Cooling Neutron Stars

What we actually see.

The Equilibrium

We discussed the equilibrium in neutron star cores through this reaction (direct Urca). $n \rightleftharpoons p + e^- + \overline{\nu}_e$

$$\mu_n = \mu_p + \mu_e + \mu_{\bar{\nu}_e}$$

Does the reaction actually occur?

$$E_n = E_p + E_e + E_{\bar{\nu}_e}$$

$$\mu_n + kT \approx \mu_p - kT + \mu_e - kT + E_{\bar{\nu}_e}$$

$$E_{\bar{\nu}_e} \sim kT$$

Why?

People assumed that the first neutron stars to be discovered would be glowing embers of a supernova explosion, slowly releasing the heat generated by the cataclysm that created them.

How does a neutron star cool?

How bright is its surface?

Conservation Laws

Energy:
$$E_n = E_p + E_e + E_{\bar{\nu}_e}$$

 $\mu_n + kT \approx \mu_p - kT + \mu_e - kT + E_{\bar{\nu}_e}$
 $E_{\bar{\nu}_e} \sim kT$
Momentum: $\mathbf{p}_n = \mathbf{p}_p + \mathbf{p}_e + \mathbf{p}_{\bar{\nu}_e}$
 $p_n \leq p_p + p_e + p_{\bar{\nu}_e}$
 $p_{F,n} \leq p_{F,p} + p_{F,e} + \frac{kT}{C}$
Remember that the neutron is a bit above the Fermi sea and the others are a bit below.

Can momentum be conserved?

If the fraction of protons equals or exceeds 1/8 the number of neutrons, momentum can be conserved.

Low densities and high densities, but not nuclear densities.

$$x_n \approx 0.4 \left(\frac{\rho}{\rho_n}\right)^{1/3}$$

Where is Urca?

What happens at nuclear densities?

Modified Urca reaction: $n + n' \rightleftharpoons p + n' + e^{-} + \bar{\nu}_{e}$ $\mathbf{p}_{n} + \mathbf{p}_{n'} = \mathbf{p}_{p} + \mathbf{p}_{n'} + \mathbf{p}_{e} + \mathbf{p}_{\bar{\nu}_{e}}$ $p_{n} - p_{n'} \leq p_{p} + p_{n'} + p_{e} + p_{\bar{\nu}_{e}}$ $0 \leq p_{F,p} + p_{F,n} + p_{F,e} + \frac{kT}{c}$

This last inequality is indeed true! Modified Urca is a go!

What about quark matter?

In quark matter, the quarks are relativistic (at least the ups and downs) so

$$d \rightleftharpoons u + e^- + \bar{\nu}_e$$

can occur and produce neutrinos.

Reaction rates

Getting the scaling! (1)

- The density of states of the outgoing neutrino is $\propto (kT)^2$ and its energy is $\propto kT$.
- The number of states for the outgoing proton and electron are:

 $4\pi p_F^2 \frac{dp}{dE} kT_{h^3}^g = 4\pi p_F \mu kT_{h^3c^2}^g$ The fraction of initial particles near the Fermi energy. $\frac{3\mu kT}{p_Fc^2}$

Getting the scaling! (2)

Let's drop all dimensionless numbers to make it easier.

Direct Urca: $\epsilon_{\nu} \propto (kT)^3 p_{F,e} \mu_e(kT) p_{F,p} \mu_p(kT) \frac{\mu_n \kappa_I}{p_{T}^2 c^2}$

$$\propto (kT)^6 rac{p_{F,e} p_{F,p} \mu_e \mu_p \mu_n}{p_{F,n}^2 c^2}$$

Quark Urca: $\epsilon_
u \propto (kT)^6 n$

Getting the scaling! (3)

Modified Urca:

$$\epsilon_{\nu} \propto (kT)^3 p_{F,e} \mu_e(kT) p_{F,p} \mu_p(kT) p_{F,n} \mu_n(kT)$$

$$\left(\frac{\mu_n kT}{p_{F,n}^2 c^2}\right)$$

2

$$\propto (kT)^8 \frac{p_{F,e} p_{F,p} p_{F,n} \mu_e \mu_p \mu_n^3}{p_{F,n}^4 c^4} \propto T^8$$

The Results

Quark Urca:

$$L_{\nu}^{\text{quark}} \approx (1.3 \times 10^{44} \text{erg s}^{-1}) \frac{M}{M_{\odot}} T_{9}^{6}$$

