Rotation-Powered Neutron Stars

Spinning magnets in the sky

Are pulsars rotating neutron stars?

Things to remember:

- Periods range from 1.6 ms to 8 s.
- Pulsar periods increase very slowly and don't decrease except for glitches.
- Pulsars are stable clocks.
- Size: *r*<*cP*<500 km so it could be a white dwarf, black hole or neutron star.

Maximal Rotation Frequencies

Equate the centripetal force to the gravitational force at the surface:

$$\Omega^2 R < \frac{GM}{R^2}$$
 so $\Omega < \left(\frac{GM}{R^3}\right)^{1/2}$

Using p~10⁸ g cm⁻³ gives Ω ~ 5.3 Hz or P ~ 1 s (a white dwarf can't spin that fast)

Using $\rho \sim 10^{15}$ g cm⁻³ gives $\Omega \sim 16$ kHz or $P \sim 0.4$ ms (a neutron star can spin fast enough)

Pulsation Frequencies

- The fast pulsation modes of a star are pressure modes, i.e. sound waves.
 - We need to estimate the speed of sound

$$c_s^2 = \frac{dP}{d\rho} \sim \frac{P}{\rho}$$

We have an estimate for the density but what about *P*? For a constant density star, the gravitational acceleration is proportional to the distance from the center!

$$P = \int_0^R \frac{GM}{R^2} \rho \frac{r}{R} dr = \frac{GM}{R^2} \rho \frac{R}{2}$$
$$c_s^2 \sim \frac{P}{\rho} = \frac{GM}{2R} \quad \omega = \frac{2\pi c_s}{R} = 2\pi \left(\frac{GM}{2R^3}\right)^{1/2}$$

Neutron Stars and Black Holes

- Both the maximal rotation frequency and the typical pulsation frequency of white dwarfs fall short so we are left with neutron stars and black holes.
- Isolated black holes have no structure to emit periodically and material in orbit around a BH would spiral in and the period would decrease.
- Ditto for neutron star binaries
- Pulsation modes of a neutron star fit the bill for the period, BUT the period would typically decrease as the energy in the mode dissipates.

The Big Flywheel

- If a neutron star is born spinning near break-up, it has as much rotational energy as a supernova.
- If there only was a way to convert that energy into radio waves.
- Hmmm.....

Magnetic Dipole Radiation (1)

Regardless of what's going on inside of the star, the magnetic dipole moment is $\mathbf{B} \mathbf{B}^3$ n

$$|n| = \frac{D_{pr}}{2}$$

where B_{ρ} is the strength of the dipole field at the pole.

If the dipole moment varies with time, energy is radiated at a rate of

$$\dot{E} = -\frac{2}{3c^3} |\ddot{\mathbf{m}}|^2$$

- Suppose that the magnetic axis is not aligned with the rotation axis (α is the angle between the axes).
- $\mathbf{m} = |\mathbf{m}| \begin{vmatrix} \cos \alpha \\ \sin \alpha \cos \phi \\ \sin \alpha \sin \phi \end{vmatrix}$ $\phi = \Omega t$ $|\ddot{m}| = \Omega^2 \sin \alpha |\mathbf{m}|$ $\dot{E} = -\frac{B_p^2 R^6 \Omega^4 \sin^2 \alpha}{6c^3}$

Magnetic Dipole Radiation (2)

The total rotational energy of the star is

$$E = \frac{1}{2}I\Omega^2, \dot{E} = I\Omega\dot{\Omega}$$

- Putting things together $\dot{\Omega} = -\frac{B_p^2 R^6 \Omega^3 \sin^2 \alpha}{6c^3 I}$
- Let's define a characteristic time,

$$T = -\frac{\Omega_0}{\dot{\Omega}_0} = \frac{6c^3I}{B_p^2 R^6 \Omega_0^2 \sin^2 \alpha}$$

This gives us $\dot{\Omega} = -\frac{\Omega}{T} \left(\frac{\Omega}{\Omega_0}\right)^2$ Separating and integrating,

$$\frac{1}{\Omega^{3}} d\Omega = -\frac{1}{T\Omega_{0}^{2}} dt$$
$$\frac{1}{2\Omega_{0}^{2}} - \frac{1}{2\Omega_{i}^{2}} = \frac{t_{0} - t_{i}}{T\Omega_{0}^{2}}$$

