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Experiment 5

Chaotic Rhythms of a Dripping Faucet

5.1 Introduction

Undergraduate students are seldom if ever exposed to the fascinating field of nonlinear dynamics.
The reason is that th etopic is exceedingly complex from a theoretical standpoint. However,
nonlinear dynamics is very prevalent in nature, and can arise from even the simplest of systems.
Therefore, the following study of chaotic rhythms of a dripping faucet has been implemented for
the purpose of introducing nonlinear dynamics at an undergraduate level.

Since this experiment has been modelled after a very thorough Computers in Physics article by
Calahan, Leidecker and Calahan, the student will be referred directly to that paper for guidance in
this experiment. However, a few notable modifications have been made to simplify the apparatus.

Rather than using the series of 4 litre reservoirs suggested by Calahan and coworkers, we have
opted for a single 80 gallon tank. The large tank provides more stable flow rates over long periods
of time and it is convenient to fill up with a large volume of water at the beginning of a session
and to run continuously.

The most significant deviation from the design of Calahan et al is in the timing circuitry. Figure
2 of the abovementioned article shows a circuit centred around a 555 timing chip — a device which
has become quite outdated. The circuit in our apparatus uses a much more direct approach;
the drops pass through a phototransistor and the resultant electrical pulse activates a Schmidt
trigger. Finally, the signal from the Schmidt trigger passes through a one-shot multivibrator to
produce a digital pulse that can be read by the PC. The circuit elements have been laid out on a
large breadboard so that the student may probe the circuit using an oscilloscope, and the circuit
descriptions should be available.

5.2 Reference

R.F. Calahan, H. Leidecker and G.D. Calahan, Computers in Physics 4 (4) 368 (1990).
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A simple drop detector transforms the computer into a tempoltl
microicope, reuealing a uariety of rhythms in the common lealty tap

\¿
t

he regular beats of a slowly dripping faucet,
well-known to the insomniac, give way at
higher drip rates to increasingly complex
rhythms which aurally express the basic fea-

tures of chaos. While the interesting rhythms
are too rapid to be easily detected by ear, the

time intervals can be stored in a personal computer for lat-
er playback and analysis. The flow control and drop
detector used here were constructed as a school science

project. The detector connects to the printer port of an

IBM PC, which times the drops to rnicrosecond accuracy
with a short program. As the flow rate is increased the
time intervals change from periodic to doubly periodic,
and finally to various forms of chaos, interrupted by
"windows" of periodicity. Several two- and three-dimen-
sional plots of this data arc displayed below. One of the
simpler plots is approximately parabolic, where each

successive time interval is a quadratic function of the
preceding interval, with a steePness which depends upon
the flow rate. A better approximation adds a small linear
dependence on the interval before that, giving a Henon
attractor in three dimensions. Such models can be

programmed on the computer to simulate dripping faucet
rhythms and the sudden rhythm changes which occur as

the flow rate increases. At higher rates, the parabola

metamorphoses into a zoo of complex and be¿utiful
shapes, still not fully understood, but reproducible by any
common tap.

Roben E Cahølan is a physicist unrking on the analysk and modeling of
the Earth's climate in the Laboratory þr Atmospheres at Goddard Space

Flight Center in Greenbelt, Marylønd. Henning Leidecker is a scientist
unrking in the Materials Branch øt Goddard Space Flight Center. Gabriel
D. Cahalan is a student at Central High School in Prince Geotges County,

Maryland, and built the chronoscope andfluid contol system described in
this'article - "

Predictability of Fluid Flow

Instabilíty, extreme sensitivity, order in chaos

The complex behavior of the dripping faucet is surpri-sing,

in view of the apparent simplicity of the forces involved'
The existence oi many time scales in a relatively simple

fluid system underscores the potential complexity of fluid (

flow. The ability to predict fluid flow is extremely

important in a wide range of problems' The equations of
fluid dynamics, which þovern fluid flow past sailing

vessels, aircraft wings and other solid objects, as well as q

the motions of the Earth's atmosphere and oceans (which

determine the weather and climate), are extensions of
Newton's force law to continuous media, and are

relatively well-understood. Smooth steady solutions to the ,'
equations exist, but in order for a smooth flow to be i
observed, it must not only obey the equations of fluid ':

dynamics-it must also be stable, so that perturbations in L

the flow will not grow with time. Our noiorious inability- i:
to predict flows arãund aircraft, as well as the evolution of j
weather and climate, arises because steady flows become ]
unstable as the velocity increases, and these instabilities i,
lead to complex turbulent phenomena. 

-$

Complei 
"na 

uttpiøi"tåbl" b.hu"ior like that found Ì
in fluid tuibulence wai traditionally thought to involve the i
interaction of many degrees of freedom, but similar i.
behavior has recentiy beén observed in many relatively -Í

simple systems. Poincaré anticipated this a century ago' :
pointing out that orbits ofsatellites subject to gravity are, i
under some conditions, extremely sensitiue to ínitial i'
conditions, so that a satellite starting with a position and i
velocity almost identical to a neighboring satellite woulcl i
soon find itself far from the otheÃ orbit. Such sensitivity , - '-

is responsible for the gap structure in Saturn's rings and in ;'
the aiteroid belt (Wisdom, 1987). In such a situation any Ê

-small error in the estimateà initial position or v-çl-osiU o&:=É,
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setellite grows to a large error in the predicted position.
Although any single orbit is uniquely determined from the
initial position and velocity, such a sensitive orbit is
effectively unpredictable, because the initial values cannot
be known with infinite precision.

fnterest in this kind of behavior has been building
over the past quarter century. In 1963 Edward [-orenz
found extreme sensitivity to initial conditions in a
relatively simple set of three differential equations
describing convection in a fluid heated from below. For
small heating, the convection occurs in smooth laminar
rolls which turn steadily clockwise or counterclockwise.
As the heating is increased past a critical value, however,
the fluid begins to alternate irregularly between clockwise
and counterclockwise, overturning with no predictable
pattern. Complex and apparently random behavior has
since been found in a variety of simple systems which obey
deterministic laws, and so had previously been thought to
be quite predictable. At the same time, simple determinis-
tic relationships are being uncovered in systems previously
thought to be quite complex because of their apparently
random behavior. Simple systems can lead to chaos, and
chaos can mask a hidden simplicity. :

LogistÍc equation: period-doubling route to chaos

The dripping faucet experiment, pioneered by Robert
Shaw and Peter Scott of the University of California,
Santa Cruz, exhibits all the characteristic complexities of
chaos in a simple setting. For a certain range of flow rates,
the time interval between the nth drop and its successor,
T. + r, is found to be determined by the preceding time in-
terval, T", through a parabolic relation. The chaotic
nature of this so-called "logistic" equation was highlight-
ed in 1976 by R. May in a study of population growth
models, where the fraction of the total population capacity
obeys a similar rule. The periodic solution, T, : To, has a
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Fig2: Circuit diagram for the photodiode detector. the beam from tùe
infrared LED crestes a current in the photodiode which is amplified by
two74l op amps to a yoltage given by IR,R /R3, which is input to a 555
timer. The timer is configured as a ,'one.shot", which means that its out-
puÇ normally OV, suddenly goes .'high'when a drop blocks the beam,
caus¡ng the output LED to flash. The ouþut potentiometer is set so that
¡'high" = 5V, output to pin 1l of the PC parallel port

stability determined by the slope of the parabola at the pe-
riodic point. As the flow rate increases, the parabola .

steepens, and the magnitude of the slope consequently
increases. When it exceeds 1, the periodic solution
becomes unstable, and one begins to find an alternating se-
quence, T,, Tr, Tr,Tz, and so on, so that drops occur in
pairs. This "doubly-periodic" solution becomes unstable
at a slightly higher flow rate, and each ofthe alternating T
values becomes an alternating pair, giving a repeating
sequence of four different T's. At a still higher flow rate
there are eight different T's, and so on. This process of
"period-doubling" continues until a critical flow rate,
beyond which one finds chaotic behavior (except for
"windows" of periodicity at certain flow rates).

Similar chaotic fluctuations occur in a wide variety of
systems. Though individual chaotic fluctuations are
unpredictablg the perioddoubling sequence which leads
to chaos has some predictable properties which are largely
model-independent, being related to a universal "Feigen-
baum const¿nt." fn 1980, Mitchell Feigenbaum showed' that such transitions occur not bnly for the parabola, but' for a large class of nonlinear functions, and that the
parameter values (flow rates) at which the transitions
occur have a uniuenal relationship independent of the
particular model function.

