurements of
this limb darkening therefore yields information on the temperature gradient underneath
the surface.
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10.9.3. Improvements to Eddington Approximation

Note that in the Eddington approximation Jg(0) = F/2 and Ig(0,0) = F'/2 so that
Jg (0) =1£(0,0).

Actually, this result is true in general.
A check on the accuracy of the Eddington approximation is to evaluate

1 [t dt
J(O):2/OIE t, 0 // Jg (t) e = d,u——F.

Thus, the Eddington approximation is internally not self—cons1stent.
We can improve upon the Eddington approximation by using Eq. (10.9.2): on the
right-hand side of the second equation, use the Eddington approximation. Thus

3 1 2 1
JEI (T) ~ ZF |:T+5E3 (T) + g — gEQ (T):| .
Asymptotically, this approaches Jg at large depth. The biggest difference between this and
Jg occurs at the surface: Jg/(0)/Jg(0) = 7/8. The new estimate of T'(0) /T, ¢ = (7/16)/4,
while ¢(00) remains 2/3, but ¢(0) = 7/12 instead of 2/3. (The exact value is 1/v/3, only
1% different). This new estimate for J can be used for an improved estimate of limb
darkening:

3 R 2 1 1 dt
IE'(M,O)ZZF/O et/“[t+§+§E3()—§E2()]u

3.7 w (w4 1+
= °F Em (=),
4 [12+2+<3+2 "\

We now have Ig(0,0) = Jg:(0) = 7F/16, and Ig/(0,0)/Ig/(0,1) = 0.351 (the exact value
is 0.344). Note that the Eddingon approximation establishes Jg from the assumption that
F' is constant. Using the third of Eq. (10.9.2), one can show that

Fy (r) = ZF E 2B, (r) + gE?, (7)} ,
which is only approximately constant (to within 3%). The result for Fg by using the
improvement Jg is about 10 times better.

Another way of solving the gray atmosphere involves the Milne integral relations
Eq. (10.9.2) themselves. The solution of these equations is not analytic, and care must be
taken because of the bad behavior of Ej(x) as z — 0. Some gain is made by adding and
subtracting B(7) to the right-hand side of the first of Eq (10.9.2):

The integrand of the first of these is well behaved since B(t ( — B(T) goes to zero faster
than the logarithmic divergence of E;. The second integral follows from the properties of
exponential integrals:

/Ox B (2)dz = B> (0) — By (x),  E»(0) =1, (10.9.8)
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Table 10.9.1: Points and Weights for Gauss-Laguerre Quadrature

n T; Wi n T; W;
210.585786 | 0.853553 |3]0.415775| 0.711093
3.41421 0.146447 2.29428 0.278518

6.28995 | 0.0103893
410.322548 | 0.603154 |5 0.26356 0.521756
1.74576 0.357419 1.4134 0.398667
4.53662 | 0.0388879 3.99643 | 0.0759424
9.39507 |0.000539295 7.08581 | 0.00361176
12.6408 | 0.00002337

so that we find the well-behaved result
o0
B(r)= E2_1 (T)/ [B(t) — B (7)] Er|t — T|dT. (10.9.9)
0

These integrals are efficiently performed using Gauss-Laguerre quadrature
n
B(r)=E;" (1)) _[B(ti) — B(7)| Elt; — r|W;, (10.9.10)
1=0
where ¢; and W; are the points and weights of the quadrature (see Table 10.9.1).
Evaluating Eq. (10.9.10) at the quadrature points ¢;, then rearranging,

iB(tk) zn: Qi 5”’2:2/?“ 1 — Ok (10.9.11)
i=1 b

These represent n linear homogeneous algebraic equations, an eigenvalue problem. The
eigenvalue is the total radiative flux, which is a constant.

10.10. Method of Discrete Ordinates

For a gray atmosphere

ar_ 1/11( Ydp =T Z (10.10.1)
War = 2 /_ p= aj1; o

J——n

dI;
i =1Ti— 5 Z a;l; (10.10.2)

]——n

Here, i, 7 are +1,...,4+n, and I;(7) = I(u;, 7). The a; are the Gauss-Legendre weights for
the points p; (see Table 10.10.1, for n even). We will not use schemes with points where
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Table 10.10.1: Points and Weights for Gauss-Legendre Quadrature

n even 7% a; n odd Lbi a;
1 8

1 + 7 1 1 0 9

3 5

/5 9

2

2 i\/ o

5_ 9, /10| 322+13V70
7 900

1 10 | 322—13/70
£3/0F 2T | 00

i = 0, see below. We’ve replaced the continuous radiation field by a finite set of pencil
beams. This should become exact in the limit n — co. Eq. (10.10.2) is a first-order, linear
equation. Use a trial function I; = gije *": then we must have

+

=

~[w

~|ro
o %\
DO

o=
5 o=
[\

o

M‘r—l

0]

~lw
~no
D] =

n

C a;
= , 1= . 10.10.3
& 14 ki Z 1+ kp; ( )
j=—n
The latter is called the characteristic equation for k. Since a_; = aj and p_j; = —pu;, we

can write this as

Since f_ll dp =2, we have -7 aj =2 and ) 7_; a; = 1. Thus k% = 0 is a solution, and
there are n — 1 additional solutions. These solutions satisfy

1 1 1
S <k <S5 <<kl <.
H1 H3 Hn,

L_aeko‘T
- - @@ _'_ _
L+ kap az::l 1 —kapi

There is also a particular solution corresponding to the case k2 = 0: Substituting I; =
b(T + g;) into the original differential equation Eq. (10.10.2),

Li(t) =b(T+Q+ i) -
Thus the complete solution is
n—1 —kat n—1 L_aekar

Loe
I (1) = ; i e
i (7) b(T+Q+m)+;1+kam+a§::11_kam
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There are still 2n unknown coefficients (Q, b and Li,) to be determined. Use the boundary
conditions to do this. In the case of a semi-infinite atmosphere, we have the boundary
condition that I_;(0) = 0 and also that I(7) should remain finite in the limit 7 — oo. The
latter constraint immediately implies that L_, = 0. The former constraint means that

Finally, we must demand that the flux equals the flux F', or
1 n
F = 2/1/ﬂ(,u,7')d,u: 2 Z ajpil; (7).
_ =

Using the complete solution above, we have

n . -
F =2b 7—_|_Q ZQJNJ+ZCLJM]+ZLae karZ%
. afty

j=-n j=—n J=n
Now the first sum is zero, the second sum is 2/3, and the third sum is
n

1 < 1 2 1 a;
e ajq 1—7 —_ — ]___ 71 :O7

because of the characteristic equation Eq. (10.10.3). So we have that b = 3F/4, and a
constant flux is then automatic. The final result is

3 —k‘aT
I():ZF(T+Q+MZ+Zl+ku> (10.10.4)

The mean intensity is

n

J(T):§ Z ajl;

j=—n
3 n i
= |r+Q)5 Z aj+ 5 Z “JMJ+ZLae_kaT > T
4 -~ -~ — 1+ ko
] —n ] -n J=—n
With the characteristic equation, this becomes

B(r)=J(r)=-F T+Q+i:Lae_k“T

a=1

The Hopf function is then

n—1
—Q+ Y Lae ™, g(00) = Q. (10.10.5)
a=1
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Table 10.10.2: Points and Weights for Double-Gauss Quadrature

n L a;

1 1 1

2 =11+ 1) 1
1 3 2 6 1 1 5
4 ii(li\/7—7 5) z+ﬁ\/;
1 3 2 6 1 1 5
a1 £4/5+ 73 Z_E\/;

For the cases of small n, the solutions for ¢(7) are straightforward:

n=1: q(r)=1/V3

n=2: =0.694025— 0.116675¢ 703"
3: =0.703899 — 0.101245¢ 320297 _ 0,02530¢ 1222217
n=4: =0.70692 — 0.08392¢~+45887 _ 0.03619¢ 15178 — 0.00946¢ 103197,

The exact result for ¢(0) is 1/+/3; only the case n = 1 yields this value. The exact result
for @) is 0.710446, and the case n = 1 gives a value 25% too small. For n = 4 the maximum
error in J compared to the exact result is about 4%.

One can greatly improve the accuracy of this scheme by recognizing that with no
incident radiation, the solution for I has a discontinuity for x = 0,7 = 0. Splitting
the integral of Eq. (10.10.1), which has the discontinuous integrand, into two parts that
avoid the discontinuity, and then performing each integral by Gauss-Legendre quadrature,
accomplishes this. We have

(10.10.6)
where
v=2u+1, w=2u—1. (10.10.7)
Thus
dI; 1 <
pit =1l Z aj I, + L,,] - (10.10.8)

j=-n

Formally, this looks identical to Eq. (10.10.2) (for an even number of points) if n — 2n,
aj — a;/2, and the points are accordingly redefined as in Eq. (10.10.7). In short, we use
the points and weight in Table 10.10.2. The double-Gauss quadrature formula achieves
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0.6% accuracy even for n = 4. For n = 2, one can show that

3 Le™k7
Ii(T):ZF|:T+Q+ui+1+k/L':|
(2
3
B(r)=J(r) = $F [r+Q+ Le ™|
1— 1—
k:\/ e (10.10.9)
Ha H1
1 1
Q—N1+N2—E— —2—\/§
1= L—kp) (1= kpo) V3 1
- k T2

Note that this gives an exact result for ¢(0), and a result for g(co) = @ in error by only
0.1%. The discrete ordinate method can be generalized to yield the exact solution, but we
won’t work it out here.

10.11. The Emergent Flux from a Gray Atmosphere

Although in a gray atmosphere the opacity is independent of frequency, the flux de-
pendence on frequency still varies with depth. We have

4
B(T):O'TTET) :J(T), T(T)4:Z jff['r—}-q(’i')].

From the frequency dependence of the source function, Eq. (10.9.2) yields

o0 T
F, ()= 2/ B, [T (t)] E2(t —7)dt — 2/ B, [T ()] Ey (T —t)dt,
T 0
where the Planck function is

2hv? -1
BI/ (T) = 0—2 (eh’//kT — 1) .

Using the parameter oo = hv/kTs¢, where Topp /T = (3[t+q(t)]/4) "4, the flux is F, (1) =
F,,(T)g—gt

F, (1) _ 3003 [ C FEy(t—T)dt T Es (T—t)dt]

I3 v eaTeff/T_l_ o eTerf/T _ 1|

As the figure shows, for 7 = 0(2), this peaks near o« = 3(5), and the peak value for 7 = 2 is
25% smaller than for 7 = 0. The mean photon energy is degraded as they are transferred
from the interior to the surface. The Planck function (B,/F) for T' = T, is shown for
comparison: the emergent spectra (7 = 0) is slightly harder.

0.25 ‘ ‘ ‘ ‘ |
Planck: B, (T.)/F

0.20 ’ N
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10.11.1. Correction for Stimulated Emission

In general, there are 3 types of transitions:
e Spontaneous Emission: N;_,; = N;A;;dt
° (Stimulated) Absorption Nj_n' = NijiL,ijdt
e Stimulated Emission (enhanced in the presence of a photon of the same energy
as the spontaneous transition) N;_; = N;Bijly,;dt
Note the symmetric process of spontaneous absorption cannot occur. In strict thermal
equilibrium, detailed balance occurs, and the photon distribution is the Planck function,
SO
NijiBuij (T) =N; [Aij + BijBuij (T)] .
The Boltzmann formula must hold for the relative abundances of the two states:
& — ﬂe—hVij/kT_
Nj g

Writing out the Planck function:

hvi; [kT _ Bijgi

3 1] — I

49 2 © Bjig;
t] g] 02 Jt thij/kT _ 1 ’

The Einstein coefficients are independent of temperature (properties of atoms), which can

only happen if
B;igi 2h13 g;
S 1, Ay =By, ( ; gi) '
Bjig; ¢ gi
Now recall from an early discussion that the source function, in the absence of scat-

tering, is the ratio of the emissivity j,, to the opacity k,. The total energy produced per
unit volume and flowing through a solid angle df2 is

Ic?
JupdvdS) = hvN; (Aij + Biqu) = NiAith <1 + 2h—c3>
v

and the total absorbed energy is
IyliypdVdQ = NijiI,/hI/.

Then ,
I,
g — Jv NiAij (1 + ;;T) ~ Nigj 2h1? LT
v Ry N Niji N Njgi 62 v
3
S, = e—hv/kT <2h;/ N I,,) _ B, (1 B e—hu/kT) [ ehvIKT,
c

In the equation of radiative transfer, we have

u% =1, -5, =(,—-By) (1 — e—’w/kT) ,
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which can be turned into
dl,

=

if the opacity k, is redefined as k, (1 — e~ /FT).

I, - B,

10.12. Formation of Spectral Lines

Definitions:
IV (N’a 0) . . .
f = : residual intensity
14 (l’l’) Ic (/},7 0)
F, )
Ty = (0) residual flux
F, (0)

o0
Wy = / (1 —=7ry)dX: equivalent width
0

The subscript v refers to the line, and the subscript ¢ refers to the continuum. The
equivalent width is the width of a completely black line that absorbs the same number of
photons as the spectral line of interest. The integrals range of 0 and oo just means “far
from the line center”. Note that W, ~ (v/A)W).