Modified Urca:

$$L_{\nu}^{\text{Urca}} \approx (5.3 \times 10^{39} \text{erg s}^{-1}) \frac{M}{M_{\odot}} \left(\frac{\rho_{\text{nuc}}}{\rho}\right)^{1/3} T_{9}^{8}$$

Photon Cooling (1)

The luminosity from the surface of a neutron star

$$L_{\gamma} = 4\pi R^2 \sigma T_e^4 = 7 \times 10^{36} \text{erg s}^{-1} \left(\frac{R}{10 \text{km}}\right)^2 T_{e,7}^4$$

- It is this radiation that we may observe.
- The photons diffuse through the envelope of the star.
- You can define a conductivity:

$$F = -\tilde{\kappa}\frac{dT}{dr}$$

Photon Cooling (2)

In astrophysics is customary to use the opacity. $\frac{dT}{dr} = -\frac{3 \kappa \rho L}{4acT^3 4\pi r^2}$

Let's combine this with the hydrostatic equilibrium equation:

$$\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2}$$
$$\frac{dP}{dT} = \frac{4ac}{3} \frac{T^3}{\kappa} \frac{4\pi GM}{L} = \frac{4aT^3}{3} \frac{\sigma_T}{m_p\kappa} \frac{L_{\rm Edd}}{L}$$

Photon Cooling (3)

Combine this with the EOS and opacity. $P = \frac{\rho}{\mu m_u} kT$, and $\kappa = \kappa_0 \rho T^{-7/2}$ Yields the following: $\frac{dP}{dT} = \frac{4a}{3} \frac{\sigma_T}{m_p \kappa_0} \frac{L_{\rm Edd}}{L} \frac{T^{13/2}}{\rho} = \frac{4a}{3} \frac{\sigma_T}{m_p \kappa_0} \frac{L_{\rm Edd}}{L} \frac{k}{\mu m_u} \frac{T^{15/2}}{P}$ $P^{2} = \frac{4}{17} \frac{4a}{3} \frac{\sigma_{T}}{m_{p}\kappa_{0}} \frac{L_{\text{Edd}}}{L} \frac{k}{\mu m_{u}} T^{17/2}$ $\left(\frac{k}{\mu m_{u}}\rho T\right)^{2} = \frac{4}{17} \frac{4a}{3} \frac{\sigma_{T}}{m_{p}\kappa_{0}} \frac{L_{\text{Edd}}}{L} \frac{k}{\mu m_{u}} T^{17/2}$

Photon Cooling (4)

Rearranging:
$$\rho^2 = \frac{4}{17} \frac{4a}{3} \frac{\sigma_T}{m_p \kappa_0} \frac{L_{\text{Edd}}}{L} \frac{\mu m_u}{k} T^{13/2}$$

To keep things simple let's assume that the temperature where the electrons become degenerate is the core temperature. At this point, $T_F = T$. $kT_F = \frac{p_F^2}{2m_e}, \rho = \frac{8\pi}{3h^3}p_F^3(\mu_e m_u)$

I have assumed that the electrons are not relativistic: $k T \ll m_e c^2$, $T \ll 5.93 \times 10^9$ K.

Photon Cooling (5)

Substituting the equation for ρ in terms of T_F : $\left(\frac{8\pi}{3h^3}\right)^2 (2m_e kT)^3 (\mu_e m_u)^2 = \frac{4}{17} \frac{4a}{3} \frac{\sigma_T}{m_p \kappa_0} \frac{L_{\text{Edd}}}{L} \frac{\mu m_u}{k} T^{13/2}$ $\frac{L}{L_{Edd}} = 7 \times 10^{-32} \frac{1}{Z(1+X)} \frac{\mu}{\mu_e^2} \left(\frac{T}{1K}\right)^{7/2}$ $L_{\gamma} = 9.3 \times 10^6 \text{ erg s}^{-1} \frac{1}{Z(1+X)} \frac{\mu}{\mu^2} \left(\frac{T}{1K}\right)^{1/2}$ $= 1.6 \times 10^5 \text{ erg s}^{-1} \left(\frac{T}{1K}\right)^{7/2}$ for iron $T_{e,7} = T_9^{7/8} \left(\frac{R}{10 \text{ km}}\right)^{-1/2}$

Heat Capacity

Let's estimate the heat capacity of a neutron star. $C_v = \frac{\pi^2 (x^2+1)^{1/2}}{x^2} Nk \left(\frac{kT}{mc^2}\right)$ $x_n \approx 0.4 \left(\frac{\rho}{\rho_n}\right)^{1/3}$

Integrating up from zero temperature

$$U_n = 31 \left(\frac{\rho}{\rho_{\rm nuc}}\right)^{-2/3} \frac{M}{m_n} \left(\frac{k^2 T^2}{m_n c^2}\right) \\= 6 \times 10^{47} \text{erg} \frac{M}{M_{\odot}} \left(\frac{\rho}{\rho_{\rm nuc}}\right)^{-2/3} T_9^2$$

Thermal Evolution (1)

- We can now determine how the inside of the star cools.
- $\frac{dU}{dt} = -(L_{\nu} + L_{\gamma})$ These equations look a lot like the ones for the spin.
- If we assume that only one neutrino or photon process dominates, they are integrable.