The logistic equation fails to hold at higher flow rates
in the dripping faucet, and the droplet time intervals begin

. to exhibit more complex relationships. In the three-
dimensional space with coordinates T. * ,, Tn and T.-, ,
the data lie on various fractal subsets whose complex and

''-computes"and..ó:aYesr;the-tiEe1inteÌr¡a|s;-.-.t_-this-åeautifuli=e.xpefimeüt=m€re=uid9ly4ce€Ssible;-.'==

Fig.l:Schem¡ticofdrippingfaueterperimenLllquidfiltingareservoir beautiful forms were first documented by Shaw and Scott
to height_H passes through a capillary tube of length i anrt in¡er (Shaw, 1984; see also Martien et al., 1985; Yepez et al."

ll}:l._tp't" T evedrop-pet-from which it drips tùrougù a doubte-lens 1989; Wu et al., 1989 and Wu and Schelly, l989i. Despite
;ätrli:,ff;î"ffiff,i#"ffä*ifffi1"1?:äii*i#* rheir'complexiiy, tþe itranse rractatio,-. u," repro-
and exits on rtre .tgtirn * rt t focusert on e phoiodi"d;î.i'*ä;ä,t duced in some detail by the time intervals of drops coming
drop caus€s a pulse from the detecror to be cent to an mM iC "-hü 

from any commol¡'leaky tap. This paper attempts to make
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Appar¡t¡s anü Gell[ratlon

A schematic of the experimental apparatus is shown in
Fig.l. It consists of five components: (1) a reservoir, in
which the liquid is. maintained at a constånt level, and
from which the liquid flows to an eyedropper through a
capi[ary tube of length L and inner diameter D; (2) a cy-
lindrical tube with two identical halves, in which identical
lenses are mounted, and which are connected by an
adjustable central tube, through which the liquid drips via
openings in the side; (3) an infrared LED light source,

which supplies light through a small hole in the center of
one end ofthe tube; (4) an infrared photodiode detector,
which detects light exiting from a small hole in the center
of the opposite end of the tube, and which is connected to
pin 11 of the parallel printer port of (5), an IBM'
compatible personal computer.

Table I gives a list of parts, obtainable at common
electronics, plumbing, and office supply stores. Assuming
the computer is already available, the system can be built

Table l. Parts for Time Drop Experiment

Fig.3a shows two calibration curves for each of two
capillary tubes connected to the reservoir and the

eyèdropper by flexible tubing. Only the fluid height in the

tãser"óir is used, so that the flow rates are shifted up by

the pressure drop from the reservoir to the eyedropper'

The two on the right are for a capillary tube of length

L: l0 cm, and inner diameter D:0.88 mm' The

observed slopes here are 0"1033 and 0.1053, close to the

value predict"d from (3): Q¡ :0.1777*(0.88)4 :0.1066'
The inìercepts are determined by the vertical height of the

capillary tube and eyedropper. In this case they were

lowered by 12 cm,shifting the line up by ( l2l10) *Qt' The

two lines on the left are for a capillary tube of length

L:25 cm, and inner diameter D : 1.33 mm. In this case

the observed slopes are 0.6209 and 0.5565, compared to
the predicted value Q¡ :0.1777*(l:33)4:0.5560, and

the iube was lowered 16 cm to shift the line up by
(16/25)*Qr

The pib$am shown in Listing I measures the time
intervals of 1OOO drops, whose sum is the tot¿l time, T'

I gallon plastic containers (2)
är or lab jack
l@ cc graduated cylinder
capillary tubes: D, L= I mm, lO cm
eyedropper
rubber tubing, plumber's goop
thumbscrew clamp
dark dye
mailing tub€
ls-watt soldering iron
sponge, glue
60/¿10 rosin corc solder
wire wrap tool, 30 AIVG KYnar wire
prepunched þrfboard

9V batteries, clamps, clips (3)
r€sistors: lK (2), lOK (l) and l0OK (3)
capacitorc: 0.01p[, O.lpf, l.5pf
lR LED source, photodiode detector
741 op amps (2)
555 timer
E-pin IC sockets (3)
single-pin sockets
alligator clips (2)
double-wrapped wire
heat-shrink tubing
25-pin parallel port connector
IBM-compatible personal comPuter

very oconomically. The simplest working system has been

used here, and some enhancements are considered in the
concluding discussion.

Suppfuing the fluid through a capillary tube, as

shown in Fig.1, makes the flow rate vary linearly with the
height of the fluid, H. Choosing D=l mm ensures

laminar flow if H/L is less than about 10, and in that case

the volume flow rate, Q, is related to H by Poiseuille's
equation,

Q: QrH/L,

where

qr:rgú/(L2lv) Q)

is the rate atH'/L: l. (See for example, Batchelor, pp.

180, I 86 ) . When D = I mm and v= viscosity of pure water
at room temperature (l cm2ls), then Q, :0.24 cm3,/s.

The viscosity of the dyed water used here is a factor of 1.35

larger, gtving

Qt=O.1777+Dacm3/s, (3)

where D is expressed in mm. The volume flow rate can be

measured at any chosen height by accumulating the
volume over, say, one minute. According to ( I ), a plot of
Q versus H/L should produce a linear calibration curve
with slope Qt.

The mean drip rate (the number of drops per second) is

then

r: 1000/T -- Lfl",., (4)

where T.". is the average of all the drop intervals. T.',. is
the averãg! time required for a single drop to fall, so if we

knew the average volume per drop, v",", the volume flow
rate would be

(1) Q: v"r../Tur. : v.r.f. (s)

In other words, a plot of Q versus r produces a curve

whose slope is v"".. TV'hen v""" is independent of Q, the re-

sulting plot should be linear.
fig.lU shows a plot of the volume flow rate versus the

mean drip rate for the same-runs used in Fig.3a. For flow
rates lesJthan about 0.7 cm3./s, or drip rates in the range

3-7 drops per second, a straight line provides a ggo-d qt,

and the least-squares slope gives a drop volume of 0.074

cm3, corresponãing to a spherical diameter of 5.2 mm. A
second lineãr fit in the range 7-12 drops per second gives a

drop volume of 0.047 cm3, or a diameter of 435 mm. Fin-
uny, ftoto 12.5-18 drops per second we obtain 0.015 cm3,

or a diameter of 3 mm, approaching that of the dropper

orifice, which is 2.4 mm. Any desired drip rate' or mean

time interval, may be obtained by finding the correspond-

ing flow rate from Fig.3b, and then adjusting the fluid lev'
el to the required value indicated in Fig.3a.
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drop is missed, the measured time interval is the sum of
. two actual time intervals, or approximately twice the
mean time interval. Less frequently, two successive drops
may be missed, and the me¿sured time interval is
approximatély three times the mean. This problem is
eliminated by careful beam focusing and alignment. Any
spurious time intervals shorter than the mean probably
indicate a problem in the detector circuit, or the parallel
port.

Fig.4c shows a run with large random variations in
the measured time intervals. This could be due to high-fre-
quency environmental vibrations, or to limit¿tions in the
experimental apparatus. Random error can be reduced,
but only to a lower limit which depends upon the limited
accuracy of the measurements, which is related to the size
of the drops, the size of the focused beam, the timer
resolution, and so on. In practice, if the experimental
parameters (flow rate, orificè geometry, etc.) are not too
dissimilar to those used here, then it is sufrcient to reduce
the measurement error to less than = I ms in order to
observe the fractal patterns ofchaos discussed below. The
meaÍ¡urement error becomes relatively more important at
higher flow rates, and will determine the maximum flow
rate at which useful dat¿ can be obtained.

Fig.4d shows a run in which the time intervals are
nearly constant for more than 3ü) drops, after which there
suddenly appear two different time intervals. This kind of
nonstationary time series, in which the statistics suddenly
change for no apparent reason, makes both prediction and
daø analysis very difrcult. Such behavior is not due to
any experimental error, but is characteristic of chaotic
systems. Dynamical models with this kind ofbehavior are
said to be "almost intransitive" (Lorenz, 1975). If the
Earth's climate is almost intransitive, then it cannot be
uniquely determined by boundary conditions such as the
solar const¿nt or atmospheric CO, concentration. Such a
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Fig3: Volume flow r¡te, Q, in 0.1 cm3 per second versus (a) fluid height
over capillary tube length, H,4" in nnifs sf Q.t, anfl ft) drip rate, which is
r = l/1.,., in drops per second. Ite two c¡llibration cu¡res on the left in
(a) are for the capillary tube with length L=25 cm and with in¡er di¡m-
eter D:133 mm, while tùe two on the right ¡re for the capillary tube
with lengtù L : 10 cm and with in¡er diameter D : 0.8E mm. The slope in
(b), determined by léast-squares for th¡ee ranges of drip rates, gives the
average drop volumes: v.,. =0.074 cm3 for r=3-? drops/s; v* =O.O+Z
cm3 for ¡=7-12 drop,/s; and v.,.=0.015 cmr for r-12-1C-drops,/s.