Spectral lines are of two types: pure absorption where the absorbed energy is fully
shared with the gas, and resonance lines in which it is not. In the former, the emission of
photons is completely uncorrelated with previous absorption. In resonance scattering, the
emitted photon is completely correlated with the absorbed photon (coherent scattering).
Treating the line and continuum processes separately, the radiative transfer equation is

dl, (p, 7 K+ ky) B, + (0 +0,)J,
W) gy R Bt o o)
Ty kK+kK,+0+4+ 0,

Y

where the optical depth in the line is dr, = (k + K, + 0 + 0,) pdz.
10.12.1. Schuster-Schwarzschild Model

Suppose we have strong resonance lines formed in a thin layer overlying the photo-
sphere. Then K << ¢ and o, >> ¢. Then

drl,

ME =1I,—-J, dry = —oypdz.
14

This looks like the transfer equation for a gray atmosphere, and we must have from ra-

diative equilibrium F,(7,) = constant for each frequency. From the results for a gray
atmosphere, using n =1,

_3F, (n+1/V3+Q)

I (n) = ; , 3 (v =1/ 4 Q)

I_(r,)= 2 :
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The boundary condition 7_(0) = 0 implies that @ = 1//3 and

_3F, (7',, + 2/\/5)

3F
I (1) = T

I_(n)= 1

If we require that the line intensity on the base of the thin cool gas layer be the same as
the emergent intensity of the continuum,

3F. (0+2/V3)  3F, (1, +2/V3)
Iy (7o) = 4 = 4 :

-1
T'V:ﬂ:<l—}—\/§7—o> .

The residual flux is just

F. 2
The angular dependence can be found from the classical solution

/00 Jy (t,) e~t/idt,
0

+ I (p, 0) e~ /P,
w

Il/ (/1’7 0) =
The mean intensity can be approximated as

ho(m) = S0 () + 1 () = 2B VD),

Using this relations, one finds

= 3Fe L— T L e—To/ e—To/
f”(”)_uc(u,()) 0+ v3m)2) {wr\/g <u+ o+\/§> “} +eolm,

In the limit of weak lines, 7, << 1, we find

3F,
41 (11,0)
There is no angular dependence except what arises due to limb-darkening of the continuum.

Thus scattering lines are visible at all point on the stellar disk with roughly equal strength.
In the limit of strong lines, 7, >> 1,

Jo(p) ~1

To.

V3E,
fv (1) ~ o (11.0) 7 (u+ 1/\/§> :

The range in line strength between the center of the disk and the edge is about 2. This
will contrast with that to be found from pure absorption lines, discussed next.
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10.12.2. Milne-Eddington Model

In the case of pure absorption, we have to specify something about the depth depen-
dence of the opacity and source function, which was unecessary in the scattering case.

Define
Ky Ky + oy Ky + K 1+ 1€
Gl/ ey s 771/ ey s £l/ ey oy .
Ky + oy K K+ Ky, + oy 14+n,

€, measures the importance of absorption to total extinction in the line; 7, measures the
line strength; £, measures net effect of absorption in line and continuum. The line transfer
equation is

dl,
/’1’% = Iy - »CVBV - (1 - Ly) Jy, dT,/ = (K} —+ Ry + O'y) de (10121)
v
Note in the continuum,

kdT, _dn,
k+ky+o, 14+mn,

dr = kpdz =

so 7 =1,/(1+ ). In the Eddington approximation, B(7) = a + b, or
B, (1)) =a+br,/(1+mn,). (10.12.2)

Attempt to solve Eq. (10.12.1) by taking moments:

dF,, dK, F,
=4 v\Jv — Bl/ 5 = .
dr, Ly (J, ) dr, 4
With K, ~ J,,/?),
d®J, 3dF,
5 5 — 4, — v v Bu .
dr2 4 dt, 3Ly (J )

Using the linear relation in Eq. (10.12.2), we must have
Jy (ty) — By (1) = ce 3™,

where the positive exponent term vanishes since .J,, — B, as 7, — oo. At the surface, the
Eddington approximation leads to .J,(0) ~ F,(0)/2, or

3 3 3 b
—ZFV(O)—QJV(O)—E(CL—}-C)——C 3£y+ .

14+ n,
b 3 3\ !
— - 5 3£l/ . )
¢ {1"'_771/ 2a] ( +2>

b 3

b —— —sa
JI/ (7'1/) =a-+ v + L+ 2 e 3£VTV-

/ 3
]-+,'71/ 3£y+§

dJ,

dr,

0

Therefore




Stellar Atmospheres 103

In the continuum, 7, = 0, £, = 1. The residual flux is then

F,(0) J,(0) (v +ov3E) (V3+3)
F0) 20 (ravd) (VL D)

The residual intensity requires a specification of the source function,

T.V:

Sy (1) = LyBy (1) + (1 = L) Ty (1) -
In the continuum £ = 0, so S(7) = B, (7).

foo Sy(ty)e tv/rat,

. II/ (Mao) _Jo m .
Jum) = I (1, 0) I Sc(tye—t/rdt
0 p (10.12.3)
3 b
a —+ % (1-Ly) [ia - 3(1+,7,,)]

a+bu  (a+bp) (14 uv3L,) (3+V3L,)

Note that the second term will vanish in the case of pure absorption (£ — 1). In this case

b bu
_a\/§+1+ny _a+1+ny A
Ty = ———", v (p) = ——. (10.12.4)

av/3+b a+ by

In an isothermal atmosphere, b = 0 and r, = f,(u) = 1, and the line disappears. In
the absence of temperature gradients, there can be no spectral absoprtion lines. Thus, the
stronger the source function gradient, the stronger the line. Therefore, late-type stars have
stronger features than early-type stars. Late-type stars have visible features at wavelengths
shorter than the peak energies, where the spectrum is decaying exponentially. Early-type
stars have features at wavelengths longer than the peak energies, on the Rayleigh-Jeans
tail where the source function varies more slowly with temperature.
For strong absorption, n, >> 1, we have

WE g =
Tl/ R v = .
av3 +b M b
Even the strongest line vanishes as p — 0 at the limb. For this line of sight, grazing the

limb, the effects of temperature gradients are minimized. For weak absorption, 7, << 1,
we have

ny >>1

b, by
_ =1- .
The line strength is proportional to 7, and to x,, and thus to the number of absorbers.

Now consider the case of pure scattering, €, = 0, which requires £, = (1 +n,)"! as
Kk, = 0.
For strong scattering,

 (V3+2) VL, (4) =
ry = a\/§+b ) v\ H) = a+bu

ny << 1

T‘V:

m >> 1 (10.12.5)
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Now, even if the atmosphere is isothermal, lines will persist to the edge of the limb, where
the residual intensity is still about 1/2 of the residual flux. These lines do not depend
upon the thermodynamic property of the gas, but upon the existence of a boundary,
which permits the selective escape of photons.

For weak scattering, i, — 0 and £, — 1:

bny
’["V = e
a3 +b
bun n (30— b) << 1 (10.12.6)
fo(p)=1- Y 2

at+bu (a+bp) (1+pV/3) (V3+3)

The residual flux has the same form as for weak pure absorption, but the residual intensity
is diffferent: even for an isothermal atmosphere, a weak scattering line will be visible at
the limb.

10.13. The Curve of Growth of the Equivalent Width

Spectral lines are broadened from the transition frequency for a number of reasons.
Thermal motions and turbulence introduce Doppler shifts between atoms and the radiation
field. The probability that an atom will have a velocity v is

AN e~ (v/w)’

= ——-d
N L v

where vg is the mean velocity (of the combined thermal and turbulent motions). The
frequency v/ at which an atom will absorb in terms of the rest frequency vy is

1201
v = vy + —.
c

In addition, viewed either classicaly or quantum mechanically, each transition has a damp-
ing profile or Lorentz profile, such that the atomic absorption coefficient will be propor-
tional to

Lik

2 2"
(w—wo)” + (Tir/2)
Here I';; is related to the Einstein coefficient or strength of spontaneous emission, and
wp is the difference in energy of the states. The source of broadening in this case is due
to the Heisenberg uncertainty principle. The combined effects in the atomic absorption
coefficient are

S, x

~ L
[vo (1 +v/c) — v)* + (D /Am)?

Multiplying this by the probability for the velocity and integrating over all velocities results
in

) 1 e_(”/vo)2d1)
S, x Fik/ 2 2°
—oo VT [y (1 +v/c) — V] + (i /4r)
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Define the dimensionless variables

c(v—1p) v clig
U= ——"">" Yy=—, a = .
Voo 0 4rvyvg

Sy (u) ¢ /OO eV dy :ﬁH(a,u).

0 J—o0o a? + (u — y)2 e

Here the Voigt function is
a [ e_dey
H(a,u) = —/ _—.
T J-oo a®+ (u—y)

Now we can relate the size and shape of the spectral line to the abundance of the
species responsible for it. Consider the Schuster-Schwarzschild model, that of a gas layer
above the normal atmosphere. In this model, we have

-1
Fy,
r,=—= 1|1+ \/gTO 3
F, 2

70 20 20 20
T = / dt, = / Kypdz = / n;Sydz =< S, > / n;dz = N; < S, > .
0 0 0 0

N; is the column density of the atom giving rise to the line, and < S, > is the line
absorption coefficient averaged over depth. In this model, we neglect depth dependences,
and we write < S, >= SyH (a,u). Thus the line profile is

-1
Ty = (1 + \/27'0) = (1 + \/§S’OH2(a,u) Ni)

Now we can write the equivalent width

Wy = 2/ Van/2 2AAd/ V3SoH (a,u) N;du/2 |
0 14++/37/2 0 14+ 3SoH (a,u) N;/2

where du = d\/AN;. Now write 79 = v/3SyN;/2 so

where

-1

W — 2AN /°° noH (a,u) du
A “Jo T+ moH (a,u)

There are two limiting cases. First, for small a and small u, the Voigt function behaves
2
as H(a,u) — e~ since the integrand peaks at y = u. Then we have

2
Wx [ me " du [ dox—1/2 1
vyl B Swmve il M= e ek LRTACERE (10-13.1)
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with F' the usual Fermi integral. In the limit that ny — 0, this becomes

A
~ << 1, < 1.
AN, o + 70 a

The equivalent width is proportional to N;, the column density of absorbers. When 7y is
large, the opposite expansion of F_/, yields

Wy
~ /1 1 1
TNy v inno + n>1 a<

and the line saturates, increasing only as v/In N;.
As the number of absorbers grows still further, however, absorption in the wings be-
comes important. The relevant case is to take the u — oo limit of the Voigt function:

au_2

NZS
Note that this result is valid for any a. W) will thus grow faster again:

W /oo du  \/man
2AN; VT, 2 2
d 0 ano +1

a [ _o _p2
H(a,u)—>—/ u ‘e Y dy = u — 0.
™ — 00

no >> 1.

which depends on /NV;.
These results are valid for scattering lines, but in fact most applications require a more
sophisticated treatment.

10.14. Feautrier’s Method for Radiative Transfer

This project is to use Feautrier’s method to solve the Gray Atmosphere problem for a
plane-parallel atmosphere. In a gray atmosphere, there is no frequency dependence. The
problem is to find the intensity as a function of depth and angle; in particular, to find the
outgoing intensity as a function of angle. The equation of transfer is

dI (1, )

T L) = S (7) = I (rop) — B(7),

where we can use the gray relation S = B. We have to assume that B(7) is known. For
this problem, assume it is given by

B(T):ZF <T+§>

where F' is the (constant) flux. At the end of this project, you will compute F to determine
how accurate this approximation is. In the real world, you would then have to alter the
above approximation to ensure that F' remains constant through the atmosphere. By
such iterations, the full atmosphere model is then found. Also, in the real world, S # B
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and one has to make use of opacity information, which is also a function of density. To
determine the density, the equation of hydrostatic equilibrium has to be used. However,
in this project, we will neither consider this complication, nor do this iteration.

It is customary to divide the intensity into outgoing and ingoing streams, so that the
variable p is now a positive quantity:

dl (7, +p
u% =I(7,+p) — B(7)
T
dl (1, —
—u% =I(r,—p) — B(1).
In this method, one defines
1
u (Ta /1’) :i [I (Ta +N’) + I (7—7 _/1’)]
1
v (Ta /1’) :E [I (Ta +N’) -1 (7—7 _/1’)] .
Thus,
MW =u (7, ) — B (T)
d
W) ).
We can combine them to eliminate v:
d*u (7, 1)
22— () - B (7)

The boundary conditions on I are taken to be that of no incoming flux at the surface, and
the diffusion approximation at the atmosphere’s base:
I(0,—p)=0
dB (1)  od*B(7)
dr e d2r +

I(T—)OO,+M):|:B(T)+,U

:|7'—>OO

The second and higher derivatives of B are zero for our assumptions. These translate to

MM —u (0, 1)
dr ’
)+ (i) = [+ [y B

(10.14.1)

To solve these equations, we must discretize them. Choose angles based upon Gauss-

Legendre quadrature (for ease, choose 3 positive and 3 negative values for p;). Choose

optical depths ranging from 0 to, say, 10, with a fixed interval of A = 0.1. Thus 7541 — 7 =

A. Tt would be better in general to choose In 7 for the independent variable for accuracy’s

sake, but this complicates the algebra and a linear grid is sufficient here. We can write the
system of equations for 1 < i < N) as

—Aj jui-1,j + Dijuij — Cjui1; = Ej. (10.14.2)
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M=
roakly o e m=25
i —-m=5
1.
1.
| | |
O 5 10 15 20

.
Figure 10.14.1: Flux conservation test for Feautrier’s method with the
approximation B = (3F/4)(t + 2/3).