Let's assume that at t_{i} , P=0,

$$\frac{1}{2\Omega_0^2} = \frac{t_0 - t_i}{T\Omega_0^2}; \quad \tau = t_0 - t_i = \frac{1}{2}T$$

P and P-dot

Although theoretically it is natural to talk about the frequency, observationally people talk about the period, $P=2\pi/\Omega$ and $dP/dt=-2\pi/\Omega^2$ $d\Omega/dt$, a.k.a. P-dot.

$$T = -\frac{\Omega_0}{\dot{\Omega}_0} = \frac{P}{\dot{P}}$$

If you can estimate *I* and *R*, you can get an estimate of B_p

$$B_p^2 \sin^2 \alpha = \frac{6c^{3IP\dot{P}}}{4\pi^2 R^6}$$

Some examples:

- Crab: P=0.033s, P-dot=4 x 10⁻¹³ $B_p=7 \times 10^{12}$ G, T/2=1300 yr
- Vela: *P*=0.089s, *P*-dot=1 x 10⁻¹³

 $B_{p} = 6 \times 10^{12} \text{ G}, \ 7/2 = 14000 \text{ yr}$

1841: *P*=11.77s, *P*-dot=4 x 10⁻¹¹

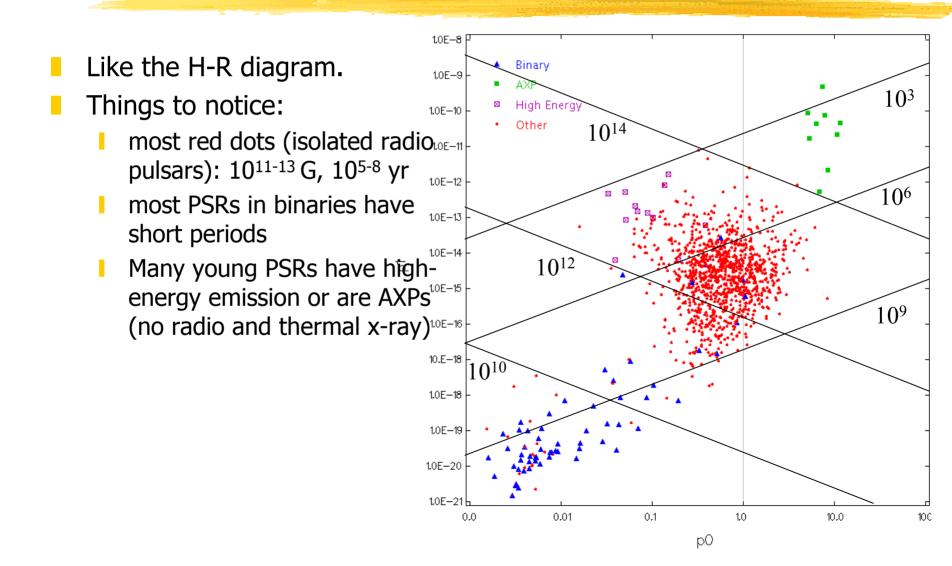
$$B_{p} = 1 \times 10^{15} \text{ G}, \ 7/2 = 4700 \text{ yr}$$

1937: *P*=0.0016s, *P*-dot=1 x 10⁻¹⁹

$$B_{p} = 8 \times 10^{8} \text{ G}, \ 7/2 = 2.5 \times 10^{8} \text{ yr}$$

$$B_p \sin \alpha = 6.4 \times 10^{19} I_{45} R_6^{-6} (P_1 \dot{P})^{1/2} \text{ G}$$

The P-P-dot Diagram!



Another Model (GW)

A spinning barbell emits gravitational radiation and slows according to

$$\dot{E} = -\frac{32G}{5 c^5} I^2 \epsilon^2 \Omega^6$$

Astronomers like power-law models, so take

$$\dot{\Omega} = -A\Omega^n$$

How can we determine *n*?