Spurious Rhythms

Before discussing true drip rhythms, it is important to
recognize the types of errors which can occur in the
dripping faucet experiment: ( I ) systematic error or
"drift"; (2) missing or spurious data; (3) random error;
and (4) nonstationarity. Examples of each are shown in
Figs.4a to 4d, which show "time series" of time interval
data versus drop number for four different runs. Exclud-
ing 4b and c, in all figures the time interval axis has a range
of 50 ms, and the drop number axis has a range of 1000.
(Note that unlike conventional time series,'these drop
measurements do not occur at equally spaced times.)
Fig.4a shows a run with systematic drift toward shorter
time intervals. Such behavior is associated with changing
environment¿l conditions. For example, the water reser-
voir's siphon tube drifts to a different position, or a
furnace switches on and begins to blow warm air over the
experiment, etc. To eliminate drift, the experimental
apparatus needs to be st¿ble and isolated from external
influences. In the second run (Fig.4b), the detector was
not properly aligned with the drop stream, so that a
number of drops failed to trigger the detector. When a
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Fig.4: Tine interval versus drop nunber for d¡ta containing four types of
problems: (a) drifq þ) nissing drops; (c) random sc¡tter ¡nd (d)

nonstationarity.
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climate can change without any difference in external
conditions, or appear to be steady even when conditions
do change. When this occurs in the dripping faucet, it may
be necessary to take data for many more than 1000 drops
to see clearly what is happening.

Examples of "good" data in each of the three linear
regions in Fig.3b will now be described, beginning with
the slower drip rates, in the range from 3-7 drops per sec-

ond. Small changes in the drip rate can produce
qrralit¿tive changes in the rhythm of the drops, especially
for the higher drip rates. These changes may not be

evident to the unaided eye or ear, but become quite
obvious when plotted as described below. To ensure that
all possible types of rhythms are observed, it is important
to vary the rate over sufficiently fine intervals, increasing
the height by, say, I cm in each run. Certain heights may
require further investigation after data analysis reveals

which rates are of most interest.

Low 0rlp Rates

Figs.5a to 5d show time series from four runs of gradually
increasing flow rate, with mean drip rates of r: 5.70

drops,/s, 6.25 drops/s, 6.75 drops/s and 6.80 drops/s. At
the slowest rate, case (a), the rhythm ofthe drop stream is

approximately periodic, so that most of the time intervals,
with the exception of a few outliers, lie close to the mean
interval, with small random deviations. The histogram of
the deviations (not shown) approximately follows a
normal curve, with large deviations having low probabili-
ty. The ståndard deviation depends upon details of the
measuring apparatus, and in case ( a ) it is 0. 1 5 ms, roughly
the time needed to read the IBM PC timer.

At slightly higher rates, case (b), the drops begin to
arrive in pairs, producing a duple rhythm, so that the time

o n* looo o n* 1000

Fig5: Time interval versus drop number at four low drip r¡tes" The

vertical aris covers the range 14{Þ190 ns, and the horizontal 10fi1

drops. (a) Deriodic drípping; with a drop every 175 ms" or 5.70 drops/s;

ft) biperiodic dripping; w¡th a psir ofdrops 156 ms apart occurring every
Ló6 ms, or an average intervd of 161 ms, or 6.25 rlrops/q (c) chaos with
¡n average interral of 148 ms, or 6.75 ilrops/s; ùd (d) chsos with atr

cveÉge interval of 147 ns, or 6.E0 drops/s"

intervals begin to alternate between a shorter value and a

longer value, again with deviations which lie close to each

of the two mean values, which are 155.93 ms, with a
standard deviation of 0.88, and 166.00 ms, with a standard

deviation of 1.25. The larger deviations occur in the first
part of the record, and have a more uniform distribution
ihan in case (a). This is due to transient chaos, which dies

out by around drop 800, after which the standard

deviations reduce to 0.17 and 0.27, respectively.
'When the drip rate is again slightly higher, case (c),

the drops begin toproduce a permanent chaotic rhythm.
Ttre mèan drip rate here is about 6.75 drops,/s, or
T,,. : 148 ms, but the deviations from the mean, unlike
thoie in (a) and (b), do not tend to lie ne¿r the mean, but
peak near the maximum positive and negative deviations,

with a sharp cutoff outside these values, and a shallow

minimum in between. Increasing the drip rate to 6.80

drops/s, or T"" : 147 ms, broadens this bimodal distri-
bution, as seen in case (d).
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Ff96: Time interv¡l versus next time intervg¡, F" , T'* t ), ftom d¡ta of
H¿5. Each axis cove¡s tùe range 14{Þ190 rns. (a) periodic c¡se from
data in fig.Sa; þ) ùiperíodic cas€' showing th¡t drop intervals alte¡n¡te
betweenthe two levels i¡ Fl&Sb, rith varl¡tio¡s in e¡ch level dueto&a¡'
sient chaog (c) the larabola'fo¡med by the random'looking data of
Fig:Sc, wíth ¡-ttowop in the range 14{l-154 ns; and (d) the "c¡nel'
fornø bv the r¡ndom'lookins d¡t¡ of Fig54 ¡lso rrith a blowr¡p in the

range 14{Þ154 ms.

Is each time interval in case (c) chosen randomly
from the probability distribution, or is it possible to
actually predict the successive drop times which produce

this chàoiic rhythm? To have any hope of predicting, there

must be some correlation between one interval and the

next. Figs.6a to 6c show scatter plots of (T", T"* r ) for
each of the time series in Figs.Sa to 5d. (To reproduce

these in L¡tus or Excel, copy the data into the second col'
umn, but start one row higher. Then make a scatter plot'
with column one plotted on the x-axis and column two on

the y-axis.) The þeriodic case, Fig.6a, produces a single

cloud of points centered on the mean" The biperiodic case'

Fig.6b, produces two separate clouds, so that a shorter T"
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is always followed by a longer T. * t, and vice versa. Each
cloud is elongated and slightly curved due to the transient
chaos. Finally, the chaotic drips produce the long curved
clouds shown in Figs.6c and 6d, the first appearing
smooth and parabolic, while the second, which has been
dubbed the "camel," has more structure. The emergence
ofsuch orderly curves from the apparently highly random
dat¿ of Figs. 5c ¿nd 5d is quite amazing.

The astonishing implication of thesecurved clouds is
that, to the extent that the small width can be neglected,
each time interval is precisely determined by the preceding
one, through some function F, such that T" + r : F(T" ).
If we had zero meru¡urement error, the timing of every
drop could then be. predicted from the time interval
between just the rtr$ fino dropsl Unfortunately, we will

Tn+l

Tn

Tn+2

(a)

Xn+1.

.o.,
lrf

xn
Xn+2

(bt

Ftg.7: (a) Thrce.d¡neßion¡l plot, (f., T.+¡, To+¡ ), f¡om rlata of Fi95c.
Note the 3*trpe ribbon strucû¡¡e. (b) Tte Henon rttsætor computeil
from equation (21), u¡ing p=3.(5, q=0.345, and dþlayed in the esne
threedlnencional coordin¡ite¡ ¡s the w¡ter drop data of Fig?o"
Magniûcation of any of tüese stripes reve¡ls ¡ 3*tr¡pe sulxtructure,
which becones celf-¡imilar at high magnification

find in the next section that even when F is a simple qua-
dratic function, any initial measurement erroÍ, no matter
how small, rapidly grows larger as¡ more drops fall, until
the predicted time interval can appear anywhere in the
cloud. So despite the simple relationship described by the
function F, the chaotic rhythm can be predicted only for a

few drops, while longer-terrr prediction is no better than a
random guess-not unlike our experience with weather
prediction. Fortunately, chaos is better than randomness

in at least two ways: firstly, some features of the period'
doublíng route to chaos seen in (a) to (c) can be predicted
even without detailed knowledge of F, as the next section
will discuss; and secondly, chaotic time series can be
predicted from initial values for a c¿rtain limited
predíctabilíty tíme, which is estimated for the dripping
faucet in the concluding section.

