
Black Holes

A Cursory Introduction to
General Relativity



A Little History

At the turn of the 20th century, the laws
of electrodynamics and mechanics
contradicted each other.
Galiean mechanics contained no reference
to the speed of light, but Maxwell’s
equations and experiments said that light
goes at the speed of light no matter how
fast you are going.



Lorentz transformations

To deal with this people argued that there
should be new rules to add velocities and
that the results of measuring an object’s
mass or length as it approaches the speed
of light would defy one’s expectations.



Enter Einstein (1)

Einstein argued that the constancy of the
speed of light was a property of
space(time) itself.

The Newtonian picture was that everyone
shared the same view of space and time
marched in lockstep for everybody.
So, people would agree on the length of
objects and the duration of time between
events dl2 = dx2 + dy2 + dz2, dt



Enter Einstein (2)

Einstein argued that spacetime was the
important concept and that the interval
between events was what everyone could
agree on.
This simple idea explained all of the
nuttiness that experiments with light
uncovered but it also cast the die for the
downfall of Newtonian gravity.

ds2 = c2dt2 à dx2 à dy2 à dz2



Exit Newton (1)

Newtonian gravity was action at a
distance (Newton himself wasn’t happy
about this).   This means that if you move
a mass, its gravitational field will change
everywhere instantaneously.
In special relativity this leads to
contradictions.



Exit Newton (2)

At the event marked by
the circle, a mass is
shaken, the gravitational
field will change instantly
along red line.
Someone moving relative
to the mass will find that
the field changes before
the mass is moved.
This is bad, bad, bad.
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Einstein again

Instead of trashing the brand-new special
theory of relativity, Einstein decided to
rework the venerable theory of gravity.
He came upon the general theory of
relativity.



A First Try (1)

Newtonian gravity looks a lot like
electrostatics:
Let’s generalize it as a relativistic scalar
field:
What is ρ?   The mass (or energy) density
that one measures depends on velocity
but the L.H.S. does not, so this equation
is no Lorentz invariant.

∇2þ = 4ùGú

∇2þ à c2
dt2
d2þ

= 4ùGú



A First Try (2)

The relativistic generalization of the mass
or energy density is the energy-
momentum tensor.  For a perfect fluid
you have,                                   where
                                      is the metric
tensor (N.B. this is the other convention).
We can get a scalar by taking

Tëì = ú +
c2
p

ð ñ
uëuì + pgëì

gëì = diag(1,à 1,à 1,à 1)

T = gëìT
ëì = úc2 à 3p

∇2þ à c2
dt2
d2þ

= 4ù
c2
G
T



A First Try (3)

The energy-momentum tensor of an
electromagnetic field is traceless so T=0.
This means that photons or the energy in a
electric field does not generate gravity.
This is bad, bad, bad.
If photons feel gravity, momentum is not
conserved.
If photons don’t feel gravity, energy is not
conserved.



What to do?

The next obvious step would be a vector
field like electromagnetism, but it isn’t
obvious how to make a vector from the
energy-momentum tensor.
How about a tensor field?  So

But we would like gravitational energy to
gravitate, so h should be on both sides.

ã2hëì = 4ù
c2
G
Tëì



Einstein’s solution

Einstein assumed that all objects follow
the same paths in a gravitational field
regardless of their mass or internal
composition (strong equivalence
principle), so he suggested that the metric
itself (gαβ) should play the role of h and
objects follow extremal paths through the
spacetime described by gαβ.



The Geodesic Equation (1)

Let’s make some definitions:

Using the definition of the metric

Solving for δ(ds) yields
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The Geodesic Equation (2)

Because the variation is arbitrary we can set its
coefficient equal to zero:
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The Geodesic Equation (3)

Finally we have

where                                                  is the
connection coefficient or Christoffel symbol.
We have defined new concept but does it show
up elsewhere.

gëí ds

duë
+ Γí,ëìu

ëuì = 0

Γí,ëì = 2

1
gíë,ì + gíì,ë à gëì,í( )



Tensors (1)

The quantities like Tαβ that we have been
manipulating are called tensors, and they
have special properties.   Specifically they
transform simply under coordinate
transformations.
Also if the metric isn’t constant you would
expect derivatives to depend on how the
coordinates change as you move too.

