
Accreting Neutron Stars

Magnetic field, spin and
disks



Spherical Accretion (1)

The equations of fluid dynamics:
Equation of state

Continuity (conservation of stuff)

Euler (conservation of energy)
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Spherical Accretion (2)

Integrals of these equations:
Continuity (conservation of stuff)

Euler (conservation of energy): Bernoulli
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Spherical Accretion (3)

Working with the continuity equation:

Working with Euler equation:
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Spherical Accretion (4)

We can solve for u’  and ρ’:

We would like u to diverge as r goes to
zero (like in free-fall), but u starts at zero
at infinity, so at some point u=a.  Unless
the numerators vanish too, the derivatives
will diverge at this “sonic point.”
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The Sonic Point (1)

At the sonic point:

Using the Bernoulli equation:
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The Sonic Point (2)

We know the velocity and position of the
sonic point.  Let’s calculate the density.
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The Whole Bondi Solution



What is missing?



What is missing.

Material falling onto a compact object
generally has angular momentum
A neutron star has two additional
complications:

A surface
A magnetic field



Angular Momentum

If the material initially has some tangential
velocity, this velocity will increase as the
material falls toward the star.

The radial velocity if there were no pressure
goes as

So at some radius the swirling motion will
become important.
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Magnetized Disk



The Regions

Outside of rs, there is no magnetic field in
the disk.
Outside of r0, the disk motion is Keplerian;
that is,
Inside of rA, there is no disk.

vr = vz = 0, v2
þ
= GM/r.



The Alfvén Radius (1)

Let’s assume for now that the flow is
spherical and in the transonic regime.
The fluid is more or less freely falling:

The magnetic field is given by
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The Alfvén Radius (2)

Let’s compare the magnetic energy
density to the kinetic energy density of
the flow:
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Transition Radius (1)

The angular momentum that remains in
the disk at r0 ends up on the star.

I  is the moment of inertia of the star and
corotating magnetosphere.  N is any
torque that is exerted at r0.
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Transition Radius (2)

What is the value of r0?
The disk is 2-D, so the mass flow density is
concentrated by a factor of ~r/h, so r0 should
be less than rA for the spherical case.
However, the magnetic field is somewhat
concentrated in the disk which mitigates this
effect, so
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Spin Evolution (1)

Let’s estimate the various terms:

So the second term in the brackets is
larger than the first.
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Spin Evolution (2)

Let’s ignore the relativity bits, the torque
and the first term to get:
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Spin Evolution (3)

What about that
torque N  that we
neglected?
If                  ,
then the star is a
“fast rotator” and
the torque is
large.
If              , then
it is a propeller.

Ωs & ΩK

Ωs ý ΩK



Observations of X-ray PSRs



Radiation from Accreting
Neutron Stars (1)

The disk itself radiates over a wide range
of energies; we will see this in a few
weeks.
The highest energy emission comes from
where the gas hits the surface of the
neutron star (it also accounts for more
than one half of the luminosity if rA>R,
why?)



Radiation from Accreting
Neutron Stars (2)

Let’s assume that the matter is channeled
onto a polar cap so,

Let’s estimate Ω.   The opening angle of
the cap corresponds to field lines that
have rmax ~ r0.
Remember that         is constant along a
field line.
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Radiation from Accreting
Neutron Stars (3)

Let us assume that          , so

The solid angle is
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Radiation from Accreting
Neutron Stars (4)

The collimation of the flow increase the
energy of the emission significantly, but
more importantly, it makes the emission
pulsed with the rotation period of the
neutron star.   We have an X-ray pulsar!



What happens now?

Accretion deposits lots of hydrogen and
helium (fuel) onto the hot surface of a
neutron star.
Shell burning on stars is general unstable,
so the nuclear energy emerges in bursts.
What would happen if the energy
emerged continually?



High-T Hydrogen Burning

At high temperatures, hydrogen burning
proceeds by the CNO-cycle:

(ì+)
14O

(p, í) ↑ (ì+)
12C à→ 13N à→ 13C

(p, ë) ↑ ↓ (p, í)
15N ←à 15O ←à 14N
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Beta-limited H-burning

At sufficiently high temperatures, the proton
captures take little time compared to the beta
decays, so it takes a set time for a single CNO-
nucleus to process 4 protons into 1 alpha
particle

277 s above 107.8 K (hot-CNO)
1039 s is the minimum time for regular CNO

In a solar mix, you have 350 protons per CNO
nucleus - at least 6 (25) hours to burn all of the
hydrogen.



rp-process

If it is really hot, the material “breaks out”
of the CNO-cycle into the rp-process in
which nuclei up to and beyond iron
capture protons (potential presentation
topic).
This doesn’t occur during the pile-up but
occurs often during the bursts.



Type-I X-ray Bursts

The bursts of unstable hydrogen and
helium burning are called Type-I X-ray
Bursts.

Type-II X-ray bursts occur when a big glob of
material falls suddenly onto the surface of a
neutron star and forms and pair-plasma
fireball (like an SGR burst)



Different Types of Bursts

At really low accretion rates, hydrogen burning
is unstable.
At low accretion rates, it takes a long time to
accumulate an unstable layer so the hydrogen is
exhausted: helium bursts.
At higher accretion rates, there is hydrogen left:
mixed bursts.
At accretion rates approaching the Eddington
rate, the burning becomes stable.



How does a burst appear?

The burst begins at a
point and spreads over
the surface in about one
second.
The flux during the burst
varies periodically.
During the cooling
portion of the burst, the
observed frequency
increases by about one
Hertz.



Radius-Expansion Bursts



Burst Regimes

We find the same
major burst regimes:

H bursts
He bursts
Mixed bursts

Prompt v. delayed
bursts
Unstable v.
overstable triggers -3 -2 -1
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How do we figure it out?

Perturb the outgoing
surface flux,
Calculate the new
solution [with f1eγt],
Vary γ until T1=0 at a
depth where the
diffusion time is
1/|γ|.
Bonus: F1=0 too
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Critical Column Densities
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Recurrence Time
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Burst Duration
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Observational Comparison
(α)

α is the ratio of the
persistent flux to the
flux during the burst
Above 3% LEdd we find
the same trends in α as
observed.
Below 3% LEdd we can’t
account for the low
values of α.
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