Before moving on to higher flow rates, let's take a
closer look at Fig.6c. It would seem to be a parabola, ex-

cept for the cluster of points which starts just below the
peak and extends across the parabola to the right. That
would make the function double-valued, so that a drop
arriving at an interval of 150 ms could be followed either
by one at 146 ms or another one at 150 ms. If the time in-
terval cannot be predicted uniquely from the previous
interval, is it enough to give the previous f¿¿o intervals? To
find out, \ve create a three-dimensional scatter plot, using
(T",T"*,,T,*2) as coordinates, as shown in Fig.7a.
(Such ploæ cannot yet be created with common spread-

sheets like Excel. This was done with the Macintosh
progfam "MacSpin.") The extra dimension "uncrosses"
the data, so that T"*r b a unique function of T" and
T" * , . Fig.6c is just the projection of Fig.7a onto the plane
of (T", T"*, ) [or equivalently (T,+r, Tn+2)]. Note
that what had looked like a rather complex cloud in
two dimensions can now be seen as a double-humped
ribbon in three dimensions, with three separate stripes
running along its surface. Fig.7b shows a similar three-
stripe ribbon generatd by adding a linear T,-r term to the
parabolic F(T" ), grving the so-called Henon map dis'
cussed below. The ribbon in the Henon map may be
examined in great detail since one is not limited by
measurement error. Each stripe is found to be made of
three smaller stripes, and each of these can again be
resolved into three smaller ones, and so on. It is afrøctal
ribbon!

Hlgher 0rlp Rates

Even as young children, we notice that cloud shapes in the
sky often momentarily suggest cars, sheep, camels and a
whole zoo of ordinary objects. In the dripping faucet we
encounter a zoo of scatter plots as we go to higher flow
rates, but unlike real clouds, the animals in this zoo are re-
producible in detail, and becôme quite recognizable once
you see them forming in different experiments, although
they may appear at diferent flow rates. Here we look at
six examples at increasing flow rates. The time series are
shown in Figs.Sa to 8f, and the corresponding (T", T" * t )
plots are shown in Figs.ga to 9f. As in Figs.5 and 6, the
axes always cover a time interval range of 50 ms and drop
numbers of 1-1000, with precise values given in the figure
captions.

We have named the first example, shown in Figs.Sa
and 9a, the "cobra." Actually, the naming privilege
should be reserved for the original discoverers, Shaw and
Scott, who found it at a somewhat higher drip rate, as the
inset at the upper right in Fig.9a shows. The inset is from
Shaw ( 1984, p. 13) and is centered at 95 ms, with a width
of 20 ms. The cobra was observed in the present
experiment at T.". :123 ms, or a mean drip rate of 8.1
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FiçE: Tirre interval versus drop number at sh higber drip rates. In each
case the vertical axis covers a 50 ms range, and the horizontel 1lm0
drops. (a) chaos at 8.10 drops,/s; ft) chaos at 8.17 drops/s; (c) a run in the
ûrst periodic window at 8.93 drops,/s, with the inset showing tine
intervals of drops 501-5,1{t with a range 110-114 ms; (d) chaos at 9.82
drops,/s; (e) two runs in the second periodic window: tuiplet rhythm at
11.E8 drops,/s; with the inset showing a quadruplet rùythm at 13.2E

ilrops/s; and (f) chaos at 17.58 drops,/s.

drops,/s. Even small-scale details are quite reproducible!
Like the parabola, the cobra is double-valued, and appears
as a three-stripe ribbon in three dimensions (not shown).
The time intervals in Fig.8a are concentrated around three
values-llO ms, 117 ms, and 134 ms-so that there is a
triple rhythm embedded in the cobra. A clearer period 3 is
shown below. In the next seßtion we will see that such tri-
plets are related to a phenomenon called a "tangent
bifurcation."

. At the slightly higher drip rate of 8.17 drops/s, the
cobra is replaced by a brood of smaller snakes, the
"adders" ofFigs.Sb and 9b. The usual three-stripe pattern
appears again, as shown in the inset in 9b, which is a
blowup of the right side. The breakup of the cobra into
these smaller structures as the rate increases is a kind of
"'reverse" bifurcation-the opposite of the sequence seen
at lower rates (Figs.6a-ód). As the rate continues to
increase to 9-10 drops/s, a periodic "window" occurs. An
interesting example is the "ring" shown in Figs.Sc and 9c,
at a rate of 8.93 drops,/s, or T,," : I 12 ms. The inset in 8c,
which shows a blowup of 40 drop intervals from the
middle of the ring's time series, reveals a rapid oscillation
over a range of about 2 ms. The power spectrum of this os-
cillation (not shown) has a sharp spike at a period of 3.55
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Fig.9: Time interval versus next time interval, (T", T"*t ), from data of
Fit.E. Esch ¡xis coverc a 50 ms range. (a) the "cobra', with inset

reproduced from Shaw (ÚEa); þ) the "adders', with enlarged inset

showing the 3-stripe pattern faniliar from FigT; (c) the periodic

urodul¡tion seen in the enlarged inset of Fig.tc produces the 'ting' seen

in tùis inseg (d) above the first periodic window the ch¡os is more

complex, as in tlhe "ostrich'shown here; (e) in the second periodic

window tl¡ere is internrittent choas, omitted in these compocites of the

biplet rhythm (solid triangles) ¡nd the quadruplet rüyth¡¡ (open

squares); and (f) above tùe second periodic window, we fi¡d the

enig¡natic "sphinx."

drops, or about 398 ms. This slow 398 ms modulation of
the 112 ms period leads to the circle shown in the inset in
9c, which is a kind of Lissajous figure for the drop stream.
This kind of behavior was also observed by Wu et al.'
( 1989).

The periodic window ends at about 100 ms, below
which more complex chaos appears, some with loops such
as the "ostrich" ofFigs.Sd and 9d, or the "eagle" observed

by Shaw et al., or with multiple hills and valleys. There
follows another periodic window with a triplet rhythm, as

shown in Figs.Se and the solid triangles in 9e. This is a
prime example of the phenomenon of "intermittency,"
òbserved in all kinds of fluid turbulence, in which periods

of smooth periodic behavior are interruptd by irregular
bursts of chaos. This example shows 5 time periods with
the triplet periodic rhythm, separated by 6 time periods

during which the rhythm is chaotic. The triplet periodic
points are plotted as solid triangles in Fig.9e. More chaos

occurs at flow rates above the triplet window, followed by
a third periodic window. An example here is the
quadruplet rhythm shown in the inset in Fig.8e. This
example also exhibits intermittency, as in the triplet case:

--{ft



?he quàdruplet periodic points are plotted as the open
squares in Fig.9e.

This miscellany of fractal forms concludes with the
enigmatic "sphinx" (Figs.8f and 9f) which has a mean
drip rate of 17.6 drops,/s, corresponding to the highest
observed flow rate in Figs.3a and 3b' about 0.9 cc,/s. The
mean time interval is t"" :57 ms, and there is a broad
distribution about the mean ranging from 30 ms to 80 ms,

or 12.5 to 33 drops,/s, a variation of more than f 25Vo of
the mean. While the sphinx may be a distant relative of the
cobra, it is clearly higher-dimensional. It does not resolve
itself into a three-stripe ribbon in three dimensions, but re-
mains a tangled skein. The sphinx, and other complex
shapes with loops and perhaps knots (see Shaw, 1984),
are still poorly understood and need further study. There
are likely undiscovered and unnamed fractal structures
still lurking in the chaotic jungle of drop rh¡hms. The
next section shows that iteration of even the simple
parabola leads to complex structure.

Simulation and todel¡ng

Let us consider the parabolic logistic eiluation suggested

by Fig.6c, in order to show how it leads to the observed se-

quenoe of period doubling, chaos, and finally periodíc
windows and intermíttency, as the control parameter (drip
rate) is increased. Similar behavior occurs for any system
which is sensitíue to ínitial condítions. We then describe
Shaw's "mass on a spring," an analog model of a dripping
faucet, which gives a feeling for the origin of the sensitivity
which leads to chaotic rhYthm.

fþration of a function f(x) is done by substituting
into the function an initial value for x' say x: xo,

computing xr : f(xo), then substituting x, back into f(x)
to compute x2:f(x,), and so on. Let us iterate the
parabolic function suggested by Fig.6c, namely
f1x¡ : px( I - x), and examine the sequence of numbers
given by the so-called logistíc equdtíon

xn+ | : f(x") : px"(1 - x" ). (6)

Here n,is an integer which counts how many drops have
fallen, x. is the drop time interval, and p is a positive real
number related to the flow rate, or drip rate. Fig.10 shows
the parabola for p : 1,2,3,4. Note that the peak of the
parabola, where x, * , is maximum, occurs at x, : l,
wherex,+ r : p/4aerntdingto (6). So x,*¡ <l aslong
as p 44, in which case x will remain in the interval from 0
to I for any number of iterations.