Tëì = ∂xë
∂x0í

∂xì

∂x0î
T0
íî



Tensors (2)

We want a derivative that transforms like a
tensor (this is also called the connection).
The derivative of a scalar quality should be
simple; it does not refer to any directions, so we
define the covariant derivative to be
Let’s assume that the chain and product rules
work for the covariant derivative like the normal
one that we are familiar with.

þ;ë = þ,ë



Tensors (3)

Let’s prove a result about the metric, the
tensor that raises and lowers indices.
Aì;ë = gìíA

í( );ë
= gìí;ëA

í + gìíA
í
;ë = gìí;ëA

í +Aì;ë

gìí;ë = 0



Tensors (4)

Let’s calculate the covariant derivative of
a vector norm.

Remember that the first term on the
right-hand side of the last line vanishes so
2gëìA

ë
;íA

ì = gëì,íA
ë + 2gëìA

ë
,í

ð ñ
Aì

but Aì;í = Aì,í +
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1
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Tensors (5)

With help from the previous result and the
result on page (3) you find that

where
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Some Important Tensors (1)

First, we measure scalar quantities the length of
one vector along the direction of another.
These scalars do not depend on the coordinate
system.
Coordinate vectors - dxα

Four velocity and four momentum  - uα and pα

Killing vectors (ξα) hold the key to the symmetry
of the spacetime. ξα pα is constant along a
geodesic.



Some Important Tensors (2)

I am moving with four-velocity uα and I detect a
particle with four-momentum pα.  I would
measure an energy of gαβ uαpβ.
If there is an electromagnetic field Fαβ.  I would
measure an electric field of uα Fαβ  and a
magnetic field of uα (dual F)αβ.
Of course, gαβ is the most important tensor of
all.  Without it we could not construct scalars
and measure anything.



A Second Look at the
Geodesic Equation

Now we know what the covariant
derivative looks like, the geodesic
equation looks very simple.

gëí
ds
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+ Γí,ëìu
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Christoffels

The Christoffel symbols are not a tensor.
From the rule for tensor transformation if
a tensor is zero in one coordinate system
it will be zero in all others.
If I use the geodesics themselves, I can
set up a coordinate system locallly in
which the Christoffels vanish.
However, if the geodesics diverge the
Christoffels won’t be zero everywhere.



Curvature

Riemann figured out a tensorial quantity
that measures how the geodesics diverge
from each other and traces the curvature
of the space. It is the Riemann curvature
tensor.

It is like the curl of the Christoffel.   It
transforms as a tensor.

Rö

÷ëì
= Γö

÷ì,ë
à Γö

÷ë,ì
+ ΓöûëΓ

û
÷ë

à Γö
ûì
Γû÷ë



Curvature and Geodesics

If you have two geodesics that are
separated by an infinitesimal distance v µ,
the separation evolves as

Compare with the tidal force of Newton

So Riemann in GR is like φ,a,b for Newton.

Dü2
D2vö

= xç ÷xç ëvìRö

÷ëì

Dü2

D2va
= vbfa,b = à vbþ,a,b



Poisson Equation ⇒
Einstein Equation

The equation for the potential in Newtonian
gravity is
Let’s define two new quantities, the Ricci tensor
and scalar:
Einstein’s field equation is

∇2þ = þa,a = 4ùGú

Rëì = Rö

ëöì
and R = Rë

ë

Rö÷ à
2

1
Rgö÷| {z }

Einstein Tensor Gö÷

+ Λgö÷ = c4
8ùG

Tö÷



How to solve the equation?