n=3: MD, *n*=5: GW

Take the time derivative of both sides,

$$\ddot{\Omega} = -An\Omega^{n-1}\dot{\Omega}$$

$$\Omega \ddot{\Omega} = -nA\Omega^n \dot{\Omega} = n\dot{\Omega}^2$$

$$n = \frac{\Omega \ddot{\Omega}}{\dot{\Omega}^2}$$
 $\tau = \frac{T}{n-1}$

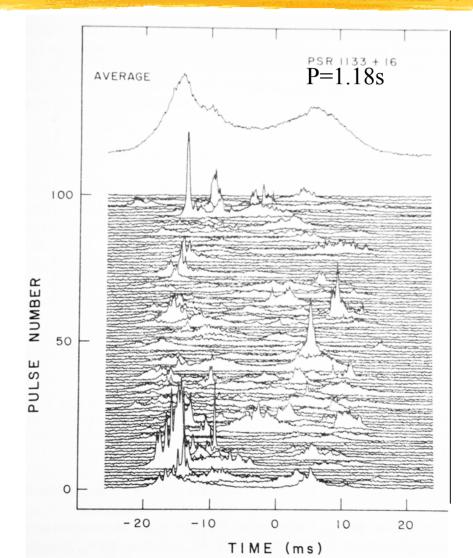
Unfortunately, *n* is difficult to measure accurately but there is other evidence for the MD model.

Evidence for Dipole Model

- Measurement of magnetic field strengths from cyclotron lines on Her X-1 gives 4 x 10¹² G.
- Energy from spin-down of Crab is sufficient to power the Crab nebula.
- Polarization of the radiation is characteristic for a magnetic dipole geometry.

Pulsar Emission Observed

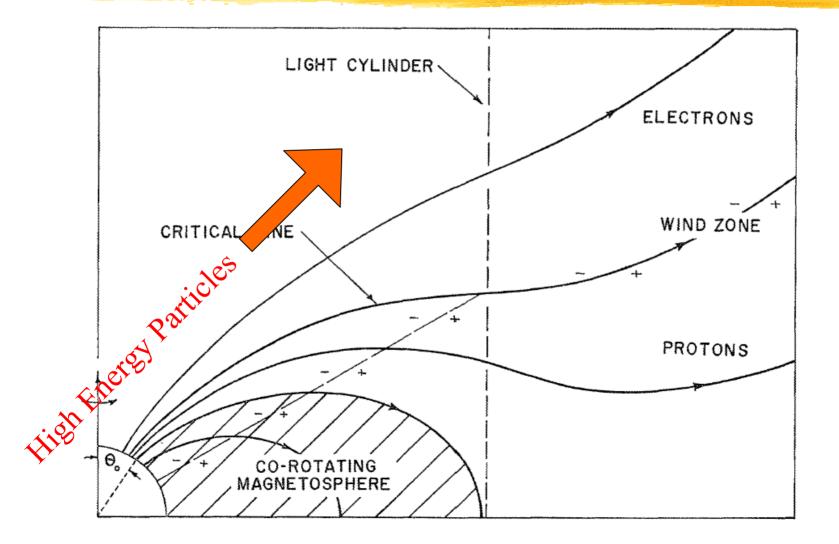
- The individual pulses are quite random.
- The sum of many pulses is constant for a particular pulsar.
- The emitting elements are all in a particular region but not all are active at the same time.



Pulsar Emission Model

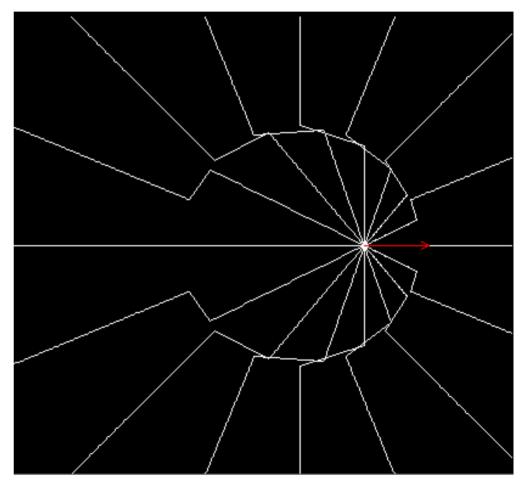
- We understand why pulsars spin down, but why do they emit radio waves.
 - A rotating magnetic dipole emits radiation at the rotation frequency 0.1-600Hz.
 - Only a tiny fraction of the spin-down energy needs to end up as pulsed radio emission.
- Let's start with the Goldreich and Julian picture to build up a heuristic model.