What if two drops happen to be separated by a time
interval such that v'o:0? Then we predict from (6) that
x¡ :0, then x, : Q and so on. In other words, if two
drops happen to fall at the xo : 0 rate, then all the rest will
too, and we get a perfectly periodic stream of drops with a
periodic rhythm like a water clock: tick, tick, tick...
Technically, x :0 is called a fixed, point of the logistic
equation. Whenever x hits a fixed point, it is stuck there
forever. lVhat happens if one tick of the clock is slightly
slow, so that x lands n?ar zero,but just slightly above, say
ât x¡ : 0.001? Then since I - xo= l, we compute xr =pxo.In other words, if p 4 I then we get xr ( xo, and if we apply
the equation again, x2 4x,, and so on. So if p < 1, the clock
speeds up to its original rate, and x gradually moves back

l

to zero, which is therefore called a s¿øåle fixed point, aî øt-

tractor. On the other hand, what if p > l? If we start at
v.o : 0.001 with p > 1, we get x, ¡ xo, and so on-the water
clock gradually slows down-zero has becomeanunstable
nxed point, a repeller.lVill the clock continue to slow

down until it stops? No, because x¡.' ¡ câllrrot exceed f*"* '
If the dropJdo not continue to slow down, what does

happen? Could x end up at some other fixed point?

nssume theré is another 
-û*ed 

poittt, call it x: x+,.and
substitute xn : x* in equation (6). Then we must get

xn+r :x+, which imPlies

x* : f(x+) : px*(l - xt). (7)

Graphically, this equality occurs at the intersection of the
parabola with the line x" * r : f,., as shown for p :2 in
irig.to. Fig.10 also shows how to iterate graphically along
thé p : 2 óurve. Start on the x"-axis at xo, go vertically to
the óurve, which grves x, * r : xr, then go horizonølly to
the line xn+r :x., which puts us above the point
xn : xr. Then repeat the procedure, again going vertic-ally

tð the curve and horizontally to the line, and so on. 'lVhen

p:2,this eventually leads to the fixed point at x*, which
for P:2 is at l.-If 

x*#0, thõn x* can be divided out of the previous

equation, leaving a linear equation with the solution

which tells us exactly where each parabola in Fig.lO
intersects the line. For example, if we substitute P: 1,2,
3, and 4 we get xo* :0, L,ïaurrd f. When p: l, then, the

only stable fixed point is at x:0. When P : 2, we can see

from Fig.10 that even if we start near 0, iteration always
moves us towards xo* : l. So in that case, the fixed point
at 0 is unstable, an¿ ttre one at xo* : å is st¿ble.

Before we continue to gradually increase p, let us first
consider what happens at the largest values, when p)4,
then we will return to the values in the middle, where p is

between 3 and 4. Recalling that the maximum value of
x¡ a ¡ occuñi at \ - !, we see that whenever x. happens
to iand near å, we get x" * t =Þ/4, which exceeds I when
p > 4. If x" * i > l, what does that tell us about x, * r ? The
first two factors, pxn + r, are positive, but I - x. + r is

negative, so that xn + z must be negative. But a negative
x" *, wiil give an even more negative xo * 3, since we have
I - x.+z ¡ 1, and also p(l - xn+z) > I (sincep> 1)' so

[p(1]'x"*r)lx.*z : xn+3 (x.+2. As we continue
to iterate, e¿ch x will be less than the one before, or more
negative, and x will eventually approach minus infinity. Of
course, the actual drop time interval cannot become
negative, since as s(x)n as it reaches zero we have a
continuous streaÍi. In order to get sep¿rrate drops then, p
cannot exceed 4.

When p:4, the logistic equation can be solved
exactly by changing variables. Imagine a clock with the
hand rotating clockwise sørting at 12 o'clock, and let A
measure the fraction of circumference from 12, so that
0 < A < 1, as shown in Fig.l 1. If we choose our units so the
radius: 1, then the circumference:2tr, znd the clock
hand makes an angle of 2rlradians with the vertical. The
vertical height of the clock hand: cos(2øA) above the
center and I - cos (2¡rA) below 12 o'clock. If we let

x*:xo+:l-l/p, (8)
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x: half the vertical height of the clock hand below 12

o'clock, then

x" : [t -cos.(2tr{'^)l/2. (9)

Substituting (9) and P :4 into the logistic equation gives

[1 -cos(2zA^*r)l/2: [1 -cos(2øA-)] X

[1 + cos(22¡4, ) ] : [1 - cos(424")l/2

where on the right side we used the trigonometric identity
(cos(2zA) )t : F * cos(4¡rA) l/2. Comparing the left
and right sides, we see that

As a simple example, start with ¡o: I in- ( 1l)' Then

l-Zxo: -\, and since col-'J -r) =.12ff:2r/3radiani *" g"i fu : l/3)sothe clockhand is at 4 o'clock'

oouufing À" giu"s Ãt:2/3' moving the hand to 8

o'clock-. 
- Then from (9) we get

x, : [ - cos(4p,/3) J/2:t. Althou-gl A has doubled, x

is unùanged, since 4 o'clocli and 8 o'clock have the same

u".ti*f hãigtrt. Doubling A again gves 4/3, but only the

fractional pãrt matters, io Ar-: 1/3' whichputs us back

at 4 o'cloôk, and again xz:|. So the angles alternate:

Ã : U3, 2/ i, I / 3, 2/ 3, or 4 o' õlock, I o'clock, 4 o'clock, 8

o'clock, and so on. Apparently it's either teatime or

bedtime! The height of iñe hand (representing the drop

time intervals) isãpparently stuck at a fixed poinÍ: x : t'
?. ?. l. and so on. Thii fixed point agrees with xo* foundby

3äiriituting p:4 in (8). However, in.order for this

solution to-aótually be observed, it must also be stable, so

that perturbations will not grow with time'

io investigate stability, we shall use a calculator as a

digital clock. Óalculating the sequence of angles from

"ã'*iio" 
(10) is simple árithmetic, and can be done by

tranA. gut'tet's suppoie for a minute that equation ( l0) is

as complicated ai ïeather prediction equations, and we

trã"e to compute it with a-calculator, again starting at

e": å. Calculators, even big computers, do not know

irã"ti.i".. So the computer wiil have some approximation

io 4 o'clock, say Aõ - 0.333. Let's follow it for the first 12

computations óf eluation (10): A¡:-0'666, tr:9'?1?
iáãppttg the 1), As:0'664, Aa:-013-28' At:0'919'
À. rõ.ira, Ãt':0.624, Ar :9:?aS As :0.496,
A:^: O.g92, A',,:0.984, Ar2 - 0.968' Even though the

i"iiiul "ttoi 
was only abouf \-lvo, after 10 steps the

Here mod I means to drop the integer part of A, and keep

just the fractional part. Since each iteration doubles A, the

initial angle A" gets doubled n times to get A"' This
completely solves the logistic equation. For any xo' we can

comþute itt" initi¡ angle by solving (9) for An, and

setting n:0 to get

A.+l :24" mod l' ( 10)

¡" : [cos- 
t (t - Zxòl/ (Ztr). (11)

Vy'e then find the complete sequence of angles from Ao us-

ing the following:

A. :2"4o mod 1. ( 12)

Finally, we substitute these into (9) to get the sequence of
x". Só all the xn are precisely determined from xo'

Drops from the eyedropper drip through the 2'lens focusing tube shown

here, where they block an infrared beam from the source circuit at right'
The rtrop in intãnsity detected at the photodiode on the left of the tube is

ampliñeit and converted to a digital pulse by the circuit at bottom

Fi;2), which is then sent to the paratlel port of an lBM'compatible

òoñpúi.t (here a T1000 laptop), where data âre accumulated by the C

program in Listing l.
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The fluid flow is controlled by siphoning it fro¡n a tank (here a gallo

"-ontt¡n"t 
at upper left) to an overflow reservoir mounted on ajack' ant

it .n to . n*.¿ ,.rervoir, where the fluid height is varied by adjustingfht
j".ü,ìJãn"lrv througi a horizontal qflpillarv tube (at right center) to

the eyedroPPer.



any initial time is equally probable, so approximately half
the clocks are between 12 and ó, with 0 < fu < l, and half
are between 6 and 12, with l/2 <'Ao < 1. This is a uniform
distribution. At the first tick the times are doubled, and so

the angles of the first Sroup stretch over the range

0 < A, i 1, uniformly throughout the circle. Doubling the

angles of the second group moves them into the range

I iA., q2, but only the fraction matters, so that group 
-of

clock angles is also spread uniformly over 0<4,< l. In
other words, a uniform distribution of angles is unchanged

by a Bernoulli shift, and it is therefore called the inuariant
iîstibution of the Bernoulli shift. Any other initial
distribution of aúgles eventually evolves toward the

uniform invariant distribution. What distribution of x is
implied by the uniform distribution of angles? Probability

Drops emerge from the eyedropper at a few per second. The larger one,

sbout 3.34 mm in diarneter, has an oscillation period ofabout 18 ms. Ihe
smatl satellite drop left by the recoiling fluid coluinn' about 05 nm in di'
ameter, may be missed by the detector. Its oscillation period is about I
ms, so that it completes roughly one cycle during the exposure time of
the picture. The remaining three photos shorv stâges in the recoil of the
water coiumn. Note the capillary waYes on the column's surface in the
photograph at far right.

predictions are lNVo wrong, and the clock has started to
tick erratically!The error hasgrown by a factor of 1000 in
l0 ticks!

