Stellar Black Holes

Accretion Disks

Why black holes? (1)

- The limiting mass for a neutron star under generous assumptions is around 3 solar masses.
- Supernova simulations find that stars with masses greater than about 20 solar masses leave remnants greater than 3 solar masses.

Why black holes? (2)

- Cygnus X-1 was one of the first X-ray sources to have been discovered.
- It is associated with a
 OB supergiant
 HDE226868 whose
 radial velocity varies
 with a 5.6-day period.

The X-ray emission also varies with a 5.6day period.

Why black holes? (3)

• What is the mass of the X-ray source?

Why not a funny neutron star?

- The maximum mass of a neutron star is less than 3 solar masses.
- It could be another type of object but it mustn't have a hard surface otherwise you would get lots more energy.

A Keplerian Disk

- What is the specific angular momentum of material in the disk? $\Omega^2 = \frac{GM}{M}$ $L = mr^2\Omega = m \, (GMr)^{1/2}$ Since the mass moves in, so does angular momentum at a rate. $\dot{L}^+ = \dot{M} (GMr)^{1/2}$
- Some ends up on the black hole, $\dot{L}^- = \beta \dot{M} (GMr_I)^{1/2}$

Angular Momentum (1)

- There is a torque on the material in the accretion disk,
 - torque = (force along $\hat{\phi}/\text{area}) \times (\text{area}) \times r = \dot{L}^+ \dot{L}^-$ = $f_{\phi}(2\pi r \cdot 2h)(r) = \dot{M} \left[(GMr)^{1/2} - \beta (GMr_I)^{1/2} \right]$
- *f*_{ϕ} is the viscous stress. For rotating disk of fluid we also know that

$$f_{\phi} = -\eta \frac{d\Omega}{d\ln r} = -\eta r \frac{d}{dr} \left(\sqrt{GM} r^{-3/2}\right) = \frac{3}{2} \eta \Omega$$

Heat is generated by viscosity at the rate (per unit volume) $\dot{Q} = \rho T \dot{s} \approx \frac{\left(f_{\phi}\right)^2}{n}$

Angular Momentum (2)

of the disk.

Argh!! What is η? It is the coefficient of dynamic viscosity (g cm⁻¹ s⁻¹). And we can only guess what it is. But we can make progress anyhow by using both expressions for the stress.

$$2h\dot{Q} = \frac{1}{\eta} \left(\frac{3}{2}\eta\Omega\right) \left\{ \frac{1}{2\pi r^2} \dot{M} \left[(GMr)^{1/2} - \beta (GMr_I)^{1/2} \right] \right\}$$
$$= \frac{3\dot{M}}{4\pi r^2} \frac{GM}{r} \left[1 - \beta \left(\frac{r_I}{r}\right)^{1/2} \right]$$
This is the heat generated per unit surface area

Emission (1)

Let's assume that the heat is not trapped in the disk but radiated where it is produced $F(r) = \frac{1}{2} \times 2h\dot{Q} = \frac{3\dot{M}}{8\pi r^2} \frac{GM}{r} \left[1 - \beta \left(\frac{r_I}{r}\right)^{1/2} \right]$ The total luminosity of the disk is $L = \int_{r_{I}}^{\infty} 2F \times 2\pi r dr = \left(\frac{3}{2} - \beta\right) \frac{GM\dot{M}}{r_{I}}$

Vertical Structure (1)

The disk is in hydrostatic equilibrium in the vertical direction against the vertical component of gravity.

Vertical Structure (2)

• We have assumed that the disk stays thin what does this say about the gas in the disk.

Here we have assumed that gas pressure dominates but the argument works for a combination of gas and radiation pressure.

So the disk stays thin if the energy is radiated away. The alternative is like the Bondi solution (a.k.a ADAF - advection dominated accretion flow)

Viscosity (1)

- What is the viscosity? Let's do some dimensional analysis. η has units of g cm⁻¹ s⁻¹, density times velocity time length. Shakura & Sunyaev assumed that viscosity is produced by turbulence in the flow so $\eta \approx \rho v_{turb} l_{turb}$.
- The size of the eddy is limited by the thickness of the disk and the velocity is limited by the sound speed so....

Viscosity (2)

- The viscosity is limited to $\eta < \rho c_s h$.
- Remember that the stress is given by $f_{\phi} = \frac{3}{2}\eta\Omega < \frac{3}{2}\rho c_{s}h\Omega \approx \rho c_{s}^{2} \approx P$
- In general we have $f_{\phi} = \alpha P$ where $\alpha \leq 1$.
- Models constructed using this model are called " α -disks." Observations of accretion disks give α in the range 0.1-1.

Putting things together

- If we combine the rule for α -disks with the stress in the disk we get $\alpha P(2\pi r \cdot 2h)(r) = \dot{M} \left[(GMr)^{1/2} - \beta (GMr_I)^{1/2} \right]$
 - Now add the vertical structure $\alpha h^2 \Omega^2 \rho (2\pi r \cdot 2h)(r) = \dot{M} \left[(GMr)^{1/2} - \beta (GMr_I)^{1/2} \right]$ $h^3 = \frac{\dot{M}}{2\pi r} \frac{1}{2\pi r} \left[(GMr)^{1/2} - \beta (GMr_I)^{1/2} \right]$

$$h^{3} = \frac{1}{\alpha} \frac{\dot{M}}{4\pi\rho\Omega} \left[1 - \beta \left(\frac{r_{I}}{r}\right)^{1/2} \right] = \frac{1}{2\alpha} \frac{v_{r}}{r\Omega} r^{2} h \left[1 - \beta \left(\frac{r_{I}}{r}\right)^{1/2} \right]$$

So if α is big the disk is thin. Also if the horizontal velocity gets big, the disk gets flat.

Accretion Disk Structure

Accretion Disk Spectrum