Thermal Evolution (2)

- Modified Urca: $\Delta t \simeq 1 \ \operatorname{yr}\left(\frac{\rho}{\rho_{\operatorname{nuc}}}\right)^{-1/3} T_9^{-6} \left\{ 1 - \left[\frac{T_9}{T_{9,i}}\right]^6 \right\}$
- Quark Urca: $\Delta t \simeq 1 \ \ln \left(\frac{\rho}{\rho_{\text{nuc}}}\right)^{-1/3} T_9^{-4} \left\{ 1 - \left[\frac{T_9}{T_{9,i}}\right]^4 \right\}$ Photons:

$$\Delta t \simeq 5000 \ \operatorname{yr}\left(\frac{\rho}{\rho_{\text{nuc}}}\right)^{-2/3} T_9^{-3/2} \left\{ 1 - \left[\frac{T_9}{T_{9,i}}\right]^{3/2} \right\}$$

Thermal Evolution (3)

Thermal Evolution (4)

Young Neutron Stars (1)

Evidence	Plerionic Remnant	Composite Remnant	Pure Shell Remnant
Pulsar + Supernova Remnant (15+2)	G106.6+2.9 [PSR J2229+6114] G130.7+3.1 (3C 58) [PSR J0205+64] G184.6-5.8 (Crab) [PSR B0531+21] N157B (in LMC) [PSR J0537-6917]	$\begin{array}{c} {\rm G5.4-1.2\ (Duck)\ [PSR\ B1757-24]}\\ {\rm G11.2-0.3\ [PSR\ J1811-1925]}\\ {\rm G29.7-0.3\ (Kes\ 75)\ [PSR\ J1846-0258]}\\ {\rm G34.7-0.4\ (W44)\ [PSR\ B1853+01]}\\ {\rm G69.0+2.7\ (CTB\ 80)\ [PSR\ B1951+32]}\\ {\rm G114.3+0.3\ [PSR\ B2334+61]}\\ {\rm G263.9-3.3\ (Vela)\ [PSR\ B0833-45]}\\ {\rm G292.0+1.8\ [PSR\ J1124-5916]}\\ {\rm G308.8-0.1\ [PSR\ J1341-6220]}\\ {\rm G320.4-1.2\ (MSH\ 15-52)\ [PSR\ B1509-58]}\\ {\rm N158A\ (in\ LMC)\ [PSR\ B0540-69]}\\ \end{array}$	G180.0–1.7 (S147) [PSR J0538+2817] G292.2–0.5 [PSR J1119–6127]
Exotic/Possible NS + Supernova Remnant (16+1)	G54.1+0.3 [CXOU J193030.1+185214]	G0.9+0.1 [SAX J1747-2809] G119.5+10.2 (CTA 1) [RX J000702+7302.9] G189.1+3.0 (IC 443) [CXOU J061705.3+222127] G291.0-0.1 (MSH 11-62) [AX J1111-6040]	$\begin{array}{c} {\rm G27.4+0.0~(Kes~73)~[AX~J1841-045]~(AXP)}\\ {\rm G29.6+0.1~[AX~J1845-0258]~(AXP?)}\\ {\rm G39.7-2.0~[SS~433]~(binary)}\\ {\rm G78.2+2.1~(gamma~Cygni)~[RX~J2020.2+4026]~(NS?)}\\ {\rm G109.1-1.0~(CTB~109)~[1E~2259+586]~(AXP)}\\ {\rm G111.7-2.1~(Cas~A)~[CXO~J232327.9+584842]~(NS?)}\\ {\rm G260.4-3.4~(Puppis~A)~[RX~J0822-4300]~(NS?)}\\ {\rm G266.2-1.2~(RX~J0852.0-4612)~[SAX~J0852.0-4615]~(NS?)}\\ {\rm G296.5+10.0~(PKS~1209-51/52)~[1E~1207.4-5209]}\\ {\rm G321.9-0.3~[Cir~X-1]~(binary)}\\ {\rm G332.4-0.4~[RCW~103]~(1E~161348-5055)~(NS?)}\\ {\rm N49~(in~LMC)~[SGR~0526-66]~(SGR)}\\ \end{array}$
X-ray and Radio nebula (9)	G20.0-0.2 G21.5-0.9 G74.9+1.2 G328.4+0.2	$\begin{array}{c} {\rm G16.7{+}0.1}\\ {\rm G39.2{-}0.3}\\ {\rm G326.3{-}1.8}\ ({\rm MSH}\ 15{-}56)\\ {\rm G327.1{-}1.1}\\ {\rm G344.7{-}0.1}\end{array}$	
Radio nebula only (8)	${f G6.1+1.2}\ {f G27.8+0.6}\ {f G63.7+1.1}$	$\begin{array}{c} {\rm G24.7+0.6} \\ {\rm G293.8+0.6} \\ {\rm G318.9+0.4} \\ {\rm G322.5-0.1} \\ {\rm G351.2+0.1} \end{array}$	

