Lectures on Ouantum Phenomena

How science is <u>really</u> done A tale of duels, harems, heroines, and a cold case of murder

> Jaymie Matthews UBC Physics & Astronomy

Wednesday, 10 March 7:30 pm Fairmont Lounge, St. John's College

Textbooks tend to depict the pioneering scientists of history as scientific saints, known only for their contributions to knowledge, but rarely as colourful human beings – sometimes heroic, sometimes flawed, sometimes both. Who knew there were astronomers whose life stories could make Hollywood screenplays. What's the connection between alchemy, astro-dynamics and murder? Find out at this talk, when PiTP meets CSI, and traditional physics meets tabloid paparazzi.

Other planetary systems

Space missions

Three space telescopes have expanded the search and the study of exoplanets

MOST www.astro.ubc.ca/MOST

CoRoT smsc.cnes.fr/COROT/ GP_actualite.htm

> Kepler kepler.nasa.gov

Satellite

✓ 54 kg, 60×60×30 cm ✓ Power: solar panels ✓ peak ~ 38 W ✓ Communication: radio ✓ power of a cell phone Attitude Control System: pioneering technology ✓ pointing 4000× better Lifetime: 7 - 11 years +?

CONTRACTORS: Dynacon Inc. U of T Institute for Aerospace Studies

Instrument

✓ Maksutov telescope aperture = 15 cmfield of view = 2° diameter single broadband filter $380 \le \lambda \le 750 \text{ nm}$ ✓ twin E2V 47-20 CCDs Science and Startracker Fabry microlenses produce pupil images of Primary Star and sky backgrounds University of British Columbia CRESTech, Spectral Applied Research

camera

on/Efficiency

Instrument baffles primary Maksutov telescope mirror aperture = 15 cmfield of view = 2° diameter optics single broadband filter corrector & secondary $380 \le \lambda \le 750 \text{ nm}$ erture/s/A) ✓ twin E2V 47-20 CCDs CCD QE 1.2x10⁵ 1.0x10⁶ Science and Startracker Flux (Photons/Mo 8.0x10⁴ Fabry microlenses produce spectrum 6.0x10⁴ pupil images of Primary 4.0x10⁴ filter Photon Star and sky backgrounds 2.0x10⁴ Ceravolo Optical Systems (Ottawa) 2000 4000 6000 8000 10000 wavelength (A) Custom Scientific (Phoenix)

Instrument

 ultraprecise photometer which can see oscillations in starlight as small as
 1 part per million (0.0001%)

University of British Columbia CRESTech, Spectral Applied Research Ceravolo Optical Systems

 circular polar orbit altitude h = 820 kmperiod P = 101 mininclination $i = 98.6^{\circ}$ ✓ Sun-synchronous stays over terminator ✓ <u>Continuous Viewing Zone</u> $CVZ \sim 54^{\circ}$ wide $-18^{\circ} < \delta < +36^{\circ}$ stars visible for up to <u>8 weeks</u> without interruption

Sun-synchronous, dawn-dusk orbit

Why go to all this bother?

Arentoft et al. 2007, A&A, 465,965

From the ground

Why go to all this bother?

From MOST

From the ground

Gruberbauer et al. 2007, MNRAS

Fourier transform of a time series

Discrete Fourier Transform (DFT)

$$F_N(\nu) = \sum_{i=1}^N f(t_i) e^{-i2\pi\nu t_i}$$

Fourier transform of a time series

Discrete Fourier Transform (DFT)

$$F_N(\nu) = \sum_{i=1}^N f(t_i) e^{i2\pi\nu t_i}$$

Periodogram – estimate of Fourier transform

$$P_{N} = \frac{2}{N} \left[\left(\sum_{i=1}^{N} f(t_{i}) \cos(2\pi\nu t_{i}) \right)^{2} + \left(\sum_{i=1}^{N} f(t_{i}) \sin(2\pi\nu t_{i}) \right)^{2} \right]$$

Fourier transform of a time series

frequency (mHz)

<u>A PET scan?</u>

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow!