For 2 <+ < N — 1 one has, using central differencing,

Aij=p3 /A% Dij=1+2u3/A*  Cij=p3/A*  Ei=B;=B(n).

At the boundaries, coupling adjacent zones only, we may write

A1 =0, Dij =1+ pj/A, Ci,j = p1j/A, Ei=0

and
ANJ' :uj/A—l/Q, DNJ':1/2+M]'/A, CNJ':O,
En = By (1/2—|— ,Uj/A) + Bn_1 (1/2 — /J,j/A) .
Eq. (10.14.2) is linear, and we can use a substitution scheme similar to that of the
Henyey technique. Assume for each j, using the shorthand wu; = u; j,

Ui = Qi+1 + Big1Uit1. (10.14.3)
By substitution, one finds
o - Ei1+ai—14i
" Dis1— Bic1Ais]
Ci_1
Bi = : :
Di—1 — Bi—14i—1
Beginning at the surface, 82 = C1/D; since A1 = 0. Now one can determine all a;s and
Bis up to i = N + 1. In turn, one uses Eq. (10.14.3) to obtain each u; from i = N to i = 1.

(10.14.4)
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After the u;s are determined, one reconstructs the flux:

+1
F (Tz) :2/1 MI Tiy K dﬂ = 22“’]//1] TZa+Nj) - I(Tia _//’j)]

_4Zw]u]vlj = 4211)]/;

Here, w; are the Gauss-Legendre weights, and the sums are only over postive values of j.
To find u; ; = (du/dr); j, use the discretized relation

o U415 — Ui—15
VN
which is valid for 2 < ¢ < N — 1. For the boundary values F'(7y) and F(7y), Taylor-series
expansions yield

o - duj = Buoy — U, ol SUNj T UN—2; — dUN-1,
0.3 2A ’ N 2A

How constant is F' as a function of depth? The figure shows that near the surface, the
flux is especially poorly determined. To ensure that F' remains constant as a function of
depth, it is necessary to alter the approximation B = (3F/4)(r + 2/3). This procedure is
commonly known as A-iteration, since A is the operator that yields S.

In the gray atmosphere case, the constancy of the flux implies B = .J, so one procedure
would be to update B by using

1

B(7) :J(T)zif_1 Idp == Zw] (7, +45) + T (1, —p5)]

= Z wiu (T, ) .
J

Once this value for B is used in the Feautrier scheme, new values for u; ; are determined.
This iteration must be repeated until convergence. Unfortunately, typically thousands of
iterations are necessary. (In the figure, each curve represents 10 iterations.) This happens
because at large optical depth, we will always find J — B no matter what, and the changes
in B are exponentially small. Note that the flux was not used in the computation of the
correction of B.

A better approach is the so-called Unsold-Lucy procedure. Begin with the transfer
equation and its first two moments, in the gray case with no scattering in which S = B:

dl 1dF dK 1

—=1- -—=J-B, —=-F

dr T o4dr T odr 4

Since B is not the correct source function, F' will not be constant. Integrate the last of

the above relations, and use the Eddington approximation J = 3K:

1

1

K(r)= 1/0 F (") dTl—f-%C,
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-

= 1,

L4 \ \ \

O S 10 15

Figure 10.14.2: Convergence for lambda iteration. Different angular rays
are offset for clarity.

where C'is a constant. C' can be found if we further approximate J(0) = F'(0)/2, so

J~§/TF(T’)dT’+1F(0)
~1) 5 :

The first moment equation becomes

TR L Ny P P L]

Now, the correction AB(7) should be that which makes F' constant:

.
1
B(T):z/o F*dTI—FEF*-}-AB(T),

where F'* is the correct, constant, flux. So,

aB)=2 (1P ) - P Lpy - - MEOZF]

Even though we used a number of approximations, the correction term uses only flux
information, so that convergence to the proper solution is guaranteed. Fig. @QFg.lucy@

shows how well this works. Typically, only 5 or 6 iterations are adequate.
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Figure 10.14.3: Convergence for the Lucy-Unsold iterations. Results for

the different m rays are offset for distinguishability.



Chapter 11.
Binary Stars

Consider a binary composed of two stars of masses My and M. We define M = M + M

and p = MiMy/M. If a1 and ay are the mean distances of the stars from the center of
mass, then Mia; = Msas. The mean separation of the stars is a = aj; + ao. If the orbit is
elliptical with eccentricity e, then the separation at periastron is a(1 — e) and at apastron
it is a(1 + e). The total energy and angular momentum of the binary are

1 GM M-
E = —§Q J = py/GaM (1 — €2) = puQa®y/1 — e2.
a

Kepler’s Law is
o () _ oM
P ad
The projected orbital velocity of star 1 is
v1 — Qaqsin .
The quantity
(Mysini)® o
M? GO
is known as the mass function since it depends only on observables v;, P. If Doppler shifts
from star 2 are measured, then

f1 (My, My, i) =

(Mysini)® o}

My, Ms, 1) = =
can also be found. Then
M, _n
M; vy

independent of i. If the binary is eclipsing, the angle ¢ can be determined and the masses
individually determined as well.

11.1. The Roche Lobe

The total potential of a binary is
GM, GM,
= + —

™ T2

—d

1
—d%Q?
+ 2 7

where r1 and ro are the distances to stars 1 and 2 and d is the distance to the rotation
axis. Restricting ourselves to the orbital plane, with the origin at the center of mass,
—® (z,y) = + +5 (27 +y°) a3

Va—a)?+p2 J@+a)+y? 2

— 112 -
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In dimensionless coordinates & = z/a, § = y/a, m; = M1/M, my = My/M:

GM [ mq ma
+ +

¢ [\/(:E—mz)2+ﬂ2 V@ +m)?+

Contours of constant ® are shown in the figure. There are deep minima at the stellar
centers, and maxima at five so-called Lagrangian points. The L; point between the stars
is significant because if a star expands and reaches the potential surface passing through
it, mass can be transferred to its companion.

(NN

- (55?]) =

(z* + yz)} .

1.5 ‘ I

1.0

0.5

0.0

—-0.9

—1.0

7/‘.5 \\\\‘\\\\ T \\\‘\\\\7\\\ ‘\\ \\‘

-1.59 —-1.0 -0.5 0.0 0.5 1.0 =15 —=-1.0 =05 0.0 0.5 1.0

X X
Figure 11.1.1: Contours of constant potential for a binary star. La-
grangian points are indicated, as is the Roche lobe (thick contour).

The equipotential surface that passes through L; is called the Roche lobe, and its size
depends upon the mass ratio of the binary. Kopal (1959) gives for the radius Rp with
nearly the same volume as the Roche lobe:

Rp M\ 3
TR _ 46 2L) . 11.1.1
a 046 <M> ( )

o (B n (i (W) e

A better fit is by Eggleton:

RR/CL =0.49
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11.2. Mass Transfer

Assume the binary is circular. Then
M J? 2 oMy — M
0= o, da= <—a> <17> dMs, (11.2.1)
GME (M — My) My M — M

if dM = dJ = 0. This shows that if My < Mj, transferring mass from M; to My results in
a shrinkage of the orbit. Am episode of conservative mass transfer in a binary results in

2
M1 initiat M2 initial >
Ml,finalMQ,final

Qfinal = Ginitial <
Eq. (11.2.1) implies that in terms of the mass ratio of the binary, ¢ = My/M;,

2a (q—1
da = — | —— ) dq, 11.2.2
T <1+Q> ! ( )

or a (1 + q)*¢~2. Expressing Eq. (11.1.1) in terms of ¢, then taking the derivative and
combining with Eq. (11.2.2),

da Ry dq 2 q—l) 1 }
dR; =R, 2L Y _po|2 _ da.
N L{q<1+q IE

This implies that the Roche lobe size reaches its minimum value when ¢ = 6/5, or M1 =
SM/11.

On the other hand, suppose that mass is lost from one star in the form of a wind and
is not accreted onto the companion. Then we might expect that

M
Qfinal = aim’tialMa

and mass loss will cause an increase in a binary’s separation.

Now consider mass transfer when star 1 fills its Roche lobe. Stable mass transfer
occurs when the change in radius of star 1 after transferring an increment of mass through
the inner Lagrangian point is not offset by a corresponding change in the Roche radius,
triggered by the new mass ratio of the binary. This requires that the logarithmic change
of radius with mass for star 1 satisfies

din R dinRr  dlna 1_2<2M1—M> 1

dIn My dinM; dlnM; 3 M — My

3
In an equal mass binary, the first term vanishes. Generally, we can expect that this
condition is generally satisfied. It is not, however, for a star with a convective envelope,
for which v = 5/3 and R oc M~1/3.

In some situations, mass transfer will be driven by losses of orbital angular momentum.
The primary sources of angular momentum loss are magnetic braking and gravitational

radiation. We have . .
a J Ms\ My
—=2—=2(1-—
a J ( M1>

My’
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where the donor star is taken to be 2, so that M, < 0. Using the simple Roche lobe
formula,

@_21_2 1_% M2 1M2
Rp ~J M,

M; 3L

Assume that Ry/Ry = «(My/Ms, where o = —1/3 for a non-relativistic degenerate, or

convective, star, and o = 1 for a main sequence star. For stable mass transfer, Rs should

remain equal to Rr. Then we have

J (5 «a M\ M
(5453 i

J

6

My

My’

Since both sides of this equation must be negative, we find
My, 5 «
< —

M; — 6 2
When o = —1/3(1), Ma/M; < 2/3(4/3). Gravitational radiation leads to

J 32G3 MMy (M, + M)
= -1, 11.2.
J 5¢P at i ( 3)

11.3. Catastrophic Mass Loss and Binary Disruption

Another case of mass transferral occurs after a supernova explosion, but here the mass
loss is catastrophic and the companion does not accept the mass. If too much mass is lost
from the system, the binary will be disrupted. At the moment of explosion, the stars have
instantaneous velocities relative to the center of mass (in a circular orbit) of

| G | G
U1 :Qal :M2 m, V2 :Q(IQ :Ml m

Immediately after the supernova explosion, in which star 1 loses the mass AM, the veloc-
ities of the stars are

G , G

/Ui :Qall :M2 m, ’UQZQCLIQ: (M]_—AM) m

The energy of the binary is now

1

My — AM) M-
EZQ(Ml—AM)Uiz-FMQ’UéZ—G( L ) M

G (My — AM) M, [ MM, | M (M~ AM) _2]
2a (M — AM)? (M — AM)?
G (M — AM) M,
20 (M — AM)

(M — 2(M — AM)].
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Therefore, the condition for the binary to survive the explosion is £ < 0 or AM < M/2.
In practice, two important effects modify this result. First, the remnant of a supernova
receives a substantial “kick” in the explosion. Pulsars are moving with average velocities
of 200-500 km s, far too large to explain by the velocity received from a disrupted binary.
Depending upon the direction of the kick relative to the orbital motion, a larger mass loss
might be tolerated without disrupting the binary. Second, we have ignored the possibility
that the initial binary had substantial eccentricity.



Chapter 12.
Stellar Explosions

12.1. Approximate Model

Three assumptions make modeling tractable analytically. First, the pressure of the ex-
panding remnant is dominated by radiation pressure. Second, the energy radiated from
the surface and by gamma emission from radioactivity in the interior are small compared
to the total energy. Third, spherical symmetry is valid to zeroth order.

The first law of thermodynamics dF 4+ PdV = TdS = dQ is

: . oL .

B+ PV =—orrté (12.1.1)
where E = aT*V and P = aT4/3 are the energy per gram and the pressure. Dots
represent time derivatives. The volume per gram is V = 1/p, € is the energy input per
gram per second from radioactivity, L(r,¢) is the luminosity, and M(r,t) is the mass.
Define x = r(M,t)/R(t) as a dimensionless Lagrangian radius containing mass M at time
t and radius . R(t) is the surface (defined below). The density at a given enclosed mass
scales in time with R(¢)™3 since

M (z) = 4rR (t)?’/mp(r, ) 22da (12.1.2)
0

is independent of time. We define a dimensionless density n(z) by

3
p(r,t) =1/V = pon () (RR(‘;)> : (12.1.3)

where p, = p(0,0) and R, = R(0). Thus V/V = 3R/R. ‘
_If the right-hand side of Eq. (12.1.1) was neglected, adiabaticity applies and T/T =
—R/R. This is the major time dependence of T'. Now define

T (r,t) = U () ¢ (t) T RE/R* (1) (12.1.4)

so T/T = —R/R + ¢/4¢. Here, T, = T(0,0). The luminosity becomes

4172 ac OT* 4ra? ac 4, AV
L(rt) =1 2% _ TR, %~ 12.1.5
(r?) 3 kp Or 3 mpon¢ °7 d ( )
where & is the opacity. The equation of energy, Eq. (12.1.1) becomes
3épER? 3R3p, ¢ 1 d (2%dV
_9€0, i <i> + oPo ¢ =—— (x__> i (12.1.6)
acT, oV c ¢R Vzidr \nk dz

— 117 -
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For the moment, ignore the radioactive contributions. The opacity is dominated by
electron scattering, for which k=constant, except very near the surface where the tem-
perature is low. There, a Kramer’s opacity ;with x o< p; T35 o n(U¢)~7/3R/2 would
be appropriate. For simplicity, we take k = k,. The differential equation (12.1.6) is now
separable. It becomes

3pokioRS ¢ 1 d <$2 d@) (12.1.7)

¢ oR T Uldr \n dr

The time dependence is easily solved for:

b (1) = exp {— ac /:R(t)dt]:exp [—2R10T0/0tR(t)dt] (12.1.8)

6pokoR3
where the usual diffusion timescale is

_ 3Rgpo’io
ac ’

(12.1.9)

To

The explicit time behavior depends upon R(t) (see below).