Goldreich-Julian Picture



Curvature Radiation

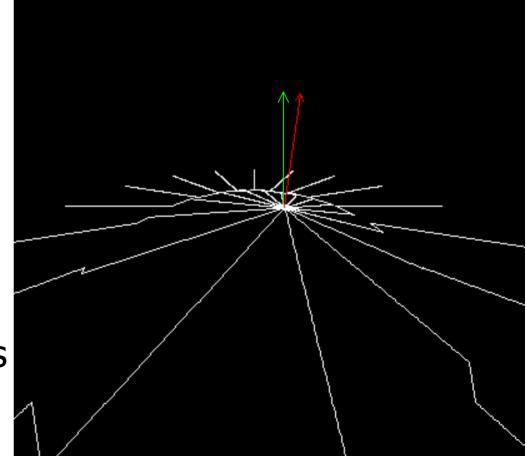
Accelerated charges radiate, so the particles travelling along the fields will radiate as the field lines curve.



Let's go relativistic

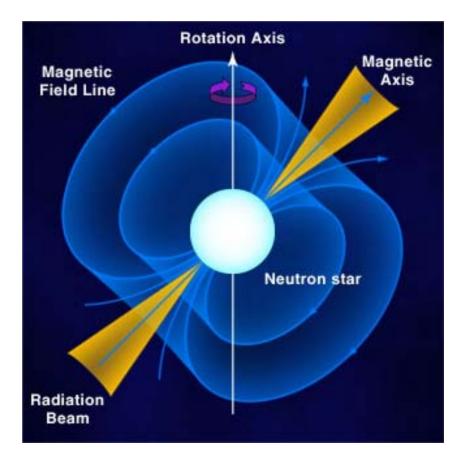
The charges travel relativistically. That makes it even more interesting.

The radiation is polarized in the direction of the acceleration and it is beamed in the direction of motion!



We have a model!

- The radiation only comes from where there are high-energy particles - the open-field lines.
- The most intense radiation comes to us from bunches of particles moving toward us relativistically.
- The radiation is polarized along the direction of curvature of the magnetic field lines.



The Open Field Lines (1)

- Because the radiation only comes from the open field lines, the pulsar can only be seen from within a cone centered on the magnetic pole. This cone sweeps around the sky like a lighthouse beam.
- Let's find the first field line that reaches the light cylinder.
 - The equation for a flow/field line is

$$\frac{d\mathbf{x}(\lambda)}{d\lambda} = \mathbf{B}(\mathbf{x}(\lambda)) \implies \frac{rd\theta}{H_{\theta}} = \frac{dr}{H_{r}}$$

The Open Field Lines (2)

Filling in the results for a dipole field

 $\frac{dr}{d\theta} = 2r \frac{\cos \theta}{\sin \theta} \implies \ln r' |_{r_0}^r = 2\ln \sin \theta' |_{\theta_0}^\theta$ $\frac{r}{r_0} = \frac{\sin^2 \theta}{\sin^2 \theta_0} \text{ and } r_{max} = \frac{r_0}{\sin^2 \theta_0} \text{ for } \theta = \frac{\pi}{2}$

The radius of the light cylinder is equal to r_{max} for the last closed field line.

$$R_{lc} = \frac{cP}{2\pi} = r_{max} = \frac{r_0}{\sin^2 \theta_0} \implies \sin^2 \theta_0 = \frac{2\pi r_0}{cP}$$
$$\sin \theta_0 = 0.014 r_{0,6}^{1/2} P^{-1/2}$$

$$\theta_0 = 0.82^{\circ} r_{0,6}^{1/2} P^{-1/2} \text{ for } \theta_0 \ll 1$$

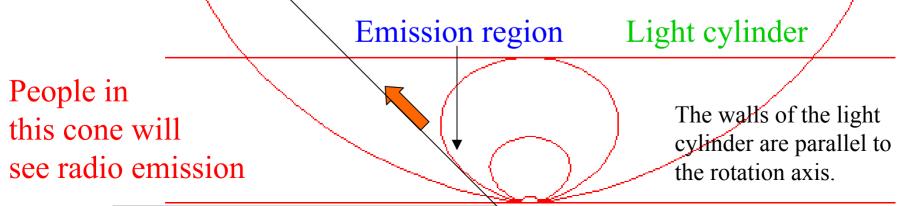
How did we do?

