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Star and planet formation 
 

1. Stars are born when fragments of an interstellar nebula (molecular cloud) 
collapse due to a gravitational instability known as the Jeans criterion.  This 
criterion can be expressed as a mass,   so that the Jeans mass MJeans is given by 

 

                                       MJeans (in MSun) ~ 23 T 
3/2 

n 
–1/2 

 
where T is cloud temperature (in K) and n is number density (in particles per cm3).  
 
(a)  Derive this expression, assuming the cloud has a uniform temperature and    

 density and that it is composed entirely of hydrogen.                     [ 12 marks ] 
 
 

The Virial Theorem for a system in gravitational equilibrium is 
that the total energy of the system is equal to one half of the 
gravitational potential energy of the system:  Etot = ½Egrav 
 

The total energy is the sum of the kinetic energy Ekin and the potential 
energy, so Ekin + Egrav = ½Egrav and therefore           Ekin + ½Egrav = 0                  
or                       2Ekin + Egrav = 0 
 
In the case of a gas cloud that is not expanding, contracting or convecting, 
the kinetic energy is represented by the thermal energy of the particles in it. 
(I’ll neglect rotational energy which could alter the result slightly.)   
 

The average kinetic energy of a particle in a gas of uniform 
temperature T is (3/2)kT where T is in Kelvin. If we assume the 
cloud is made entirely of hydrogen, then there is only one type of particle 
and the total kinetic energy of the nebula is Ekin = N(3/2)kT where N is the 
total # of H molecules. 
 

The gravitational potential energy of a spherical distribution of 
matter of mass M and radius R is   Egrav = –(3/5)GM2/R  
 
So  2 [ N(3/2)kT ] + [ –(3/5)GM2/R ] = 0 

2 marks  

2 marks  

2 marks  



 

 

We want to express the equilibrium as a mass, so we must re-express 
other terms as mass.   
 

The total number of particles  N = (total mass) / (mass per particle) 
N = M / mH where mH is the mass of an H2 molecule.  
 

The radius of the nebula R = (3M / 4πρ)1/3  
and the density ρ = mH n  
where n is the number density of particles. 
 
2 [ ( M / mH ) (3/2)kT ] + [ –(3/5)GM2 / ( 3M / 4π mH n )1/3 ] = 0 
 

Isolating M in this equation … 
 

M = 4.6 × 10 
34 T 3/2 n –1/2

 kg
 

 

where you must be careful to use the mass of a hydrogen molecule (twice 
the mass of an H atom). 
 

The number density is in particles per cubic metre so this must 
be converted to units of particles per cubic centimetre to match 
the equation I gave, and you must also convert to mass in units 
of solar masses ( MSun ~ 2 × 1030 kg ) 
 

The final result is: MJeans ~ 23 T 
3/2

 n –1/2
 kg

 

 
 

(b)  What is the Jeans mass for a cloud of temperature T = 30 K  and number  
 density n = 1011 m3.      [ 3 marks ] 

 
The answer is about 12 solar masses. (Remember: You must convert 
number density into particles per cubic centimetre to apply the equation 
you derived in part (a). 

 
 

2. Estimate how long it will take for a cloud fragment to collapse into a star, as a 
function of the initial number density of the nebula.                                [ 5 marks ] 

 

For most of the collapse, the individual molecules are falling close to freely 
under gravity towards the centre of mass, so we can use the free-fall 
timescale as an estimate.  This is the same as half the orbital period P of a 
particle around a mass M with an orbital major axis 2a = R. By Newton’s 
form of Kepler’s 3rd Law:  P2 = (4π2/G(Mtot)) a3 so tff ~ ((π2/8GM)R3)1/2  
 

Note that mass density ρ = M/(4πR3/3) so tff ~ (3π/32G)1/2ρ–1/2   
Voila!             (There are other approaches I’ll accept.) 