12.2. Spatial Solutions

We next examine the spatial solution, which permits us to evaluate the eigenvalue
«. The boundary conditions on ¥ are easily given. First, at the origin, ¥(0) = 1 and
U’'(0) = 0. At the surface we use the Eddington boundary condition

<%>4 _ \1% _ Z (T n g) (12.2.1)

where 7(r) = — fTR kpdr is the optical depth and the subscript e refers to the effective
radiating surface where 7 = 2/3 and r = R. From Eq. (12.2.1) we have that
1
U()=V(r=0)= 5\116 (12.2.2)
and by differentiation, using ¥’ = dV¥/dz,
3
U (1) = —Z\Ife (kp)p—q R- (12.2.3)
Combining these two, we have
2 v
U(l)=—-= : (12.2.4)
3kpR|, _q

With nk constant, the solution of Eq. (12.1.7) is a polytrope of index 1:

U (z) = S“\}# (12.2.5)
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The boundary condition Eq. (12.2.4) implies

sin v/« 2 1 sin y/a
= —— — 12.2.6
Va 3 kopR (COS “ Va > ’ ( )
or .
Jacs (1 - - pR) : (12.2.7)
o

Note that k,pR is the total optical depth in the case of uniform density. For x,pR — oo,
we have ¥(1) =0 and o = 72, Only if the total optical depth is less than about 10 is there
significant deviation from this result, and this generally occurs only after several months.
The leading correction is (1) ~ 2/(3k,pR). In what follows, we will simply impose the
outer boundary condition as ¥(1) = 0.

Suppose the density n is not constant. For n = W™ the solution is related to the
polytropic Lane-Emden solution 6, for the index n:

=0 n=0""1 z=¢/n/a, n=1/(1-m). (12.2.8)

With the boundary condition ¥(1) = 0, some cases are shown in Table 1. Note that
m = 1/3(2/3)[4/5] is the n = 3/2(3)[5] polytrope, and the eigenvalue a is o = né?. The
case m = 4/5 has a = 00; a density spike in the center with a zero density mantle — not
physically very relevant.

The polytropic solutions all have n (density) decreasing with distance from the center.
A shell-like behavior can also be modelled:

1

n
The boundary condition on the outside becomes v+ = —1. Physical solutions are possible
for two cases:
a) a = (140/9)(1 — 1/8/35) ~ 8.119,8 = /28,7y = —a/6,0 = —1 + /6.
b) a=6,=3/5,y=-1, =0.
The ratios of densities of the surface and center are n(1)/n(0) = 1/(1 — ) = 2.5 (1.41).

Table 12.2.1: Spatial solutions to Eq. (12.1.7)

n oY Iy Ix It | aly |Iy/Ix

n = 03 142.7|0.0132 | 0.0024 | 0.00615 | 1.882 | 5.42

n =0y 20.03 | 0.151 | 0.071 | 0.0556 |3.028| 2.15

n= 1o 2 | 1/3 | 1/5 | 0.101 |3.290| 5/3

a: n=(1-pB2?)~1|8.119] 0.409 | 0.260 | 0.113 |3.303| 1.572
b: n=(1-p2?)"1| 6 |0.553|0.366 | 0.133 |3.319| 1.510
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12.3. Temporal Evolution

The temporal evolution will yield the light curves. When the shock emerges at the surface
R, at time t = 0, the energy is nearly evenly divided between thermal and kinetic energies:

R
Br(t) = / T4 — 47rR?;aT;*%¢ () Iy = Br (0) 6 () %, (12.3.1)
0
1 R 2 2 3 P2 R?)
Ei (t) = 3/ pv-drridr = 2np,RoR* 1k = Ef (0) T2 (12.3.2)

where I = fol Ualde, Ik = fol nztde, v = dr/dt = xR and R, is its initial value. The
total energy Fgpn is a constant of the motion if the energy lost in radiation or gained from
radioactivity is negligible, and is given by its initial value:

Egy = ET (0) + Fg (0) ~ 2ET (0) . (12.3.3)
Reference to Eq. (12.1.5) allows us to now write the luminosity as

_ 47TCIMR0ET (0) (E’)
r=1

Lt) = RT! n)mw): e (S

_? KoPo

4 v
T 9 R,1d <— (12.3.4)

The total ejected mass is M = fOR 4rpridr = 4mpoR3Iyr, where Iy = fol nz?dz. From
Eq. (12.1.7) we have the identity

21,/ o/
—alp = (“: ) = <—> , (12.3.5)
n r=1 n r=1

so, with Eq. (12.3.4), we find

_2me s 1 Ryg (1) = B8O (12.3.6)

L(t
*) 3k M 271,

Conservation of energy Fgny = Ep(t) + Ei(t) yields
R?=R?(2- ¢R,/R). (12.3.7)

At t =0, ¢(t)R,/R(t) ~ 1, R increases linearly with time: R ~ R, + Rot. The expansion
timescale initially is

R, 5 ( Ro 4% 108 cm s7?
== =25x10 - . 12.3.8
e i I S R

(o]

However, after a time of several 73, i.e., at most days, the term ¢R,/R << 1. The
expansion is still linear in time, but /2 times faster than it was initially: the thermal
energy has been converted into kinetic energy of expansion. A reasonable approximation
is

R(t) = R, + V2R,t. (12.3.9)
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We are finally able to solve for the function ¢(¢): using Eq. (12.1.8) we have

2
b (1) = exp [—Ti - \/;T Th] . (12.3.10)

Since 1, >> 13, ¢ initially decreases exponentially, but before much decay has occurred,
the decrease steepens into a Gaussian with time constant

Tdecay = \/ V2ToTh. (12.3.11)

12.4. The Light Curve

It is useful to now express things in terms of the quantities M, R, and Fgn which we can
hope to extract from a supernova’s light curve. For example, the diffusion time becomes,
using Eqs. (12.1.9),

2 14
7o =1.6 x 107— 2" <M> (10 Cm) s. (12.4.1)

OzIM cng 1 M@ Ro

The maximum observed velocities in the ejecta’s spectra are, using Egs. (12.3.2) and

(12.3.3),
IQESNIM ESN M@ IM
Umar = \/_Ro = ~ 109\/ 051 ergsﬁa cm S 1. (1242)

Thus, the decay time, given by Eq. (12.3.11), becomes

2 M 3/4 1051 1/4 I 1/4
Tdecay = 1.7 x 10° il — 78 uLs s, (12.4.3)
aly em?g™! \ Mg Esn I

Additionally, we may write the luminosity, Eq. (12.3.6), as

saly em?g™t Esy Mg R, 1

L=3.1x10 - 12.4.4
KoT2 10°tergs M 1014(:m<25 e s ( )

and the effective temperature, T, = (L/4rocR?)'/*, as

R T Y By Mo \M* (10w (R, |2 S K
c o2 M 10%lergs R, R ’
(12.4.5)

The largest time dependence in the effective temperature is due to the expansion. The
density and opacity dependences in the ejecta have a relatively small effect on observables,
through v/aly and (Inr/Ix)"/*, which are insensitive to assumptions about n (Table I).
For the last two cases shown, Iy; = 873/2(tanh™!(\/B) — VB) and Ix = (Iny — 1/3)/B.
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1. and the combination k,7m2/aly; ~ 1.

For a Population I composition, s, =~ 0.33 cm? g~
Similarly, Ip; /I ~ 1.7.

Summarizing: measurement of the largest velocities in the spectrum gives the ra-
tio Egn/M from Eq. (12.4.2). The effective temperature gives the initial radius, by
Eq. (12.4.5). The peak luminosity, through Eq. (12.4.4) then can give the distance to
the supernova. Finally, measurement of the decay timescale provide an estimate of the

ejected mass, through Eq. (12.4.3).

12.5. Radioactive Heating

Typical Type 2 light curves do not show the effects of radioactive energy input until a
year or more after peak light, but in Type 1s, it dominates the light curve from the first
few days. Much more radioactive nickel is produced, and the ejecta mass and initial radius
are much smaller.

Choose a simple parametrization of the radioactivity:

€ = éof (z) et/ (12.5.1)

where ¢, is the energy released per gram of radioactive nuclei per second, £ is the den-
sity distribution of the radioactive nuclei, and 7, is the radioactive decay timescale. For
BNi—%Co, ¢, = 4.78x100 erg g~ s7 and 7. = 7.6x10° 5. For %Co—56Fe, ¢, = 7.97x 10
erg g1 s7!, and 7, = 9.82 x 10% s. In Type 1 events, however, the exploding envelope
is transparent to much of the cobalt decay gamma rays and positrons, making a simple
characterization of € difficult. This might have contributed to a mistaken identification
with the decay time of Cf in some supernovae. For Ni-Co-Fe decay,

¢ = ¢ () [ééwe_t/”j‘w + ¢0o (1 - e—t/ﬂ{w) e_t/T"CO] . (12.5.2)
The energy input from Co exceeds that from Ni when

tIn(e)i/efo) + et

TNi 1 — 7ni/Tco

~ 2.08 (12.5.3)

or about 18 days. After 47y;, the Ni decay is only producing 1/8 of the total energy,
and Eq. (12.5.1) becomes a good approximation. The decay (*®Ni—°0Fe) liberates 0.12
MeV /nucleon or about 2x 10% ergs per solar mass of radioactive material, which does not
destroy the homologous expansion, since it is such a small fraction of Egy.
Using
€ = o€ ('T) f (t) ) (12'5'4)

one notes that if the function én/¢p¥ is approximately independent of x, we can separate
Eq. (12.1.6) as before. Taking {(z)n(z)/U(z) = b, a constant, is tantamount to concen-
trating radioactive nuclei in the center, not an obviously bad assumption. The initial mass
of radioactive nuclei becomes

I

1
M, = 47rR2p0/ ¢ (x) n (z) 2de = b[—M. (12.5.5)
0 M
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We may now rewrite Eq. (12.1.6) as

. R (t) R (t) 2¢,M,
+ =f(t . 12.5.6
A RO Lk (12:56)
Define
w=R(t)/ (RoTo), u=t/7o+ tZ/Tc%ecay'
The second follows from R(t) (Eq. (12.3.9)). The solution of Eq. (12.5.6) is
u
¢ = Ee_“/ e fdu+e " (12.5.7)
0
where _ _ " )
- 2¢,M,.T, _ M€, _ 3-1Mr£\4 104 c¢m 109 ergs, (12.5.8)
Egn L (0) Mz, R, Esn

evaluated for nickel decay. This quantity measures the importance of radioactivity to the
light curve, especially at early times. For times ¢t < 7n;, we have f et/ "™i and for
t > 371y, we have f e~t/7co. For extremely early times, u << 1, we may use the fact
that 7, Tdecay << To to find

p=14+(€—1)u u << 1. (12.5.9)

For Type 1 supernovae, the initial radius is very small. For the envelope of the presuper-
nova to be in hydrostatic equilibrium, the presupernova luminosity must be less than the
Eddington limit 4m¢G Moo /. This implies that the envelope radius is limited to

cGMepre 1 13 { Meoore \ %/ 6000K ) 2
R T eore 91 x 1013 [ e . 12.5.10
oSN Tk T2 8 1AM, T, ) ™ ( )

Eq. (12.5.8) thus shows that € >> 1, and we expect the bolometric luminosity to initially

increase after the shock reaches the photosphere. For Type 2 supernovae with a red

supergiant progenitor (we note the important exception of SN1987A!), R, ~ 10 cm,

M, < 0.1Mg, and so € < 1 and the luminosity will begin to fall almost immediately.
Over very long times, Eq. (12.5.7) becomes

p~e"+e(f—e).  u>>1 (12.5.11)

Even for € < 1 the radioactive term is important. For £ >> Tgecqy, U t? and f
exp(—t/7c,). The fé term will eventually dominate.