Empirically they find that the maximum opening angle of the emission is (our line of sight might not cut through the entire polar region)

 $\Delta \theta = 5^{\circ} P^{-\alpha}$ where $\alpha = 1/3 - 1/2$

So $r_{0,6} \sim 40$ for the emission region and it may be a function of the period.

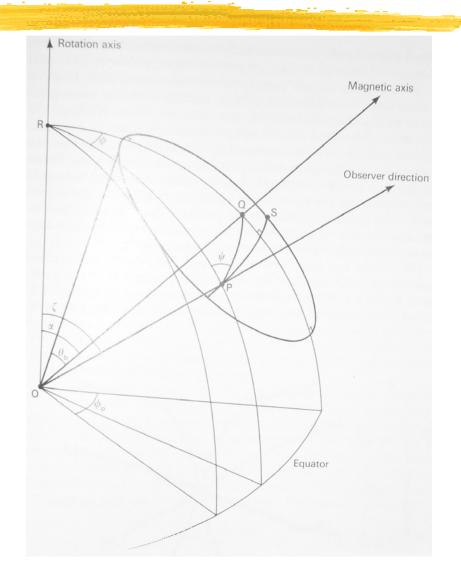
If you take $r_0 = R$ then θ gives the size of the polar cap.



Polarization

In our model the polarization of the radiation is in the direction that the particles are accelerated.

This acceleration is always directly away from the dipole axis.



Break out the spherical trig.

SAP		
222	$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$	
131	$\cos A = -\cos B \cos C + \sin B \sin C \cos a$	Ab
311	$-\cos a = \cos b \cos c + \sin b \sin c \cos A$ c	
221	$\cos a \cos C = \sin a \cot b - \sin C \cot B$	C
322	$\sin a \cos B = \cos b \sin c - \sin b \cos c \cos A$	В
311	$\bullet \cos A = \csc b \csc c (\cos a - \cos b \cos c)$	a

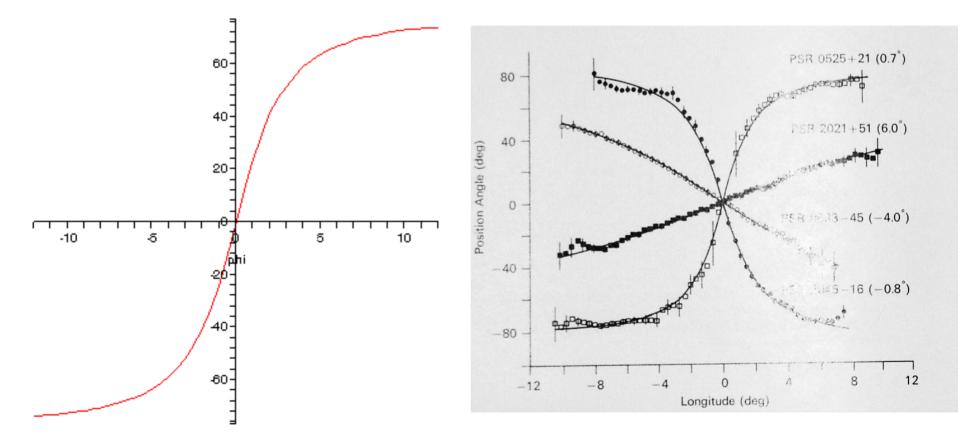
For our triangle

To know which formula to use, you have to know what you have and want. We have/want two angles (Φ, ψ) and two sides (α, ζ) and only one pair (ψ, α) .

 $\cos a \cos C = \sin a \cot b - \sin C \cot B$ $\cos \zeta \cos \phi = \sin \zeta \cot \alpha - \sin \phi \cot \psi$ $\sin \phi \cot \psi = \sin \zeta \cot \alpha - \cos \zeta \cos \phi$

$$\tan \psi = \frac{\sin \phi \sin \alpha}{\sin \zeta \cos \alpha - \cos \zeta \sin \alpha \cos \phi}$$

Theory and Observations



What are pulsars good for?

