Gamma-Ray Burst
Afterglows

The External Shock,
Beaming and GRB
Remnants
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Zooming in on the shock

The shock moves in to Afterglow
medium with number
density, n, with a Lorentz
factor, T.

The energy behind the
shock is 4T*nm,c?*,

The number density
behind the shock is 4I'n.

The bulk of the energy External
initially lies with protons. Shock




Equipartition

“The energy of a system in equilibrium is
shared among the various degrees of
freedom of the system.”
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Radiation from one e (1)
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The high-energy
electrons are
responsible for most
of the radiation.
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Radiation from one e (2)

How much power does the electron
radiate?
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Boosting!

All of these results are calculated in the
frame of the shock. Let’s go to the frame
of the star that exploded.
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Cooling!

What does the spectrum of the electron
look like as it cools?
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Radiation from many e (1)

Let’s say that vy <y. (slow cooling). In this
case there are some electrons that
haven’t had a chance to cool.

There is a power-law distribution of
electron energies: Ndy= A y?dy. What
is the total spectrum?
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Radiation from many e (2)

The electrons with initial y>y have had a
chance to cool what is their spectrum.

Again using the power-law distribution of
electron energies: N dy = A y” dy, we get



Putting it together

In the late regime (after a day
typically) only a few of the
accelerated electrons have F,
had a chance to cool so

Ye =~ Yo

Slow cooling

Fast cooling

In this early regime all of the
accelerated electrons have
had a chance to cool so

Ye < Yin-




How does the afterglow
evolve?

Previously we calculated how the shock
itself grows with photon arrival time and

local time.I'? = At™3, At = t*/(8A)
How do vy, and y. change with time?
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Light curve

This simple set of
assumptions of a
relativistic fireball
radiating synchrotron
radiation is sufficient
to determine the
lightcurve of the
afterglow at all
frequencies.
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How well does it work?

GRB 011121
HST/WFPC2 5 Dec 2001 R
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Flux density {LiJy)

Flux density (uJy)

When it doesn’t work... (1)

10’0_.\;"""' o Il
N FSSSW | %
o N\ \
\ o
1 h{.h‘_‘a__ﬁi £ A :_E '%ﬂ
0.1} TN '}“xg _ " \§
‘m‘\\ F14W \ FB50LP
0\ ]
AN | \
13 _:-_'SJ.I}% ¥ ‘:@.—3 3
\\ B E . \\
al N } )
1 | 10 100 10 100
t[day] t [day]

Chromatic bumps

B, V. R 1

2 keV, U,

21 F
ze |

23 |

24 [

0.01

Ll IIII
01
Days after UT 2002 Oct. 4.50432



When it doesn’t work... (2)
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When it doesn’t work... (3)

C K15 whe ]
e TN ihﬂ@;& |
L z0sk .
17 T J=1.5 -~ \ 17
C - k )
C T =ir 11
18 \ X |
1.0 —g =18 F' El
@ r R \ |
- 19 *54 - R—band fit: 41
g - . . b=1.08 W=0.07 | -
EDEU:_ KD‘ 4 B 8 -
= H"‘i—.r |
£ 21k ]
N I
G 22 el R ]
T u ]
g_,ga - B+20 \ E
o, C - . ]
< [ -
24 i
CU+4.0 -
‘H-\-"'\-_
25 [ - ]
26 [ All-bands fit: -
L b=1.04 W=0.16
27 ! L i y .
081 4 810 40

Days aft.cr UT March 1.410845
Achromatic bump

Mag

18

=0

P

24

3.5h 8h 1d 5d
- ¥ T [ T T T T 1 1 T T 3
B -i i i
R"\ ; R‘M-\ ; ; —
- -~ H H
- *w. %{m 1
— i ; “?%%I i ]
i : a“R\ |
GRE 990510 : YT 5
B i : ~ ¢ i 7
- | | B
) | | ]
i ; | \\é\\ TT |
| 1 Y
B : : . ]
i i i i v
i i RN
— i : i N
i - i W
I , H -
i H H B
R E R T A A N N S B R S [
4.5 5 5.9 5}

Log Time (sec)

Achromatic break



Gamma-Ray Burst Energies
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Beaming (1)

Particles spreads

_ Radiation
Particles remain sideways / 7 is “beamed”
within initial cone quic \ into a

large co

Radiation is
“beamed” into
a harrow cone

7
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The flux suddenly drops off
achromatically. The afterglow models
give I as a function of time, so the
break tells you what 6 is.



Beaming (2)
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