The luminosity function Eq. (12.5.7) has the property that it reaches a maximum when
¢ = fe, i.e., the light curve peaks when it has the same value as the radioactive term, at
least when € > 1. If € < 1, the maximum is at ¢ = 0. The width of the maximum in the
light curve, which may of course be measured, can be estimated from

d? -1/2 C
Apeak = <Wf> = Tdecay 0 (12.5.12)

tmax 2¢mamtmam
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where t,,4, 18 the time when the luminosity is maximum. Thus, the larger the decay time,
the broader the peak of the light curve.
In summary, the luminosity, when radioactive input is considered, is

ESN M@ Ro _/u _
L =3.1x10% 1 vrd u
1051 ergs M 10 cm e 0 ¢'fdu| e ergs

3.1\ M, [ Esy Mo, R _
=3.1x10% 7"/ Ufd ° u .
% [( .5>M® 0 e fdu+ 10°1 ergs M 1014 cm ¢ oes

(12.5.13)

The upper (lower) number in the second equation corresponds to Ni (Co) decay. We have
used representative values for the opacity and the spatial part of the solution. The more
massive the ejecta, and the more compact the envelope, the more important radioactivity is.
For consistency, the maximum amount of energy input by radioactivity (> €/ 7,) should be
small compared to Egn. In the case of the Type 2 supernovae, with massive and extended
envelopes, radioactivity becomes important at late enough times. From Eq. (12.5.11) this
occurs when e =~ €f or

2
t E M 0.1M R
( ) — ~ In [1+40 515N © © 140 ,
Tdecay TCo 10° erg M M, 10** cm

(12.5.14)

which is generally ¢ ~ (1 — 2)7gecqy >~ 100 — 200 days.

12.6. Application to SN 1987A

SN 1987A appeared to be subluminous for a Type 2. Eq. (12.4.4) immediately suggests
that the presupernova envelope must have been smaller than usual; in fact, from photo-
graphic identification, the progenitor was a blue, not a red, supergiant. Neutrinos being
observed less than 4 hours before the optical display is corroborative evidence: the time
necessary for the shock wave with a velocity equal to the largest velocities initially observed
in the spectrum, about 5x108 cm s~ to traverse the envelope is equal to two hours (it
takes 2 hours after shock breakout for the optical emission to occur) if R, ~ 3 x 102 cm.
The bolometric luminosity remained nearly constant for the first few weeks and then in-
creased. The shape of the initial light curve thus cannot completely determine the envelope
properties.

The initial luminosity, based on the assumed distance to the Large Magellanic Cloud
of 50 kpc, was about 1.8x10%! ergs s~!. Coupled with Eq. (12.5.13), evaluated at t = 0,
R, ~ 2.5 x 10'2 c¢m gives an energy to mass ratio of Egy/M =~ .18 x 10°! ergs/M,.
Eq. (12.4.1) says that the diffusion time was about 7, ~ 20.2(M /M) yrs, and the decay
time Tgecqy =~ 26.64/M /M, days, for nominal values of the opacity, «, Iy; and Ig.

After several months, the light curve became exponential decay with a halflife equal
to that of Co decay. The total mass of radioactive nuclei may be found from the absolute
position of the light curve’s tail:

M
L(t — o0) =~ 1.55 x 10% (—7"> e~t/mco, (12.6.1)
Mo,
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Figure 12.5.1: Light Curves for three typical cases of supernovae. Left
panel: Type 2 supernova like SN 1987A. Middle panel: A more typical
'red giant’ Type 2 supernova. Right panel: a Type la supernova. Solid
lines are the full solutions with both Fe and Co radioactivity, dashed lines
assume only Co radioactivity, and dash-dot lines assume no radioactive
energy input.

which gives M, ~ 0.075M. Therefore, for cobalt decay, one finds

_ 2écoM,T, €coM,
§— - ~ 85, 12.6.2
Esn L (0) ( )

and for nickel, € ~ 40. However, Eq. (12.5.9) demonstrates that until éu ~ 1, or t ~
Tdecay/ V€, the radioactive heating will have little effect. In the case of SN1987A, this
occurs (for nickel) 324/M/41 M., days after the explosion. The fact that the light curve
began to increase due to radioactive heating after about 1 1/2 weeks is already an indication
that the ejecta mass is in the range of 5-10 M.

The intermediate times are more complicated to describe analytically, but if we have
simple radioactive decay of one species, so that f = exp(—t/7¢,), one can describe the
peak conditions according to:

Upeak + Y = 1.8=2.0;  ¢pear = 0.17¢/y. (12.6.3)
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This approximation is valid when € >> 1 and 0.3 < y < 1.5 with

1/4
y:M:()m %3/4 % / (12.6.4)
21700 \ Mo Esn ' -

Thus, t/7c, ~ 2y\/u. From the observation that the light curve peaked around tpeq; = 90
days after the explosion, and the relations

2
Upeak = (tpeak/Tdecay) ~12.3 (M(D/M) ) y=0.23 V M/M(Dv

we deduce that M ~ 9 — 11 M. We used the energy to mass ratio described above. The
mass scales as the square root of the energy to mass ratio, and is inversely proportional to
the opacity, whose value was taken to be equal to that for a solar composition gas (=0.33).
For metal-rich ejecta the opacity is greater than for a solar gas, making our estimate of
the mass too high.

It is worth noting that the light curve for SN 1987A, although agreeing with the
general behavior of the solutions we have discussed, differs from them in some important
respects. First, the observed peak value of the luminosity was about 5 times the initial
luminosity (excluding transient effects due to the ultraviolet burst) compared to about
Ppear =~ 0.17€/y ~ 2 times in the analytic solution. Second, the peak of the observed
light curve does not lie exactly on the asymptotic radioactive decay line, and it lacks the
symmetry and breadth of the analytic solutions. This behavior implies the existence of
additional energy sources or uneven distribution of radioactive components. One additional
energy source is due to recombination in to the cooling wave that eats inward into the
ejecta. This contribution cannot be easily included in the analytic solution.

12.7. Application to Type 1 Supernovae

In the case of Type 1 supernovae, involving the explosion of white dwarfs, the radius is
of order 1000 km. The explosion energy is again of order 2 x 10°! ergs. Using Eq. (12.5.8),
we find for Ni that € ~ 4 x 10° if the ejecta mass is 1 My, and 1/2 is Ni. We also note that
the parameter

M\ 105 erg s ! 1/4
Yy = Tdecay/2TNi =13 (M—@> (E—SN> ~ 1.1 (12.7.1)

for Ni decay. Eq. (12.6.3) then suggests that the peak in the light curve is reached when
Upeak ~ 0.6 and @eqr = 0.16€. The maximum luminosity is therefore about 0.16 M€ n; =
8x10%2 ergs /s, which is completely independent of R and is also insensitive to the explosion
energy and the ejected mass. This is what makes Type 1 SN so valuable as distance
indicators. Note that the light curve peak is noticeably shifted from the explosion time by
a few weeks:

tpeak = /UpeakTdecay ~ 17 days.



Chapter 13.
Supernovae and Neutrinos

The photonic and kinetic energies of a Type 2 supernovae are only a fraction of the total

energy released. The optical energy is about 10*? erg/s for a month, or 10*° erg. The
kinetic energy is about 10 My at velocities 0.01 ¢, or 10°" erg. But the total energy
released is the binding energy of the neutron star that’s formed: 3GM?2/5R or 3-10°3 ergs.
This energy emerges mostly in the form of neutrinos.

13.1. Neutrino Trapping

The discovery of neutral currents in the early 1970’s led to the modern picture in which
stellar collapse produces to a lepton-rich (electrons and neutrinos) remnant plus an ejected
mantle powered by a shock and heat from neutrinos leaking out of the core. FKElectron
capture, which otherwise would change the matter from Y, = Z/A ~ 0.42 before collapse
to Y. < 0.1 in cold, catalyzed neutron star matter, is suppressed because neutrino trapping
occurs shortly after the collapse begins. We use g4 = 1.253,

0o = (4/7) (mec/h)? (Gp/mecQ)2 =1.76 x 10~ cm?.

1. Neutral current scattering by free nucleons,

V+n£>1/+n, V+p£>V—f-p, (13.1.1)
2
E
oy = % < ”2> =1.7x107%E2 ecm®>  ND,

meC

9 2/ g 2

on = 72 (1 4 243) . v (E22) =21 x 107%72E, 2 em? D,
64 MmeC PEC €F p

2. Neutral current coherent scattering by heavy nuclei,

v+ (Z,A) 5 vt (Z,4), (13.1.2)

16 MeC2

3. Charged current nucleon absorption,

2
ga= 0 < By ) [A+ 7 (4sin? 0y — 2)]° ~ 4.2 x 107 N?E2 cm™2,

Vet n D pte (13.1.3)

2

o E, _

o4 =§(1+3gi)n(m Cz> =19 x 1078V, E} em®  ND,
(&

3nlo, 9 T \? My €2 Y. 1/3
— 143 —
Ta = og (14304) <m602> o J\1-y,

1/3 2/3
1.43 x 10~2 <i> T2 <&> em?. D
1-Ye P

— 127 -
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4. Charged and neutral current electron-neutrino scattering,

wW.Z _

v+e = v+te . (13.1.4)
E, \*E

o, =0.10, <—”2> —. (13.1.5)
meC He

The largest opacity is due to coherent scattering, and the neutrino mean free path (\, =
1/ <op>)is

60

-1 /10 MeV?
A 2= (6X,+5X, + A (1 - ay) X4 ) (—e> k. (13.1.6)

P12 E,
We used a simple form for o, and X, =1-X,,—X;,— Xg. Wefind A\, = R ~ (3M/47rp)1/3
when p ~ 3 x 10!° g cm™3. The actual trapping density occurs when the v diffusion time
is smaller than the collapse timescale:

2 1/2
T = :;I;V ~ .03p12 s = 7. = V33 <87T3Gp> ~ 7.5 X 10_30121/2 S.
The factor v/33 follows from self similar models. Thus p ~ 4 x 10!t g cm™3.

Yy =Y. + Y, is frozen at values near 0.4, and the collapse is essentially adiabatic (no
loss of neutrinos, no change in electron fraction). The adiabat has a rather low entropy,
s ~ 1 per nucleon, because of extensive neutrino cooling during the post-carbon burning
stages of the precollapse iron core. At the beginning of collapse, T' ~ 0.7 MeV, p ~ 4 x 10°
g cm ™3, and Y, ~ 0.42. The translational entropy of nuclei per Fe nucleus is

56mT\>/? 1

— — | ~17.

2mh n56
Excited nuclear states will contribute an entropy per nucleus of

2 T
er — > — | =48,
=3 (7) =+

where Tr ~ 35 MeV is the fermi energy of nuclear matter. The entropy of electrons per
electron is

)
Snue = 5 + log

Se — Tr — : 1.1.
e
There is a dilute vapor of neutrons also, with an entropy per nucleon of

mT 3/2 2
( 2) — | ~12.9.
2mh Uz

Summing these contributions, we find per baryon

Snuc + S€$
56
(The solar center has an entropy per baryon in nuclei alone of 16.5).

)
Svapor = 5 + log

s=X + S.Ye + SvaporXn =~ 0.92.
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13.2. Collapse

Consider a one-zone collapse model using R ~ (3M /4w p)'/3 to understand the evolu-
tion of Y, and Y. Take

Olnp 1
= —. 13.2.1
ot Te ( )
The first law of thermodynamics is
G=Ti+ 3 1Vi =< Byese > (Ye + Y,,) : (13.2.2)
i

where ¢ refers to nucleons, nuclei and leptons. The heat change ¢ is due to the escape of
neutrinos with average energy < FE, .. >. In nuclear statistical equilibrium, the sum is
(ﬂ = fn — //fp) ) . )
> Y = Ye (pte — o) + Yopio. (13.2.3)
(2

Ts=-Y, (Ne — i — /111/) - (Ye + YV) (/111/_ < Eu,esc >) .

The first term is the entropy generation from being out of beta equilibrium while the
second is due to losing vs. If vs freely escape, p,, = 0, and then

Té=-Y, (e — o— < Eyese >) free escape.

When vs are fully trapped, < E, csc >= 1, because only vs at the top of the Fermi sea
will escape. p, increases until beta equilibrium is established and reverse reactions balance
forward ones: entropy generation is halted.

For changes in Y, it is sufficient to consider only v capture on free protons, which in
the case of degenerate e”s and freely escaping vs, is

2

: 3

Yo=—< ( “’3) RnY, Xpo,c = 488p15Ye X2 R 571, (13.2.4)
MeC

where R = 1 — elte==)/T yccounts for reverse processes that force the rates to 0 in
B—equilibrium. Y7, changes due to neutrino loss. Early, vs freely stream out; later they
leak out via diffusion. We can approximate

2
. —Y] R 3R
YL = L; Ty = — 1—|—<—>.