- Probing the properties of our Galaxy
 - The Dispersion Measure and Rotation Measure
- Probing the properties of spacetime
 - Gravitational radiation from binary neutron stars

Dispersion Measure Redux

If you remember from last week, the arrival time of pulses depends on the frequency:

$$t_2 - t_1 = \frac{2\pi e^2}{mc} (\omega_2^{-2} - \omega_1^{-2}) \int_0^d n_e dl$$

The dispersion constant is

$$D = (t_2 - t_1) / (\nu_2^{-2} - \nu_1^{-2})$$

and the dispersion measure is
$$DM \ (\text{cm}^{-3}\text{pc}) = 2.410 \times 10^{-16}D \ (\text{Hz})$$
$$DM = \int_0^d n_e dl$$

More on polarization

- The observed polarization of pulsar radiation depends on frequency.
- What we derived earlier said that the polarization is in the direction that the particles are accelerated (**period**). There was no frequency dependence.
 What is up?

Magnetized Plasmas

In a plasma there are two important frequencies: the plasma frequency and the cyclotron frequency.

$$\omega_p^2 = \frac{4\pi n_e e^2}{m_e}$$
 and $\omega_c = \frac{eB}{m_e c}$

We already know about the first one -- a passing EM wave induces currents in the plasma.

An electron in a magnetic field

If we have an electron in a magnetic field, the force is

 $\frac{d}{dt}(\gamma m_e \mathbf{v}) = \mathbf{F} = e \frac{\mathbf{v}}{c} \times \mathbf{B} \text{ so } \dot{\mathbf{v}} \perp \mathbf{B} \text{ and } \dot{\mathbf{v}} \perp \mathbf{v}$

• We find that

 $\dot{v}_{\parallel} = 0$ and $\dot{\mathbf{v}}_{\perp} = \frac{q}{\gamma m c} \mathbf{v}_{\perp} \times \mathbf{B}$ so we have uniform circular motion around the field line with $\omega_g = \frac{eB}{\gamma m_e c}$. For non-relativistic electrons $\gamma = 1$.

A photon runs through it.

- Photons with $\omega < \omega_p$ are absorbed.
- If $\omega > \omega_p$ the photons can propagate.
 - For $\omega < \omega_c$ the photons cannot excite motion across the field, so photons with **e**||**B** travel slower that photons with **e**⊥**B**.
 - For $\omega > \omega_c$ the photons which excite the electrons to spiral the right way are more strongly coupled: one circular polarization travels slower than the other.

Faraday rotation

For $\omega > \omega_c$ the plane of polarization of a linearly polarized wave rotates as it propagates through the plasma.

$$\Delta \psi = \frac{2\pi e^3}{m^2 c^2 \omega^2} \int_0^d n_e B \cos \theta dl$$
$$\Delta \psi = RM\lambda^2 \text{ where}$$
$$RM = \frac{e^3}{2\pi m^2 c^4} \int_0^d n_e B \cos \theta dl$$

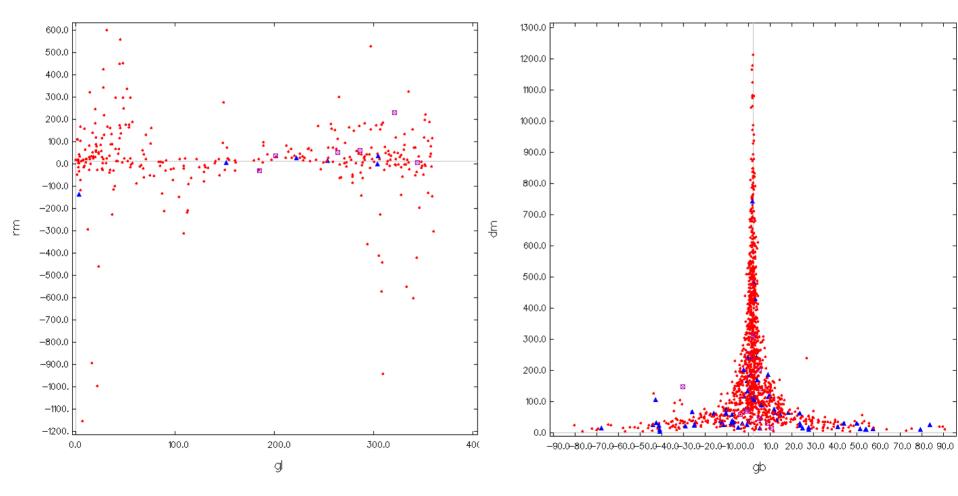
RM and DM

If we combine the RM and DM for a particular pulsar we get,

$$< B\cos\theta >= \frac{\int_0^d n_e B\cos\theta dl}{\int_0^d n_e dl} = \frac{1.232RM}{DM}$$

where *B* is in μ G, *RM* is in rad m⁻² and DM is in cm⁻³ pc.