1 mark  

1 mark  
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3. Before the star becomes a star, it is not radiating thermonuclear energy, but 
converting gravitational potential into thermal energy.  What is the average 
luminosity (in units of LSun) of the protostellar cloud as it collapses?      [ 8 marks ] 

 

There are various ways to approach this approximation.  One is to calculate 
the loss of gravitational potential energy (Egrav = –(3/5)GM2/R) from the 
initial size of the cloud to the final radius of the star.   
 

ΔEgrav = –(3/5)GM2(1/Rcloud – 1/Rstar )  
 

The initial size is so large that even if you calculate the Jeans length for the 
cloud, the initial potential energy will be close to zero (Rcloud ~ ∞).  The final 
radius of the main sequence star will range somewhere between 0.1 and 
about 10 RSun.   
 
The average luminosity L ~ ΔEgrav / tff ~ (3/5)GM2/Rstar / (3/32G)1/2ρ–1/2    
 

L ~ 6.4 G3/2 ρ1/2 M2 / Rstar  
 
For a typical density of the interstellar medium, a mass of 1 solar mass and 
a final radius of 1 solar radius, the average luminosity from this relation 
turns out to be about 1027 W ~ 3 LSun. (Keep in mind that most of this is 
being radiated in the infrared and far infrared for most of the protostellar 
collapse.) 
 
 
 

The habitable zone 
 

If a planet is to harbor LAWKI (Life As We Know It) then it must be able to have liquid 
water at or near its surface.  Any planet whose orbit relative to its star allows the 
presence of liquid water is said to be in the “habitable zone”.  
 

4. Estimate the equilibrium temperature of a planet’s surface as a function of its 
distance from its parent star, and any other relevant parameters of the star and 
the planet (e.g., star’s luminosity, planet’s radius and albedo).  Be careful to point 
out any approximations or assumptions and justify their validity.          [ 12 marks ] 
 

The flux received by a planet from its parent star is Freceived = Lstar / 4πd2  
where Lstar is the luminosity of the star (in W) and d is the distance between 
the planet and star (in m).  The total energy intercepted by the planet per 
second is received flux times area.  But the area of the planet that is 
intercepting flux is its projected circular area A = πR2 (where R is the radius 
of the planet), not half the surface area of a sphere.   
 
 
So the intercepted energy per time is Lintercepted = (Lstar / 4πd2)(πR2) 

4 marks  



 

 

Let’s assume the planet radiates as a blackbody, so its radiated 
surface flux is Fradiated = σT4 where T is the planet’s surface 
temperature (in K). 
 
The total radiated energy per time Lradiated = Fradiated × surface 
area = σT4 4πR2.  (If the planet is rotating, it will radiate evenly 
on both hemispheres.  If not, and there is no atmosphere, you 
could divide the radiating surface area by 2.) 
 
The planet’s surface will not absorb all the light it intercepts, but 
will reflect a fraction A, where A is the albedo, so Labsorbed = (1 – A) Lintercepted  
Labsorbed = (1 – A)(Lstar / 4πd2)(πR2)  
 

Labsorbed = Lradiated 
 

(1 – A)(Lstar / 4πd2)(πR2) = σT4 4πR2 
 
Therefore, T = [ (1 – A) Lstar /(16πσ) ] 

1/4 d 
–1/2  

 
 

5. Generate your own plot of the boundaries of the habitable zone as a function of 
spectral type for main sequence stars.  Is there a limit (or are there limits) on 
stellar spectral type beyond which we would not expect to find simple or complex 
life even on a planet orbiting in its habitable zone?  Why or why not?  [ 13 marks ] 

 
As I discussed in class, the main 
sequence lifetime of stars shortens 
dramatically with increasing mass.  
By the time you reach spectral type 
A5, the lifetime of the star is less 
than 0.5 Gyr (half a billion years) 
which is the time between the 
appearance of oceans on Earth and 
the development of the first simple 
life forms.  So planets orbiting stars 
more massive than mid-A-type 
probably won’t have habitable 
conditions long enough for complex 
life to develop.  (If the Earth’s case 
is representative.) 
 

 
 

TOTAL  =  50 marks 
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