T, c Ay

There is great sensitivity of Y, on X, and T. For non-interacting protons, X, oc
exp(pp/T). Opp/0Ye =~ 90 MeV, when the sum of bulk, surface and Coulomb energies is
considered. The entropy change is closely coupled to Y, such that 7" will increase with
p- Thus the system is highly self-regulating: as Y, decreases, p, also decreases, which
reduces X, turning off the electron captures. The net result is that full B—equilibrium is
established by p12 = 1, and Y7, is marginally less than the initial Y.
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13.3. Rebound and Shock Formation

Nuclei are not dissociated during the collapse due to the low entropy and high Y.
When the central density approaches ps, the nuclei merge into a nucleon fluid that is
relatively incompressible. Only above this density is stability restored and the collapse
halted. The pressure is dominated by relativistic electrons and neutrinos, with an effective
adiabatic index constant at about 1.30. We’ve seen that a self-similar solution exists in
this case. The collapsing core thus separates into an inner, homologous (v « r) part, and
an outer, supersonically infalling part that is left behind. The mass of the inner core is
somewhat larger than the equivalent Chandrasekhar mass oc YLZ. When the collapse is
halted, a shock wave is produced at the boundary between the inner and outer parts of the
core, because outside of this point, sound travels more slowly than the matter is moving.
Due to energy conservation, the initial energy of the shock is well approximated by the

binding energy of the inner core GM>/3 x YL10/3.

For the shock to be successful, it must propagate through the outer core, and eject
the envelope. The shock’s energy is dissipated by dissociation of nuclei in its path, which
takes about 9 MeV /nucleon, or 18x10%" ergs/M. The mass of the outer core is that of
the initial iron core minus the mass of the inner core. The success of the shock depends
strongly on Y7, and the initial iron core mass. If the shock stalls, neutrino heating of matter
behind the shock may eventually resuscitate it. Otherwise, the shock is forced back by
ram pressure of infalling material, and a black hole would form.
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s :
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0 15 = .
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O
mg : dIS (/[%ﬁ :
~— | —~ ]/E/) .
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<) L |
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@ [ —
5 B Eshock |
\ \ \ \ \
0.3 0.35 0.4 0.45

Leptons per baryon, Y,
Figure 13.3.1: Competition of core size and dissociation in supernova
energetics.
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Can the shock succeed? The mass traversed and dissociated by the shock dissociate
it, are both proportional to o (YI%e —Y7), where Yp, ~ 0.41 — 0.43 is the effective lepton
fraction in the precollapse iron core, and Y7, is the trapped lepton fraction. On the other
hand, the available energy scales as YLlo/ 3, showing the importance of Y7, (see the figure).
It is essential that Mp, be relatively small. Calculations show that Y7 < 0.36 — 0.38, so
the shock alone appears to fail to eject the mantle and envelope of the star.

13.4. Neutrino Winds

Hundreds of milliseconds after bounce, L, = Ly ~ 10°2 ergs s~ This is smaller than the
peak flux after bounce (10%* ergs/sec) and also the Eddington flux that would promptly
lift off the outer envelope:

ArcGM s M (10 MeV\? .
T 2 8.6 x 10 .
X M® ( E,/ > erg s

Lega =

Still, the flux heats the material behind the shock. The v cross section is about x = r,E2,
where £, = 5.8 x 10720 cm? g=! MeV~2. The inverse processes of electron and positron
capture cool the matter, with rates proportional to 70. The fluxes are small and the mantle
is transparent, so the net energy deposited is small. No more than about 0.1% of the total
neutrino energy can be absorbed, but this may be sufficient.

The neutrino spectrum is thermal with 7;, and average energy

F5(0), 5, 31072 _, 5

<El>= T? = T2 = 20.8T7.
v F5(0) " 147 7 v

The net heating rate per gram, assuming n,- = n,+ and F,, = Fj, is
2 6

: f (R T F5 (0)

= — TS 2 (=) - (= :

1= 16" |4\ R T,) | 75 (0)

The factor of 7/16 is due to Fermi statistics; a = 72/[15(hc)3]. Here T refers to an
irradiated parcel at radius R, while the temperature and radius of the “neutrinosphere”,
from which the vs effectively emerge, are R, and 7,,. f is an anisotropy factor due to the
spherical geometry that varies between 1, in the radial free streaming limit, to 4 in the
opaque limit. .

If T'is small, ¢ > 0 and T > 0. As T increases, ¢ — 0 where the maximum temperature
(kinetic equilibrium) occurs:

R,

1/3
AN ~ 0.5T, /R (13.4.1)
2R v 7T

Taz =Ty <

if f~1, R, ~ 30 km and R; = R/l()7 cm. Tynqe is proportional to 7, and depends
inversely on radius. But ¢ oc TS. Hence, this mechanism thrives if 7}, is high. This
requires careful transport and hydrodynamics.
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In diffusion from a star with constant density, the neutrinosphere temperature T},
decreases with time. But due to compressional heating as the mantle settles (the negative
specific heat effect), and joule heating during transport, one finds that T}, increases with
time, until compression ceases. Suppose,initially, the stellar radius is R; with density
and temperature profiles p oc 7= and T r~"/3_ The neutrinosphere is located at
R,1 ~ Ry — {1, where the mean free path of neutrinos is ¢ (Tz,o)_1 o /3. Now
compress the star by a factor o such that Ry = aRs. The density and temperature at a
given radius will scale to o p and a™/3T, respectively, where m might be about 3. The
relation R, = Ro — £5 now gives us the new radial position of the neutrinosphere and its
temperature. Assuming that o — 1 is small, we can see that

R om—3—-3

v2 :1+(a_1)u7
R 3q + on (13.4.2)
T 14 (a-nntalntm -
T,,l_ 3q+5n ’

where ¢ = R,1/¢1 > 1. No matter what value ¢ has, T, > T,1 , because m > 0 and
n > 0. The question of whether or not the neutrinosphere moves in or out in space is more
problematical, but is irrelevant.

Even if there is a net cooling near the neutrinosphere, since x o< T2, a decrease in T
will move the neutrinosphere deeper, to higher T. Paradoxically, the hotter interior core
is revealed due to the cooling.

Early on, about 20 ms after bounce, just after the bounce-shock might have failed, the
matter accreted through the shock has a density near 10! g cm™3 and is electron-rich. At
these electron densities, electron capture loss is swift, with a characteristic capture time

Teap ™ D (2p10Ye)_5/3 ms. (13.4.3)

The mantle loses pressure support and sinks, falling onto the proto-neutron star. However,

self-similar arguments show the pre-shock matter is thinning out with time roughtly as
Ppre X Ppost X r 332 o T—3/2t—1,

since v ~ 4/3. It will only be a matter of time before the accreted matter has a low density

and cools much less quickly.

The rarefaction of the accreted matter means it eventually beomes radiation domi-
nated, when

3 3
T T, 1
~pg=4x10% [ —— =3~ 4 x10° v - -3
p=pra==x (2.5 MeV> & o % <5 MeV> R, &M

For matter-pressure dominated material, the specific internal energy oc T ~ T},q0 ~ con-
stant. The gravitational specific energy

M M 1
—E,=—— ~2x10"Y ——— -1
9TTR T TaMoR; B8
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is independent of p, as is Ej,; + E, < 0. However, the specific internal energy of radiation
dominated matter increases with decreasing density. The density where Ej,,; = |Ey| is

4 1/3
T, 1 _
Perit = 1.4 X 108 <5 1\/}/eV> (R_7> g cin 3- (1344)

When p < perit, the matter becomes unbound and explodes!

One must remember that this argument assumes that the heating to Tj,4, is instan-
taneous, which is certainly unrealistic. A crude estimate of the heating time can be made
by dividing |E,| by ¢. We get

10% ergs s7t M <5 MeV
TH =

2
I 150, T > R7; ms ~ 10 — 100 ms, (13.4.5)
where the neutrino luminosity is L, = 47 R2(7/64)acT. Thus, while the heating is cer-
tainly not instantaneous, it appears to be faster than some of the other relevant time scales,
and fast enough to keep the post-shock matter near T4,

Another point is that the binding energy of the mantle is constantly being buried
through accretion in the proto-neutron star. Therefore, the binding energy that must be
overcome to eject the envelope exterior to a given radius is constantly decreasing with
time.

The time scales for T;, increase, post-shock density decrease, binding energy decrease,
capture turn-off, ram pressure increase, specific energy increase, etc., are all of the order
of a few hundred milliseconds, while the heating is easily able to keep pace with all these
changes. Time is on the supernova’s side. If the neutrino fluxes are maintained and 7T, is
reasonably high, all we have to do is wait a while for the shock to be revived by the core
neutrinos.

13.5. The Birth of a Neutron Star

1. Following core bounce and shock passage, the star contains an unshocked, low
entropy core of 0.5-0.7 My with trapped neutrinos. This is surrounded by a
low density, high entropy mantle accreting matter falling through the shock
and rapidly losing energy due to electron captures and neutrino emission. The
shock is momentarily stalled prior to an eventual explosion.

2. After about 0.5 s, accretion becomes much less important as the supernova
becomes successful and the shock lifts off the stellar envelope. v losses and
deleptonization lead to pressure loss and mantle collapse. If enough accretion
occurs, the star’s mass could exceed M, . for hot, lepton-rich matter: if so a
black hole forms and v emission immediately halts.

3. This stage is dominated by neutrino diffusion causing deleptonization and heat-
ing of the core. v—nucleon absorption reactions set the diffusion timescale
to 5—10 s. The maximum entropy reached in the core is about 2. As the
core deleptonizes, strangeness, in the form of hyperons, a Bose condensate,
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Figure 13.5.1: The main stages of the life of a protoneutron star.

or quarks, might apear. This could soften the equation of state and decrease
M nqz enough to form a black hole.

4. Following deleptonization is the long-term cooling phase. Although v—poor,
thermally produced v—v pairs of all flavors are produced. The cooling timescale
is determined by baryon and electron scattering of v, and v;, since v.s remain
more tightly coupled through absorption reactions. In approximately 50 s, as
E,, decreases, the star becomes essentially transparent to vs, and cools more
rapidly.

5. (not shown) Following v transparency, the core continues to cool by v emission,
but the star’s crust cools less due to its low v emissivity. The crust forms an
insulating blanket preventing the star from coming to thermal equilibrium and
keeps the surface relatively warm (T ~ 3 x 10% K) for up to 100 years. This
timescale is primarily sensitive to the neutron star’s radius and the thermal
conductivity of the mantle.

6. (not shown) Ultimately, the star achieves thermal equilibrium, a state of near
isothermality, when the heat stored in the crust is depleted. The surface tem-
perature T, s is set by v-rates in the star’s core. If large (rapid cooling), Ty, ¢
becomes relatively small and the star is invisible. This could occur from direct
Urca cooling from nucleons, hyperons, a Bose condensate or quarks. In stan-
dard cooling, relatively warm surfaces are maintained. Intermediate cases can
occur if superfluids exist that suppress direct Urca cooling but don’t eliminate
it completely.
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13.6. Analytic Models for Proto-Neutron Stars

We can examine some analytic models for proto-neutron star evolution. Let M be the

gravitational mass, N the enclosed baryon mass, and F, and L, the number flux and
luminosity of neutrinos. In GR, a term e? = /—ggo relates time at infinity 7 with the
coordinate time t. U is the internal energy per baryon.

dP G (M +4xr°P) (p+ P/c)

dr r(r—2GM/c?)
M
dd—r = 47rr2p
d_N B 4mr2n
dr /1 -2GM/rc?
dp 1 (13.6.1)
dpP P + pc?
Y, 0 (4mr’F,e?
dY, __ g0(rrhet) o
dr ON
dYe
—_S,
dr
aw —Pd (I/n) 6_2¢3Lye2¢
dr dr ON

In the diffusion approximation, fluxes are driven by density gradients:

00
Fu — _/ &L(E”)dEw
0 3 37“

o0 et Oe; (E,)
L, = — ey ZEZ VR
/0 o zl: 3 or

(13.6.2)

The A\, and )\%’s are mean free paths for number and energy transport, respectively, and
are functions of neutrino energy F,. n,(E,) and €;(E,) are the number and energy density
of species ¢ = e, i at neutrino energy E,. GR corrections have been dropped for clarity.

We can combine Eq. (13.6.1) with the first law of thermodynamics to obtain the rate
of change of the total lepton number and the entropy:

dv,  dY, dY, 19

2
= — 2 y2F
T "ar T ar T ear
ds 1 0L, dY; (13.6.3)
nl—=———s——-—n Z i——
dt 47r? Or dt

n7p7e7y

There are three main sources of opacity:

1. v-nucleon absorption. Affects only e—types.

5/3 2
4 E, _
Aaps =~ 1.5 <ﬁ> JFL ( 0) s72 cm
P E,
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s is the entropy per baryon, frr >~ 2—3 is a ”Fermi-liquid “ factor that corrects
for interactions, and E,, ~ 260 MeV is typical at the beginning of deleptoniza-
tion.

2. Neutrino-nucleon scattering. This elastic scattering affects all v-types. A%,/ Aaps =
4(Eyo/E,) for v’s. For v, and v; we have Mg ~ 205,

3. Neutrino-electron scattering. This inelastic scattering affects all types of neu-
trinos. The ratio Asee/Asen = 352/ frr, in the degenerate limit and 19/ fFz, when
the neutrinos are nondegenerate.