Probing Galactic Structure



Gravitational Radiation

We have seen gravitational radiation in two contexts so far:

- The orbital evolution of LMXBs
- The spin evolution of neutron stars

We are going to calculate the evolution of a circular orbit explicitly using the quadrupole radiation formula.

Orbiting neutron stars

The quadrupole formula gives $\dot{E} = -\frac{32G}{5\ c^5}I^2\epsilon^2\Omega^6$

Is the difference between the moment of inertia along the orbital separation and across it.

A Diagram

The two stars orbit about their mutual center of mass. $r_1 = a M_2/M$ and $r_2 = a M_1/M$, so $I = M_1 r_1^2 + M_2 r_2^2$ $= \mu a^2$

 M_{2}

and $\varepsilon = 1$.

Orbital Energy

The gravitational radiation comes from the energy of the orbit.

$$E = -\frac{GM_1M_2}{a} + \frac{1}{2}I\Omega^2 \text{ with } \Omega^2 a^3 = GM$$
$$= -\frac{GM_1M_2}{a} + \frac{1}{2}I\frac{GM}{a^3}$$
$$= -\frac{GM_1M_2}{a} + \frac{1}{2}\mu a^2\frac{GM}{a^3}$$
$$= -\frac{GM_1M_2}{a} + \frac{1GM_1M_2}{a} = -\frac{1}{2}I\Omega^2$$

Orbital Evolution (1)

We would like to eliminate *a* in favor of Ω , using Kepler's third law:

$$I = \mu a^2 = \mu \left(\frac{GM}{\Omega^2}\right)^{2/3}$$

Substituting into the energy equation:

$$E = -\frac{1}{2}I\Omega^{2} = -\frac{1}{2}\mu (GM\Omega)^{2/3}$$
$$\dot{E} = -\frac{1}{3}\mu (GM)^{2/3} \Omega^{-1/3}\dot{\Omega}$$

Orbital Evolution (2)

Putting together the energy equations, $-\frac{1}{3}\mu (GM)^{2/3} \Omega^{-1/3} \dot{\Omega} = -\frac{32G}{5c^5} I^2 \epsilon^2 \Omega^6$ $-\frac{1}{3}\mu (GM)^{2/3} \Omega^{-1/3} \dot{\Omega} = -\frac{32G}{5c^5} \mu^2 \left(\frac{GM}{\Omega^2}\right)^{4/3} \Omega^6$

and isolating the change in Ω gives $\dot{\Omega} = \frac{96G}{5 c^5} \mu (GM)^{2/3} \Omega^{11/3}$ What is different about this formula?

Orbital Evolution (3)

Doing what we did for the spin, $\dot{\Omega} = \frac{\Omega}{T} \left(\frac{\Omega}{\Omega_0}\right)^{8/3}$ where $T = \frac{5 \ c^5 \ 1}{96 G^{5/3} \mu M^{2/3} \Omega_0^{8/3}}$ $-\frac{3 \ 1}{8\Omega^{8/3}} \Big|_{\Omega_0}^{\Omega_f} = \frac{t_f - t_0}{T\Omega_0^{8/3}} \text{ taking } t_0 = 0, \Omega_f \to \infty,$ $t_f = \frac{3}{8}T = \frac{5}{256} \frac{c^5}{G^3} \frac{a_0^4}{\mu M^2}$ and $\Omega = \Omega_0 \left(\frac{t_f}{t_f - t}\right)^{3/8}$

Sample Evolution

Let's take two neutron stars with each with a mass of $1.4 M_{\odot}$, and the wave frequency ($2f=\Omega/\pi$) starting with what we can barely hear (e.g. 30Hz).

2 <i>f</i> =Ω/π	t_f
1Hz	5.36 days
30 Hz	53.3 seconds
300 Hz	115 ms
2175 Hz	582 μ s

Some Binary Pulsars

Name	Orbital Period	Our	Careful
	(hr)	<i>t_f</i> (Myr)	$t_f(Myr)$
B1913+16	7.75	1600	320
B1534+12	10.1	3400	2900
J0757-3039	2.4	72	85