The calculated values initially move away from the
fixed point at xo* : I because it is unstable, but why does

the chaos continue when the clock is not near that point?
Let us investigate the behavior at some other point, not a
fixed point. Let:s just start the clock at some random
instant, and since irrational numbers are more common
than fractions, let's choose A¡ : 2- ! : 0-707 .It is easiest

to see what happens if instead of using decimals (tenths,
hundredths, thousandths, and smaller powers of ten) we
expand A. in binary (halves, fourths, eighths, and smaller.
powers of two). If our calculator has 8-bit accuracy
(although most have 80 bits), then we have A" : 0.1011
Ol0O. Multiplying by two just changes halves to ones,
fourths to halves, and so on, which has the effect of
shifting each bit one place to the left, like multiplying by
l0 in decirnal. The bit that crosses the decimal poiht gets

dropped, since we keep only the fractional part. This
action of equation ( 10) on the bits of A is a Be rnoulli shift.
Applying this shift to Ao gives Ar : 0.0110 100b,, where a
new bit, b,, has appeared. Its value is related to the
roundoff error of the calculator. As we continue to apply
the Bernoulli shift, the bits present in Ao are shifted past
the decimal point and stripped off one by one, and more
error bits get shifted toward the decimal point, until no
memory of the initial angle remains, and further predic-
tions are based only on roundof error. This will occur for
any choice of Ao, so rtre can conclude that every point is
unstable when p:4. As a result, the logistic equation
becomes a random number generator!

What is the probability distribution of these random
numbers? Imagine setting each of 100 clocks to a random
time by spinning the hand like a fortune wheel. Assume

I
+

*' *'

-oxoxixð1

Xn-

Figl0: Plots of parabola (x)=px(l-r) for p=1, 2, 3 ard 4' Note that

thõ msximum occurs. at x=|, and has the $lúe P/4" Ihe graphic¡l

nethod of iterating the logistic equation is shown lor p=2: st¡rting at

tùe initial point x=)q' we go Yertically to the curve' then horizontally to

the tine, wtich gives i=x' then Íterate by repe¡tedly going vertically to

the curve and horizontalty to the line. lilhen p=2, this eventually leads

to tåe 'fxed point' x=lo', where f(x)=x"
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theory tells us that the answer is inversely proportional tothe derivative of (9),

probability(x¡ : [dx,/dA] - t
( l3)

f(x*) - x*. The other two fixed points of f, form the two-
cycle of f.
. The stability at eachtrxed point of f, is determined by

the slooe _at each point. The siope of { is related to th;
slope of f by a simple product rule:

slope of f, at x. - (slope of f at x" ) X
(slope of f at I;+ r ),

which comes from the chain rule for derivatives. If we ap-
ply the rule at the central fixed point of f, (which is atio
th9 fix{ point of f), we c¿rn use xn + r : xn : xo+, so the
rule tells us that

Some calculus shows that the derivative, dxldA, is small
near I:0 and x: l, so lhj probability becomes large
near.these two points, and has a minimum ¡n Uetweei,
which agrees with the observations in Fþs.6c and 6d.

Now let us return to the cases for whici p is between
2 and,4. Recall from Fig.l0. that at p : 2 the;ofutøn 

"p-proaches the stable fixed point at þi : å, where the slof,eoffis zero. As p increaså to 3, thä peaÍ ofthe paraUJla
r_noves üp, xo* moves to the right to J, and the tangent to
the curve at xo* approaches 45. from tüe horizontal,-where
the slope equals - l. Fig.l2 graphically demonstrates the
slope-stabílity theorem: nxeO points at ;hict the curve is

( 16)

slope of f, at xo+ - (slope of f at xo*¡z (r7)

slope of f, at x,* : slope of f2 at x2* ( 18)

This implies that when the slope of f at xo* becomes
steeper than - I (i.e. as p increases pa$ p;) then the
sloge 9f lz -at 

xo* simultaneously becomes iieeper than
tl.f" Flo* p,, f2 has only one stable fixed ioint (at

xo*), but it becomes unstable rir¡ p passes p,, when x,* and
xr+ app-ær. This splitting of one it¿ble fixed point inio one
unstableand two srablefixed points is calldàpítchþrk bi_
furcation.If we apply rule (16) at xn : x,*, we can use
x, + l : x¿*, and if we apply it at x. : xz}, we can use

{n-+ r : {r*, so in either case we get the-same product
(slope of f at x,*) times (slope óf f at xr*), ìo that

6
Fig;lt Interprebtion of the-change of vsri¡btec given il equation (9).
T" "t9rk 

radius is l, and the ¡¡gle ¡ ne¡sîres the fr¡ction ofcircunference between the clock t¡n¿ a"¡ li o;cfocl

45" or steeper (i.e. the magnitude of the slope exceeds l)
are unstable, but those with lower slopes are st¿ble. Thã
slope at-xo+ can be computed by takini the ãerivative of(6) and substituting fAl. nrai grves-

In other words, both points of the two-cycle have the
same stability. 4r p continues to increase in-Fig.l3b, the
flopo at x,* and xr* will r-achzerowhen x,* J¡, and as
the curve stee_pens,- x,* will move below 4 wtrite xr* witt
move toward 1, and both sþes will approãch _ l,ïhere
the two-cycle will become unst¿ble. We laUel that value
p : pz, and just as the fixed point of f becomes a two_cycle

O<SLOPE<1
STABLE

/
-1<SLOPE<O

STABLE

,Y
SLOPE < -1
UNSTABLE

SLOPE > 1
.UNSTABLE

Fig.l2: Illustretion of tùe nslope.stability" theo¡Em ¡t I ffxed Doint (o)
steady approach to fhe fred point for elopes positive anA rcss Oen f; þispiral approach {or glopes negative aod g.àte. than _l; (c) ste¡àí
reheå! froT the fred point for clopes greater tbal t end (d)'úird re-
tre¡t for slopes less fh¡n -t.

This slopebecomes.equal E - I when p becomes equal top.tT?, yhere xot:J. Fig.l3a shows what haþens
slþhtlyabove pr. No matter where we start, eventuaiþ an
alternating sequence, or two-cycle is produced: the
sequence xo¡ x¡¡ x2r ... eventually becomes x,*, x2*, x¡*,
\2*, .... That means that two applications of ti" iogi;iiJ
equation bring us back to the same point, soìnstead of the
fixed point condition of (7), weïow-have

_ 
slope :2 - p.

x*: f(f(x*)) : fz(x*).

(14)

( ls¡

where the function fr, shown in Fig.t3b, is the seconditerate of f, defined as frli¡:'f(f(x)) :p[f(x)]-(l - [f(x)]) :px(l -xi fí - p*ir -.*)). rrx* *O, then x* can be qivided out of ( l5),ìeaving a-óubic
equation with three solutions which determine the three
nonzero locations where fr-intersects the line in Fig.l3b,
Tfr: ollr"l fixed point of f, is identical to xo*, the"fixJ
point of f, since one solution-of ( 15) is obtainä by settin!

978 cotPunns il PHTSÍCS, JUITAUE rg90

|'2nel



Xn*

Figl3: Relationship of f(x) (upper curye) üd fr(x)=((r)) (lower
curre). Ihe ustable fired point of f is also an unstable fixed point of f,
while the 2-cycle offcorresponds to 2 stable fixed points offr, both hav.
ing the sarne slope.

at p, : 3, each füed point of f, becomes a two-cycle at the
higher value of pz:3.448. The pair of two-cycles of f2
correspond to four fixed points offo (the fourth iterate of
f) and the chain rule again implies that all four have the
same ståbility. The logistic equation has a stable four-cycle
just above this second period doubling atpr, and ¿rs p con-
tinues to increase, the four-cycle becomes unstable and is
replaced by a stable eight-cycle ât p3: 3.544, and so on.