Mean free paths for these processes are approximately:

1. Agps = 5 cm, Agps X E,,_Z;
2. Asen =~ 20 cm, Agep X E,,_3;
3. Asce =~ 100 cm, Agee EV_?’.

The opacities imply three kinds of fluxes:
1. anumber flux F), of v,.s, dominated by absorption. With Agps = Aabso(Ervo/Ey)2,

we have
* eAaps Ony, (Ey) CAabso B2, O ou
F, = S PR, = SV Y = g 13.6.4
v /0 3 or " 6n2 (he)® Or “or ( )
2. an energy flux L¢, of v,s, dominated by absorption:
o Aabs O€y (E 0 27?2
Lo — /0 4m26—§”5%da = 4mrta— (” —+ ui) . (13.6.5)

3. an energy flux LY of vus and vrs, dominated by scattering. Since Agen >> Agee,
but only electron scattering is effective in transferring energy, we have A,y =

V AsenAsce = )\effo(EI/O/EV)S'

AefroE3, OT T
2CAeffolbiyo 0T _ |\ 5, OT (13.6.6)

LE=161In2 =
VT 2 (ne)® o or’

where we used the fact that p, = 0 for v;s and v;s. Note also that b >> aT
since Aeff >> Agps-

13.6.1. Deleptonization Era

Deleptonization is dominated by number transport:

ndYL _nﬁYLdYV B EQ Tza,u,,
dt  9Y, dt  r20r or |-

(13.6.7)

With the relations nY, o g3 and 9Y7,/0Y, o u;!, valid for a degenerate neutrino gas, we

establish 5 > 5
po a0 [ 20w
P g = 35, (r B > . (13.6.8)
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We seek separable solutions of the form p, = E,,¢(t)(r).

E,, 0¢ 1 0 [ 40y
99 _ il ) = 13.6.9
a ot  rZp2or " or @ ( )
where « is a separation constant. One sees that
3 oYy,
=1—t/1y; = . 13.6.10
qs /Td’ Td CAabSOOf (ayy)o ( )
The factor (0Yr/Yy), ~ 3 for Y, ~ 0.06. The radial dependence is
1 0 oY
2,12 2
— = —=— — 13.6.11
aR%y $23$<m 33:)’ (13.6.11)
i.e., a Lane-Emden polytope of index 2. Thus aR? ~ 19 and
R? ) R\’
~ ~75 ~ 15 s. 13.6.12
T S A ben <5z (15 km> § i ( )

The deleptonization is accompanied by heating in the core, up to a maximum of about
2 in entropy per baryon. Cooling is delayed.

ds 10 [ ,0(x*1?/6) o, \>| b o [ 0T
T— =a|—5— [r?——r"" - e e I 13.6.13
e a[rzar (T or +<8r> +r28r<r 87") ( )
The first term is due to electrons, the second to the other neutrinos. There is heating
or cooling depending on the sign of the T gradient, but the u, gradients always lead to

heating. When g, > T, the first term dominates and we have net heating. When pu,, ~ 0,
cooling dominates.

13.6.2. Thermal Cooling Era

The entropy is dominated by baryons for temperatures less than about 100 MeV. Thus,
we may write

L m* [ p 2/3 p —-2/3

s ~ 2aT; a=-—— (—S> MeV™! =g, (—C> , (13.6.14)
I5m \ p Ps

where m* is the effective nucleon mass and p. is the central density. Thus

2/3
Smazx m Ne
Tran = ~ 37.8 ( ) MeV,
e 2a, “\om <4ns> ¢

where a, is the value of a at p. at the beginning of cooling. Neglect the density dependence
of m* and use m* ~ 0.5m. Assuming separation of the time and radial dependence of the
temperature T = T.)(r)p(t), and neglecting the first (electronic) term (b >> aT) in

Eq. (13.6.13):
dp b 0 AN _
2anT oz i —1/”"2 o (r _37“> = —a. (13.6.15)
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Thus the spatial solution is an n = 1 polytrope with o = 72, and
p=1—(t—7q) /e, (13.6.16)
where

ns, R? 6m2 (he)
T, = —
© 4n?2 o cAef oD,

2
) <s8> s~25s. (13.6.17)

This result agrees with numerical calculations. Thus, in spite of the fact that the mean free
paths that dominate cooling are much larger than those that dominate deleptonization, the
higher initial entropy and more compact remnant force the cooling timescale to be longer
than the deleptonization timescale. Note that the temperature during cooling decreases
linearly with time, which also agrees with numerical calculations show.



Chapter 14.

General Relativity and Compact Objects — Neutron
Stars and Black Holes

14.1. Einstein’s Equations

We confine attention to spherically symmetric configurations. The metric for the static
case can generally be written

ds® = Adr? 12 (d6? + sin® 0d¢?) — e’ dt’. (14.1.1)

Einstein’s equations for this metric are:

8mp (r) = riz (1 — e_)‘> + e_)‘@,
8p (r) = —%2 (1 — e_>‘> + e_)‘yly), (14.1.2)
o (r) = P (r) +p(r) ! (7).

2

Derivatives with respect to the radius are denoted by /. We employ units in which G = ¢ =
1, so that 1 Mg is equivalent to 1.475 km. The first of Eq. (14.1.2) can be exactly integrated.
Defining the constant of integration so obtained as m(r), the enclosed gravitational mass,
one finds

r
e =1-2m(r)/r m(r) = 47r/ pr’dr’. (14.1.3)
0

The second and third of Einstein’s equations form the equation of hydrostatic equilibrium,
also known as the Tolman-Oppenheimer-Volkov (TOV) equation in GR:

_p’ (r) _ v (r) _m (7«) + 47T7"3p (7“) )
p(M+pr) 2~ r(r—2m(r) <R (14.1.4)

Near the origin, one has p'(r) = p'(r) = m(r) = 0. Outside the distribution of mass, which
terminates at the radius R, there is vacuum with p(r) = p(r) = 0, and Einstein’s equations
give

2M
m(r)=m(R)=M, e =e*=1-"— r>R (14.1.5)
r
the Schwarzschild solution. The black hole limit is seen to be R = 2M, which is 2.95 km

for 1 Mg.
From thermodynamics, if there is uniform entropy per nucleon, the first law gives

o=a(3) ()
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where n is the number density. If e is the internal energy per nucleon, we have p = n(m+-e).
From the above, p = n?de/dn, so that

dp 1dp
d(logn) = —L — 2 dn = 2

where h = (p + p)/n is the enthalpy per nucleon or the chemical potential. The constant
of integration for the number density can be established from conditions at the surface of
the star, where the pressure vanishes (it is not necessary that the energy density or the
number density also vanish there). If n = n,, p = p, and e = e, when P = 0, one finds
Po — MNy = Nye, and

mn (r) = (p (r) + p (r)) eV OVED2 _py o (14.1.6)

Another quantity of interest is the total number of nucleons in the star, N. This is
not just M/m (m being the nucleon mass) since in GR the binding energy represents a
decrease of the gravitational mass. The nucleon number is

R R ~1/2
N = / Amr?eM?n (r) dr = / 4rmr®n (r) [1 - 2mr(7")] dr, (14.1.7)
0 0

and the total binding energy is
BE = Nm — M. (14.1.8)

14.2. Analytic Solutions to Einstein’s Equations

It turns out there are hundreds of analytic solutions to Einstein’s equations. However,
there are only 3 that satisfy the criteria that the pressure and energy density vanish on
the boundary R, and that the pressure and energy density decrease monotonically with
increasing radius. Three others are known that have vanishing pressure, but not energy
density, at R.

14.2.1. Incompressible Fluid

Among the simplest analytic solutions is the so-called Schwarzschild interior solution for
an incompressible fluid, p(r) = constant. In this case,

4
m(r) = = pr’,

2
Fﬁm] , o
14.2.1
p(r) = 50 \/ﬁ—\/m

AR [ 23 (r/R)? — 3T — 2B

p=mn(m+e) = constant, n = constant.

e =1-28(r/R)*,
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Here, 8 = M/R. Clearly, < 4/9 or else the central pressure will become infinite. It can
be shown that this limit to [ holds for any star. This solution is technically unphysical for
the reasons that the energy density does not vanish on the surface, and that the speed of
sound, ¢; = 1/dp/dp is infinite. The binding energy for the incompressible fluid is analytic
(taking e = 0):

BE 3

sin
M 48 ( \/2
In the case that e/m is finite, the expansion becomes
ﬁ:(1+e>—1[ e 36, 98° ]

M TmTs T T

—/1-28 ) —6+9—62+ (14.2.2)

14

(14.2.3)

14.2.2. Buchdahl’s Solution

In 1967, Buchdahl discovered an extension of the Newtonian n = 1 polytrope into GR
that has an analytic solution. He assumed an equation of state

p = 12/psp — 5p (14.2.4)
and found
=(1-28)(1-B-uw)(1-B+u)";
—(1-28)(1—B+u)(1—B—u)t (1—B+BcosAr')";
8mp = A% (1-28) (1 — B+ u) " %;
8mp=2A%u(1—-28)(1—B —3u/2)(1—B+u)"%;

1 [p 3/2 7 -1
=12ypps (1 — =,/ = : 2—(6,/=—-5] .
" pp( 3 p*> . < P )

Here, p, is a parameter, and r’ is, with u, a radial-like variable

(14.2.5)

=7 (Ar')_l sin Ar';
r=r(1-B+u)" (1-2p); (14.2.6)
A% = 288mp, (1 —28)""

For this solution, the radius, central pressure, energy and number densities, and binding
energy are

R=0- )\/2881)*(1—2&);

Pe =36p.f%;  pe=T2p.B(1—5B/2); nemnc® =T28p, (1—28)%?; (14.2.7)
BE _1/2 _1 N /8 /82 3ﬁ3
o7 = (A=150)(1=20)" P (1= p) 7 —lm T

This solution is limited to values of 8 < 1/5 for ¢, < 1.
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14.2.3. Tolman’s Solution

In 1939, Tolman discovered that the simple density function p = p.[1 — (r/R)?] has an
analytic solution. It is known as the Tolman 7 solution:

e =1-Px(5-3z), € =(1-58/3)cos’,

47TR2 [\/%taw— - 5—31:)} . on=l ;P) CC(:’:(Z,
¢p=(w1—w)/2+¢1,  $=¢(x=0), (14.2.8)
$1= ¢ (z=1) =tan"" \/5/[3(1 - 28)],
w = log [$—5/6+ e_’\/(SB)], wy=w(x=1).

In the above, z = (r/R)2. The central values of P/p and the sound speed square cgjc are

2c2 3 p
c = 1;6 ik c§,c = tan ¢ (tan be + \/;) . (14.2.9)

There is no analytic result for the binding energy, but in expansion

P

p

E 1B 7187432 N 683714
M~ 21 18018 ' 306306

(14.2.10)

This solution is limited to ¢. < /2, or 5 < 0.3862, or else P. becomes infinite. For
causality cs . < 1 if 8 < 0.2698.

14.2.4. Nariai’s Solution

In 1950, Nariai discovered yet another analytic solution. It is known as the Nariai 4
solution, and is expressed in terms of a parametric variable r’:

2 2 2 A 2
e—*:(l—\/%<r—,> tanf(r')) , e”z(l—Zﬁ)%(%) ,

!/ 2 / 2
f(r')=cosle+ % 1—<%> ; Q(TI):COS_10+\/%[1—<%> ;
e 1
r:Ecosf(r’) 1-26.
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The thermodynamic quantities are

cos f (r') c?

P (r') = TRlze—z\/@ [\/5 cos f (r') tan g (r')

/

-3 (L St ()| = sin f () 223 ( 5 s ()] |
() () s

N V30 c?
p(r') = ArR2JT =232

[3 g () eos 0) ~ 2 () (3 eont s (r'>>] ,

38 (> ,

N 3 etan f (r') ot
m(r)_ﬁgcosf(r’) 36(1-25)

(14.2.12)
The quantities e and c are
& = cos? f (R) = 2 B4++26/13_ e
2¢?

? =cosy (R') = —-
2e2 4+ (1 — e2) (7e? — 3) (5e? — 3)

The pressure-density ratio and sound speed at the center are

Te _ % (V2cot £ (0) tang (0) - 2),

c§,c = % (2 tan? g (0) — tan® f (0)) .

The central pressure and sound speed become infinite when cosg(0) = 0 or when g =
0.4126, and the causality limit is § = 0.223. This solution is quite similar to Tolman 7.

14.3. The Neutron Star Maximum Mass

The TOV equation can be scaled by introducing dimensionless variables:

P=qpos, p=dpo, m=2/\/po, T=2/\/Pos

dq (¢ + d) (z + 4mwda®) dz 2
-~ — = A4ndz“dx. 14.3.1
dz T (v —22) ’ dw — r e ( )

Rhoades and Ruffini showed that the causally limiting equation of state

P = Do + P — Po P > Po (1432)

results in a neutron star maximum mass that is practically independent of the equation of
state for p < p,, and is

Mooz = 4.27/ps/po Mo. (14.3.3)
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Here p, = 2.7 - 10" g cm™3 is the nuclear saturation density. One also finds for this
equation of state that

Ripae = 18.5 V ps/po km, Bmaa: ~ 0.33. (1434)

Since the most compact configuration is achieved at the maximum mass, this represents
the limiting value of 3 for causality.