Clean spectral window – no aliasing due to sampling gaps

HR 1217 = HD 24712

WET campaign
 Nov-Dec 2000
 ✓ 342 hr over 35 days
 ✓ duty cycle = <u>34%</u>
 ✓ 10-sec integrations
 ✓ Johnson B filter

2000 WET campaign:

Kurtz et al. 2002, MNRAS 330, L57 Kurtz, Cameron et al. 2005, MNRAS

HR 1217 = HD 24712

MOST campaign Nov-Dec 2004 666 hr over 29 days
duty cycle = <u>96%</u>
30-sec integrations
MOST custom filter

> *3 gaps due to charged particle hits*

2004 MOST campaign: Chris Cameron et al. 2010, in preparation Cameron UBC PhD thesis

HR 1217

 rapidly oscillating Ap star
 periods near 6 min discovered by Kurtz (1982)
 0 < B field < 1.2 kG
 P_{rot} = 12.45877(16) d Ryabchikova et al. 2005, A&A

A rich p-mode spectrum 6 dominant modes + 1 anomalous one

2000 WET campaign:

Kurtz et al. 2002, MNRAS 330, L57 Kurtz et al. 2005, MNRAS

HR 1217: A magnetohydrodynamic lab in space

MOST finds…

- second magnetically perturbed (?) mode
- ✓ new p-modes matching ~34-µHz spacing
- evidence for small spacing
- tracking of amplitude & phase modulation
- Implication...
 - most severe test yet of magnetic perturbation theories

schematic of 2004 MOST amplitude spectrum

Pulsation amplitudes and phases modulated with magnetic (= rot'n) period

Oblique Pulsator Model Kurtz 1982 MNRAS 200, 807

magneto-acoustic coupling

Dziembowski & Goode 1996 eigenfunction expanded with $Y_{\ell}^m \circ \theta$, $2 \circ 2$

Cunha & Gough 2002, MNRAS 333, 47 Cunha 2006 variational principle and WKB approximation

Saio & Gautschy 2004, Saio 2005 Including <u>rotation</u> Bigot & Dziembowski 2002, A&A 391, 235

"magnetoasteroseismology"

"Peering into the convective core of an A star" Browning, Brun & Toomre (JILA, Boulder) 2002

> numerical simulations of a core-convection dynamo

azimuthal component of B field

radial velocity

Clean spectral window – no aliasing due to sampling gaps

http://smsc.cnes.fr/COROT

CoRoT

MOST CVZ

RA (CVZ center) [h]

NASA's first mission capable of finding Earth-size and smaller planets

kepler.nasa.gov

Kepler CVZ

Kepler CVZ

NGC6791

MOST CVZ

RA (CVZ center) [h]

- Swiss astronomers discovered three planets around a dim red dwarf
 - one of these planets may be in the <u>habitable zone</u>

 Swiss astronomers discovered three planets around a dim red dwarf Gliese 581a
 one of these planets may be in the <u>habitable zone</u>

 Canada's MOST space telescope put this planetary system under a stakeout for eight weeks

 Swiss astronomers discovered three planets around a dim red dwarf Gliese 581a
 one of these planets may be in the <u>habitable zone</u>

 Canada's MOST space telescope put this planetary system under a stakeout for eight weeks

✓ The results were boring

 Swiss astronomers discovered three planets around a dim red dwarf Gliese 581a
 one of these planets may be in the <u>habitable zone</u>

 Canada's MOST space telescope put this planetary system under a stakeout for eight weeks

✓ The results were boring

"Boring" is good for life
 The red dwarf star is old and stable –
 conditions favourable for complex life

 Swiss astronomers discovered three planets around a dim red dwarf Gliese 581a
 one of these planets may be in the <u>habitable zone</u>

 Canada's MOST space telescope put this planetary system under a stakeout for eight weeks

✓ The results were boring

"Boring" is good for life
 The red dwarf star is old and stable –
 conditions favourable for complex life