Feigenbaum (1983 and references therein) has
studied the limiting behavior of the perioddoubling
sequence. Each period-doubling occurs after a shorter
interval of p. If p" is the value at which the period doubles
for the nth time, the,ratio of each interval pn + r - pn over
the next one approaches a number called the Feigenbaum
constant:

(P.+r -p.)/(P"+z -P.+ t):4.66920166..., (19)

Amazingly, this constan tis uniuenal,so that øny function
with a single smooth maximum undergoes period-
doubling at this same rate. As n- co, pn approaches the
value

P- :3.56994567.... (20)

Atp * euery cycle of period 2" becomes unstable, and x be-
gins to hop around on a fractal set of points-the onset of

\
t

chaos. This fractal set is called 
^ 

strange attractor, andlike
the Feigenbaum constant, it is universal-as long as f(x)
has a single smooth maximum, x follows the same orbit at
p- no matter what f(x) is!

The complete behavior of the logistic equation can be
summarized by its bifurcation plot. Fig.l4a shows a
portion of it computed from numerical solutions of the
logistic equation in the range 3<p<4. For each p along the
horizontal axis, (6) was iterated starting ât x¿ - 2/3, the
first 5000 values were discarded, and the rest were plotted
on the vertical axis. The first 4 perioddoublings are visible
at p < p- , followed by bands of chaos at p > p- , which
gradually widen and merge until the full range of x is cov-
ered at p:4. Windows of periodicity are visible in the
chaotic region, the widest having 3 values of x-a triplet of
period 3. Ifwe expand the region around the largest triplet
value, we obt¿in Fig.l,ld, where the scale has been
expanded by a factor of 0.016. This tiny part is similar to
the full set, and has its own triplet window. Clearly this ex-
pansion process could continue indefinitely. Such a set
which has complex structure at any magnification is called
a fractal (Mandelbrot, 1983).

Sarkowskii's theorem, often stated as "period 3

implies chaos,'l tells us that there are windows of every
other integer period to the left of the triplet window in
Fig.14, and the theorem gives the order of the periods.
(For a simple proof, see Kaplan, 1987). The period 3

window begins zt p: p" :2y'2 * I : 3.828427.:.,
where fr(x) is tångent to the xn+r:x, line at three
locations, as shown in Fig.l5a. When p exceeds p", the
curve crosses the line, producing a st¿ble and an unstable
fixed point at each location. This is called a tangent
bifurcatíon. When p is slightly less than ¿, then the curve
will be slightly above the line, similar to what was
observed with the cobra in Fig.8a. In this pre-bifurcation
situation the neighborhood ofthe near-tangency behaves
like a pinched hose, as shown in Fig.l5b. Many iterations
are required in order to pass through the pinched region.
This leads to the often-observed phenomenon of "inter-
mittenc¡" in which periods of chaos alternate with
apparentþ periodic behavior. This is responsible for the
denser regions in the chaosjust to the left ofthe period 3

window in Fig.l4a, and also accounts for the three peaks
in the histogram of the cobra.

Finall¡ consider what happens when (6) begins to
break down, so that x, * ¡ depends not only on x., but on
earlier intervals as well. Such dependence wns observed
not only for the cobra and dragon, but even for the
parabola, where the th¡ee-dimensional view seen in Fig.7
reveals a three-striped ribbon. Perhaps the simplest
generalization of the logistic equation is the Henon map,
one form of which is

xn+ I : f(xn,x,-r ) : px. (l - x" ) * q(xn-l
(21)

As q approaches zero, the dependencê ofi x¡-¡ goes away
and we get the logistic equation again. Fig.7b shows an or-
bit of this equation computed with p:3.45 and
g:0.345, and plotted with the same axes as in Fig.7a.
The details are different from Fig.7a, but the general shape
is similar, and three stripes are visible. On closer
inspection the rightmost stripe resolves into three closely

1
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Figl4: Stable athactor values of r on úe vertic¡l r*is ¡s a fr¡nction of
the control psrs¡neter p on the horizontal (a eo.called biftrcation plot).
The upper left region (a) ehows the conplete plot beginning at the ûrst
btfrrcation, (2-97,0) to (4.O1), and tùe other three regions chow the
following subwindows: þ) the onset of chaos: (3.555, 0.4775) to (3.582;
05045); (c) the cent¡I intersection ofcì¡otic bends (3.625,0.630) to
(3.7E5,0.790[ and (d) the top branch ofthe triplet windon (3.t41, 0.950)
to (3.857, 0J6O.

spaced stripes, and if we continue to zoom in, more and
more stripes are resolved. Again we have a fractal set.
Zæming in on the turning point at the top of the figure
produces an image that looks similar to the rings of Saturn
(see p. 53 of Crutchfield et al., 1986).

Faucet Physics

Imagine a pendant drop, hanging at rest on the tip of the
faucet or eyedropper. The force ofgravity gives the drop
weight, and pulls it down, but this is balanced by cohesive
forces which create surface tension, holding the drop
together and pulling it back toward the column of fluid in
the eyedropper. If the flow rate is small, but nonzero, the
mass of the drop slowly increases, stretching the drop
downward. When the drop is small, surface.tension tends
to make it round, but as it grows, $avity increasingly
elongates it. Gravity becomes important as the drop's
length exceeds the meniscus constant (o/pÐl =25 mm,
after which the drop forms a neck, which gradually closes
off its connection with the fluid above, until it bre¿ks off
and begins to fall. As the drop falls, it oscillates about a
shape approximately sphérical, and the water column
rebounds and oscillates about an equilibrium position,
until friction with the walls slows it to rest, after which the
small flow rate begins to form a new drop. When the flow
rate is small enough, the motion of the fluid is
unimportant, and the mass of the drop at the breaking
point is purely an equilibrium problem, which may have a
complicated dependence on properties of both the water
and the eyedropper, but will be the same for every drop. In
that case, each drop will have the same mass, and
therefore take the same amount of time to form, resulting

3E0 CotRnEns n PHïstcs, JarAuE t9g0

in the slow periodic rhythm so torturous to those striving
toward sleep.

The situation is much different at higher flow rates.
Then the breaking point occurs when the fluid is still
oscillating from the previous drop. There is a resonance
between the forcing frequency, which is the drop
formation time, and the natural oscillation frequency of
the water column. The natural oscillation frequency of a
single drop can be computed from Rayleigh's formula,
which for the lowest mode in pure water has thp form
f : lld- t'5 lNelson and Gokhale, 1972), where d is the
drop diameter in cm. For the 5.2 mm drops observed here,
that gives about 30 cycles/s-too high to explain the
observation ofchaos at less than l0 drops/s. The natural
frequency is inversely proportional to the square root of
the mass, so the oscillating mass of fluid in the eyedropper
is evidently about l0 drop masses.

At higher flow rates, then, the drop's mass depends
upon the column's motion, which depends upon the
previous drop's mass, which depends upon the previous
motion, and so on. While this sounds very difficult to
model, the fact that many different faucets produce the
same set of rh¡hms (period doubling, the parabola,
cobra, dragon, etc.) gives us hope that a highly simplified
model might capture the essential physics of the dripping

0.49 0.54
Xn*

Fig.15: PIot of f5(x)=(f(f(xD) atavalue of p justbelow the period3 win-
dow (on the right side of Fig.l¿l¡ and to the left of Fi914d]. (a) the com'
plete f¡; (b) a blowup of fr near x-1. The fact that many iterations are re'
quired to pass through the narrow neck leads to the often-observed
phenomenon of 'Sntermittencytt, in which apparently periodic behavior
occasionally app€års in the midst of chaos, as in Fig.6e.