Some analytic motivation for the above results was given by Nauenberg and Chapline.
They assumed that in the interior of a star both n and p were constant, so P is also because
of the first law. The TOV equation is not satisfied for this assumption, however, so the
results of this analysis are very approximate. The baryon number for fixed n and p is

R 2 3/2 px
N =47 nr7dr 4mn < 3 ) / sin? 0df
0

J1—8mpr23 8mp
0 1 —8mpr2/3 p (14.3.5)

3/2
= 27n <87p> (x —sinx cos x) ,

where sin@ = /2m(r)/r and sin x = /2. In terms of x, we can write the gravitational

mass as
3
M = sin® X-
32mp

As x increases, n, p and p in the star increase, and the mass M reaches a maximum for
X < m/2. To guarantee stability, the total nucleon number N must also be maximized,
which is equivalent to the equation

oM

— =0.

oxX |n
This results in a pair of equations:

d
dp _ 6cosx

p sin x

d d
dy, 4sin? xydy = (x — sin x cos x) <3_p - 2_n> :
p n

Combining this with the first law dp/dn = (p + p)/n, we obtain

p  6Gcosy (x —sinycosy)

p 9y cosy — 9sin+7sin® v

The condition that p/p < oo limits sin xy < 0.985, and p/p < 1 limits sin y < 0.956. The
further condition dp/dp < 1 limits sin xy < 0.90, which is equivalent to 5 < 0.405. Note this
value is significantly larger than the limit obtained above, because of the less restrictive
conditions. Nevertheless, we can now derive a maximum mass by employing the maximal
equation of state Eq. (14.3.2). Rewriting this equation as

po— Py
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and applying it to the mean density of the star p = 3M /(47 R3), using 8 = M/R, we find

B 363 353
= \/47Tp \/47% (1 —p/p).

It is valid to have taken p, << p,. In geometrized units, the nuclear saturation density

ps = 2.7-10" g cm™3 has the equivalence ,03_1/2 = 70 km or 45.5 M. Therefore,

3
M < 45.5y/—= (1 —p/p) Me.
47 p

With 5 = 0.405 and p/p = 0.364, the limiting mass is M < 4.57\/ps/po M.
For the Buchdahl solution at the causal limit, 5 = 1/6 and p/p = 3/(2 — 53), which
lead to

4(1 - 26) Pc

For the Tolman 7 solution at the causal limit, 8 ~ 0.27 and p/p = 2/(/758) ~ 0.44, which
lead to

M = (1 - ﬁ) \/WB?) (1 — 56/2) < 2-14V ps/pc Me.

15
M= 2 o oo M,

8T pe

Finally, for the Nariai 4 solution at the causal limit, 5 ~ 0.228 and p/p ~ 0.246, which

lead to
B B 33/231/2sin f (0) cos f (0 —

14.4. Maximal Rotation Rates for Neutron Stars

The absolute maximum rotation rate is set by the “mass-shedding” limit, when the ro-
tational velocity at the equatorial radius (R) equals the Keplerian orbital velocity 2 =

VGM/R3, or
3/2 1/2
Prin = 0.55 (10 km) <£> ms. (14.4.1)

R Mg,

However, the actual limit on the period is larger because rotation induces an increase in
the equatorial radius. In the so-called Roche model, one treats the rotating star as being
highly centrally compressed. For an n = 3 polytrope, p./p ~ 54, so this would be a good
approximation. In more realistic models, such as p = p.[1 — (r/R)?], for which p./p = 5/2,
and an n = 1 polytrope, for which p./p = w2 /3, this approximation is not as good. Using
it anyway, the gravitationl potential near the surface is ®g = —GM /r and the centrifugal
potential is ®. = —(1/2)Q%r2sin? @, and the equation of hydrostatic equilibrium is

(1/p) VP = Vh = —-Vdg — V., (14.4.2)
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where h = [ dP/p is the enthalpy per unit mass. Integrating this from the surface to an
interior point along the equator, one finds

h(r)—GM/r— (1/2)Q*? =K = —-GM/r, — (1/2) Q*r2,

where r, is the equatorial radius and h(r.) = 0. We assume K = —GM/R, the value

obtained for a non-rotating configuration. The potential ® = &5 + &, is maximized at the

point where d®/dr| = 0, or where r2 = gM/Q3 and ® = —(3/2)GM/r.. Thus, 7. has
Te

the largest possible value when r. = r. = 3R/2, or

GM  (2\’GM
Q% = =(>) = 14.4.3
r3 (3) R3 ( )
The revised minimum period then becomes
10 km\ 32 / a7\ /2
Poin = 1.0 < OR m) (M—> ms. (14.4.4)
®

Calculations including general relativity show that the minimum spin period for an equa-
tion of state can be accurately expressed in terms of its maximum mass and the radius at
that maximum mass as:

10 km\ 2 [ M0\ /2
Pin ~ 0.82 . 14.4.5
i = 082 () (M) T (14.45)

It is interesting to compare the rotational kinetic energy T' = I2?/2 with the gravita-
tional potential energy W at the mass-shedding limit. I is the moment of inertia about

the rotation axis:

8 R
1= r4pdr
3 Jo

for Newtonian stars. (In GR, one must take into account frame-dragging as well as volume
and redshift corrections.) Using Q% = (2/3)3GM/R3, we can write T = «(2/3)3GM?/R
and |W| = BGM?/R. We have a = 1/5,4 = 3/5 for an incompressible fluid; o =
1/3 —2/m% B = 3/4 for an n = 1 polytrope; a = 0.0377, 3 = 3/2 for an n = 3 polytrope;
a = 1/7,8 = 5/7 for p = p:[(1 — (r/R)?]. We therefore find that T/|W| is 0.0988,
0.0516, 0.00745 and 0.0593, respectively, for these four cases, at the mass-shedding limit.
For comparison, an incompressible ellipsoid becomes secularly (dynamically) unstable at
T/|W|=0.1375(0.2738), much larger values.



Chapter 15.
Galactic Chemical Evolution

An important observational input is the age-metallicity ¢ — Z relation, or AMR, which
has been obtained by combining metallicity measurements with stellar ages derived from
theoretical isochrones. The result can be expressed in a number of ways, given the errors
in the observations:

t
logy e =0.93 + 1.3 [Fe/H] — 0.04 [Fe/H]?

11.2 Gy (15.1)

Fe/H| =0.68 — ————
[Fe/H] =0.68 — =&+

where [Fe/H| = log;y(Z/Z). The first form is more useful when the initial metallicity is
very small, but it does not have an effective upper limit. As t — oo, we expect that gas
will tend to be continuously exhausted which raises Z to a terminal value, as in the second
form. The second form has Z(t — 00)/Zs =~ 4.8, Z(t1)/Zs =~ 1.32 at the present, and
Z(0)/Zs =~ 0.19 at t = 0. Interestingly, when one plots the second form in a linear-linear
plot, one finds that it is well-approximated by a linear relation

t
Z=27(0)+[Z(t1) — Z(0)] o (15.2)
1
where 1 ~ 12 Gy is the time since disk formation.
Theoretically, we can attempt to calculate the evolution of Z in the solar neighborhood.
Defining the birthrate b of stars as the mass of stars born per unit time, the total stellar
birthrate is:

() = /Ooomb (m, t) dm.

If the initial mass function (IMF) is constant in time it is ¢(m) = b(m,t)1(t) and is
normalized

/Ooommm)dm:l-

The mass of gas (usually defined in terms of a mass per unit area integrated vertically
through the galactic disc) changes because of star formation (¢), gas loss from stars R,

and inflow (f):
dmg

= FRMOY M)+ (0.

If 7, is the lifetime of a star with mass m, which sheds at death all but a remnant mass
W, and if m(t) is the mass for which 7,,, = ¢, we have

R(tw(t)=/°;)<m—wm>¢<m>w<t—fm>dm
~ (t)/oo (m — wy) ¢ (m) dm = Rip (1)

m(to)
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148 Galactic Chemical Evolution

We used the instantaneous recycling approximation, which neglects 7,,, and the integral
over the IMF is from the present turnoff mass (1 Mg) to the upper limit for stars. R is
about 0.2-0.4 for the local IMF.

dmy

(- RO+ ().

This equation does not apply for metals, which are produced in stars. The mass fraction
of a star ejected as newly synthesized metals is p,,,. The metallicity Z of the infalling
material may not be equal to that already present in mgy: call it Z¢. Then

oo

=—zww@+/‘Km—wnzw4m+mwﬂwmw@—mmm

m(t)
2 F ()~ — (1= R)Z (84 () + Py () + Z5 (£) £ (£)

dZmy
dt

again using instantaneous recycling and Py = fnicéto) Pzmm@(m)dm. We can combine the
previous two equations to eliminate ¢ (¢):

"%®d§w+1%%ﬁ?:<4_Zaﬂdé2>f®'

This equation has the general solution, denoting y = Pz/(1 — R), mg; = my(0), and
Zi = 7Z(0):

t
myg (t) 2Oy — mgiezi/y +/ (Zr—=Z () +y) f(¥) Z() gy,
0

The simplest model has f = 0:

dzZ PZ Mygg
= - Z=2Z;+yln—L.
mgdmg 1-R’ Z+ynmg

This says that Z should increase steadily to a present value of about 0.075-0.1, assuming
In(mg;/mg) ~ 3 today. However, this result does not seem to fit observations: the large
final value of Z is incorrect. Moreover, the total mass of stars born with Z < Z' is

M*(Z<Z’):/0 Y0t = [myi—my (1)), Z(/) =7

; Zi— 7'
M*(Z<Z'):1nzglR<l—exp{ ly ])

or

This is proportional to Z’ — Z; when the argument of the exponential is small, and over-
predicts the number of metal-deficient G-K dwarf stars if Z; = 0 (curve 1 in the figure,
which shows M, (Z < Z')/M.(Z < Z(t1)). This is the famous G-dwarf problem. However,
according to the AMR (Eq. (15.1)), Z;(0) =~ 0.002 when the disk formed. The new result
is shown by curve 2. The situation is also not as severe as first thought (a factor of 10 or
more at [Fe/H]=-0.5), due to the fact that many old, low-metallicity stars had not been
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Figure 15.1: The corrected cumulative distribution of stars as a function
of metallicity (labelled by uncorrected and corrected observations).

counted because they have moved outside the volume in which the number counts were
made. Nevertheless, the large prediction for Z today is a failure.
Note that the star formation rate is

-1 dmy My dz

YO = TR a TPy dt’

which shows that it is proportional to the gas mass, as one would expect. Also note that
the explicit time dependence of Z in this approach is not calculable, but if we require
consistency with the AMR we can establish it.

These problems point to the following solutions:

1) An early burst of star formation involving an IMF different than today’s. There
are very few stars of 2Mg or less involved in this burst. This can be modelled, without
infall, using the above by setting Z; # 0. The figure (dashed line) shows the case Z; =
0.002, which gives agreement for extremely metal-deficient stars, but like the previous case,
underpredicts the numbers of stars of higher metallicity.

2) Alternatively, there has been an appreciable inflow of metal-deficient gas into the
disc up to the present time. Consider the case in which infall is enough to make m, a
constant: f(t) = (1 — R)¢(t). The total mass is

M(t):mg,-+/0 f(t)dt:mgi+(1—R)/0 W (t) dt.



150 Galactic Chemical Evolution

In terms of the variable

u(t) = M =i lnjgf [ewa.

mgi

which ranges from an initial value of 0 to a present value of about 20, we have

z =—Z+y.
dp
This has the solution
Z:Zi+y(1—e_/“‘),
which tends to y as 4 — oo. In fact, Z attains an equilibrium value in a very short time
(that needed for M (t) to build up to a few times my;). This equilibrium value is consistent
with what’s observed today. The cumulative star mass in this model is

t' -~ Mo — 7
Mz <2) = [ w0 - o) = 2w 2
Now we see from curve 3 in the figure that the mass of stars born with small metallicities
is much too small.

3) It has also been suggested that there was a loss of heavy elements due to their
incorporation in remnants (white dwarfs possibly, but especially neutron stars and black
holes) or ejected from the galaxy as hot metal-rich gas (from supernovae). In this case, we
set f = 0, but introduce a metal-loss term (), so that

dZdTg =—(1-R-Q)Z ()% (t) + Py (t).

In addition, we seek a closed form solution by setting the star formation rate proportional
to the gas mass as established before:

myg (t
v ="29,
where t, is an effective time scale of gas exhaustion. We now find an explicit relation for
Z(t):
Z(0) [eQt=0/t« _ 1] 4 Z (t1) @01/t [1 - e—Qt/t*]
thl/t* -1 '
The best fit between this relation and the observational AMR (Eq. (15.1)) is obtained for
() = 0, in which case we find Eq. (15.2)! The star formation rate is

Y =1 (0)e U0 (0) = mgit

and the cumulative stellar mass is

M, (Z < Z'(t)) 1—exp[—(1—R)t/t]

M (Z<Z(t) 1—exp[-(1-R)t/t]
or, expressed in terms of Z, is the same as for models 1 and 2:

M,(Z<2Z) _ 1-exp[(Z(0)—Z2)/y]

M. (Z < Z(t1))  1-exp[(Z(0) = Z (1)) /y]’

Such a model is thus able to account both for the present-day metallicity and the metallicity
distribution in stars.

Z(t) =
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