Young Neutron Stars (2)

Young Neutron Stars (3)

pО

Anomalous X-ray Pulsars

- Voung isolated neutron stars (often in SNRs):
 - consistent spin down with glitches,
 - periods of several seconds,
 - thermal spectra in X-rays, $L \sim 10^{34}$ erg/s,
 - really faint in optical
 - inferred $B \sim 10^{15}$ G
 - too bright to be standard cooling, too faint for standard accretion
- Accretion from tiny disk?

Powering the AXPs

- Magnetic fields play a dominant and dynamic role.
 - Electron conduction,
 - Field decay,
- Early on neutrinos dominate the cooling; later photons do.

Soft Gamma Repeaters

- Young isolated neutron stars (sometimes in SNRs):
 - consistent spin down,
 - periods of several seconds,
 - thermal spectra in X-rays, $L \sim 10^{34}$ erg/s,
 - really faint in optical
 - inferred $B \sim 10^{15}$ G
 - too bright to be standard cooling, too faint for standard accretion

Plus they burst!

- Bursts last a few tenths of a second and radiate as much energy as the sun does in a year. Soft compared to GRBs.
- Biggest explosions that don't destroy the source.
- Magnetic stress builds in the crust until it fractures and the field rearranges itself locally leading to hard X-ray burst.

For additional information and illustrations: http://www.magnetars.com NASA/Marshall Space Flight Center, 9/29/98

Some bursts are really big!

- March 5, 1979: SGR 0526-66
- August 27, 1998: SGR 1900+14
- The entire crust is disrupted leading to large-scale reconnection like a solar flare.

What is special about these objects?

The energy of an electron in a magnetic field is quantized:

 $E = \left(n + \frac{1}{2}\right) \hbar \omega_g \text{ where } \omega_g = \frac{eB}{m_e c}$ We can define a characteristic magnetic field for an electron.

$$\hbar\omega_g = \hbar \frac{eB}{m_e c} = m_e c^2$$
 so $B = \frac{m_e^2 c^3}{e\hbar} \approx 4.4 \times 10^{13}$ G

What happens? (1)

First, what doesn't happen:

If you had an electric field this strong (about 10¹⁸ V/m), you would pull electron-positron pairs out of the vacuum (Klein paradox).

What happens? (2)

- Such a strong magnetic field is not unstable, but it does funny things to light.
- The index of refraction depends on the polarization of the light and its intensity.
- Photons can split or produce pairs.

Looking at the surface (1)

Gravity distorts our view of neutron stars.

Looking at the surface (2)

The magnetic field magnifies one polarization but not the other. The poles are magnified more than the equatorial regions.

Electromagnetic Shocks

The phase velocity of light depends on the strength of the wave.

The peaks go slower than the troughs, so the wave steepens as it travels near the neutron stars.

Formation of a Fireball

Neutron Star Energetics

- Some typical energies for isolated neutron stars:
 - Rest-Mass Energy $Mc^2 = 1.8 \times 10^{54} \frac{M}{M_{\odot}}$ ergGravitational Energy $0.6 \frac{GM^2}{R} = 1.6 \times 10^{53} \left(\frac{M}{M_{\odot}}\right)^2 R_6^{-1}$ ergSpin Energy $\frac{1}{2}I\Omega^2 = 2 \times 10^{46}P_0^{-2}$ ergThermal Energy $U_n = 6 \times 10^{47} \frac{M}{M_{\odot}} T_9^2$ ergMagnetic Energy $\frac{1}{12}R^3B^2 = 8 \times 10^{46}R_6^3B_{15}^2$ erg