For an analytic solution, you need a high degree
of symmetry and a simple expression for the
energy-momemtum tensor:

Static spherically symmetric: vacuum, perfect fluid,
electric field, scalar field
Homogeneous: perfect fluid
Stationary Axisymmetric: vacuum, electric field

Numerical solutions are also difficult because
the equations are non-linear.



Spherically symmetric
vacuum (1)

Let’s try to find a spherically symmetric
solution without matter.   It starts with a
trial metric:

This equation means
The functions ν and λ depend on t and r.
There could also be a drdt term but we
could eliminate it by a coordinate
transformation.

ds2 = e÷c2dt2 à r2(dò2 + sin2 òdþ2)à eõdr2

ds2 = gëìdx
ëdxì



Spherically symmetric
vacuum (2)

With Maple we can quickly get the nonzero
components of the Einstein tensor.
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Spherically symmetric
vacuum (3)

The left-hand sides equal zero, so the
second equation tells us λ(r).
The sum of the first and third tell us that,
                   so                    . We can
redefine the time coordinate such that
               so the metric is static (it is not
a function of time).

õ0 + ÷0 = 0 õ + ÷ = f(t)

f(t) = 0



Spherically symmetric
vacuum (4)

We can integrate the remaining equations to
give

Let’s calculate uα for a stationary observer at
radius r and then the gravitational redshift from
r to infinity.

eàõ = e÷ = 1 +
r

K
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ds2 = 1 à
r

2M
ð ñ

dt2 à r2(dò2 + sin2 òdþ2)à 1 à
r

2M
ð ñà1

dr2

Schwarzschild solution (1)

What happens at the Schwarzschild
radius?

A finite proper time lasts an infinite
coordinate time.
What about the tidal forces (curvature)?

u0 =
dü
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= 1 à

r

2M
ð ñà1/2

Rëì

îí
= A

r3
M



Schwarzschild solution (2)

Within the Schwarzschild radius the
coefficient of dt2 is negative (spacelike)
while that of dr2 is positive (timelike).
As time passes for someone within the
Schwarzschild radius she approaches r=0.
One can use different sets of coordinates
to illustrate that the Schwarzschild radius
is not singular.



Penrose Diagram (1)



Penrose Diagram (2)

In a Penrose diagram, each point
represents a sphere in space.  Light rays
travel at 45°, timelike trajectories lie
between the vertical and 45°.  Infinity is
also depicted.
The Schwarzschild singularity is spacelike
(like a wall).  Once you are within r = 2M,
you cannot avoid it.



A Rotating Black Hole

The metric for a rotating black hole is
somewhat more complicated.

There are two horizons where ∆=0.

ds2 = 1 à
Σ

2Mr
ò ó

dt2 +
Σ

4aMr sin2 ò
dtdþ à

∆

Σ
dr2
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Σ
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 !
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a =
M

J
,∆ = r2 à 2Mr + a2,Σ = r2 + a2 cos2 ò

ræ = M æ M2 à a2
à á1/2



Something else special (1).

Let’s consider someone rotating around
the hole with angular velocity Ω=uφ/ut and
no other velocity.  Is there a limit to her
angular velocity?

The term in the brackets must be greater
than zero because the LHS equals one.

dü

ds
ð ñ2

= ut
à á2

gtt + 2Ωgtþ + Ω
2gþþ

à á



Something else special (2).

Let’s solve for the range in Ω.

If gtt=0 then Ωmin=0, this occurs at

gþþ

àgtþà g2
tþ
àgttgþþ

ð ñ1/2

< Ω <
gþþ

àgtþ+ g2
tþ
àgttgþþ

ð ñ1/2

r0 = M + M2 à a2 cos2 ò
ð ñ1/2



A Kerr Black Hole



Penrose Diagram

r=r+

r= ∞

r=r-

r= -∞

r= ∞
The structure of the
spacetime of a
rotating black hole is
much more
complicated.
The singularity is
timelike (you can
avoid it if you try),
but r- might be
troublesome.
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