Á

I
GI
+
cx

1
cÐ
+
cx



process" To do this, Shaw considered a much simpler
system-a mass on a spring. The mass, rz, represents the
whole fluid column, including the growing drop, but in
this model the mass is concentrated at a single point at a
position y below the equilibrium position (assume
downward : positive). The spring produces a linear
restoring force equal to - ky, where the spring constant,t
represents surface tension. The mass
Newtonian friction force - åu, where
speed,

dY/dt: u

is subject to a
u is the mass's

and b represents friction between the fluid and the faucet.
The acceleration of the drop is given by Newton's law:

du/dt:g-(ky+bu)/m,

where g is the acceleration of gravity. After a drop breaks
off at time t: /o, the mass is assumed to grow as

m: nto + c(t - tù, , (24)

where rao is the mass immediately after time fo (minus the
drop), and c is the mass flow rate. As the mass grows, it
may still be oscillating from the previous drop, but'----eventually du/dt becomes positive, the mass accelerates
downward, the spring stretches, and eventually the next
drop breaks ofl at say f : fr. For simplicity, the break is
assumed to always occur at a fixed location y :yo. Shaw
( 1984) took the mass of the drop to be proportional to the
velocity at the breakpoint, while Scott designed an analog

: computer which decreased the flow rate by an amount
proportional to the dist¿nce past the breakpoint, ! - lo
(private communication). A simpler rule resets m to mo
at each breakpoint by simply replacing t6by tr, fr, etc. in

, (24). The mass of drop z is then just c(fo -t,_t).
The spring analog of a dripping faucet (for any

breakpoint rule) shares with the Bernoulli shift the two es-
sential features of chaos: small changes in initial condi-
tions are amplified over short time intervals, but the
solution is confined to a limited region over longer time in-
tervals. The Bernoulli shift amplifies angular differences
by doubling them at each iteration, but keeps them limited
by dropping the integer part. The spring analog of the
dripping faucet amplifies differences in the drop mass
because larger drops tend to cause larger rebounds and
longer time intervals. This tends to make the next drop
larger, but the drop mass is limited because release of a
large mass will cause the spring to rebound past its
equilibrium point, causing the spring to pusñ in the same
direction as gravity, and shorten the time interval and the
mass of the next drop. This constant competition befween
local amplification and global limit¿tion, or between inner
freedom and outer constraint, is the essence of chaos.

Iliscussion

Most of us are familiar with the academic and recreational
capabilities of personal computers, but they are also
highly sophisticated measuring devices. Some relatively
simple plumbing and soldering enables the computer to
measure the rapid chaotic rh¡hms of thousands of drops
with accuracies approaching a millionth of a second. The

152

computer becomes a kind of temporal microscope,
revealing the marvelous variety of tap dancing going on
under the most ordinary leaky faucet. This rich rhythmic
behavior cre¿tes data clouds of simple spherical and
parabolic form, as well as a zoo of complex fractal ribbons
not yet fully understood.

These fract¿l attractor patterns are not only pleasant

to the eye, but can also be put to practical use predicting
apparently random behavior such as that shown in Figs.S
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Figl6: Plot of tro Sûdrop sequenoes of tine intervals ta¡(en from tùe
data i¡ FIg.sc. The sterting points wcre ¡elected by choosing two points
nearbyon the athactor ¡hown in Fig7a. The drop intervals renaln close
togetùer for the frst 10 drop, but deviete significaatly for drops ll-25'
tùen ¡re back ín agreenent for dropa 2É34, ¡nd fn¡lly rlisogree for the
renainder. Sue.h beh¡vior shows th¡t ¡n¡logue prediction scùenec, such

¡s those used in short-tern weather forecasting cal successÞIly predict
chaotic sequences for ¡ limited time.

and 8. As a simple example, imagine that after collecting
drop times in Fig.Sc up to drop n: 500, we wish to
predict what will happen next. From the previous dat¿, Io-
cate points close to (T", T" * t ) on the attractor in Fig.6c.
Each of these points with coordinates (T-, T- * r ), where
tn ( rL have successors Tm + 2, and Fig.7a shows that they
provide a good prediction of T"*z.This means that if a
pair of drop times is similar to some past pair, what
happens next will also be similar for a while. A related
procedure called "analog prediction" has occasional
success in weather forecasting, and is probably superior to
linear statistical prediction since the atmosphere's attrac-
tor, like Fig.7a, is expected to be nonlinear (Lorenz,
1977). The atmosphere's nonlinearity leads to the fractal
structure of clouds (Cahalan, 1989) just as the dripping
faucet's nonlinearity leads to fractal chaotic time intervals.

Fig. 16 illustrates the potential predictability inherent
in the attractor of Fig.7a by overlaying two such analogs
from the middle of Fig.Sc, showing that a single past
analog can predict a dripping faucet with reasonable
accuracy 7=10 drops ahead. Considerable progress is
needed before we¿ther can be predicted equally well 7-10
days ahead. In simple systems predictions can be gratly
improved by finding each successive interval from a
weighted average of a number of neighboring attractor
points (Farmer and Sidorowich,l9ST; Casdagli, 1989).
Such methods are much more difficult to apply in higher-
dimensional systems such as weather and climate.

The basic dripping faucet experiment described here
can be extended in a number of directions: varying the flu-

(22)

(23)
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id properties, varying the eyedropper properties, varying
the environment, and measuring new properties of the
dripping process. Wu et al., (1989) and Wu and Schelly
(1989) have reduced surface tension by adding the
surfact¿nt SDS to the water, producing data clouds whose
fractal structure is much clearer, and also finding some
new multi-loop patterns. One could also study the effect of
fluid density and viscosity, using fluids like oil and
mercury" Wu et al. found no strong temPerature-
dependence for water near room temperature, but what
about fluids in temperature ranges where physical
properties are changing? Another variable is the shape and
size of the eyedropper orifice. What happens if it is
covered by a screen? An interesting environmental
variation is to apply a constant electric field to the orifice
by placing the center ofa horizontal copper ring about one
ring radius below the eyedropper, and applying a constant
voltage. (Earth's ambient field is typically 100V,/m
downward.) Since water is highly polar, each drop tends
to break off with a small net charge, which increases
linearly with the applied voltage. Are drop rhythms
affected by electric fields? What if the polarizability is
altered by, say, changing the salinity?

Besides varying more parameters, we need to refine
and extend the measurements. One very useful extension
of our photodiode detector would be a camera shutter
release triggered by each passing drop. This would
generate a movie with the triggering drop in the same
position in each frame. Each following drop then appears
at a height proportional to the time interval, so that
successive frames produce a continuous chaotic dance. A
stroboscope can also reveal chaotic patterns, but these are
not simply related to the time intervals.

Besides the drop time interval, other useful measure-
ments include the drop diameter and the drop charge. The

diameter could be estimated from the drop passage time,
determined from the pulse width of the photodiode
detector voltage. One way to get the pulse widths is to con-
nect the photodiode detector to an analog-to-digital
converter chip (like Radio Shack's TLC548), allowing
the complete voltage time series to be recorded digitally.
This would require considerable data storage. The charge
might be found from the current induced in a conducting
ring. Shaw's spring analog model suggests that it would
also be of interest to study the recoil of the fluid column
resulting from each drop release, to see ifit is related to the

drop .mass or charge. Perhaps this could be done by
mounting the eyedropper on a piezoelectric crystal.

Robert Shaw concludes his monograph on the

dripping faucet with the hope that his work "suggests that
one does not need a particle accelerator to step to the fron-
tiers of physics." We hope even some nonprofessional
readers might have that frontier experience, and we have
tried to show that it does not necessarily require a well-
equipped scientific laboratory, but only access to some

relatively common technologY.
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Dripping Faucet 
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A model for the simulation of the chaotic behavior of a leaky faucet is analyzed. 
It is found that the mechanism Of simulating the breaking away of the drop is 
crucial in order to obtain the transition to chaos. Return maps and dripping spectra 
as functions of flow rate and critical parameters are obtained. 

1. I N T R O D U C T I O N  

During the last decade, following R0ssler's (1977) suggestion, many 
authors have demonstrated experimentally that a dripping water faucet might 
exhibit a chaotic transition as the flow rate is varied (Marten et  al.,  1985; 
Ntlfiez Y6pez et  al.,  1989; Wu et  al.,  1989; Wu and Scheily, 1989; Cahalan 
et  al.,  1990; Dreyer and Hickey, 1991). As far as we know, mathematical 
models that simulate carefully this behavior have not been reported in the 
literature. However, several years ago, Martien et  al. (1985) were able to 
simulate, by using a model of a simple one-dimensional nonlinear oscillator, 
some of the simpler behavior of  the leaky faucet, with good qualitative 
agreement. These authors did not make a systematical exhaustive exploration 
of  the dependence of  the model on the parameters and claimed to obtain 
return maps that only in a qualitative sense, and in limited regions of  the 
parameter space, are similar to those produced experimentally by the faucet. 
Furthermore, the mechanism by which the initial conditions for the drop 
formation were restored was not sufficiently explained. More recently, Bern- 
hardt (1991) described a simple electronic circuit that reproduces the type 
of aperiodic behavior that may be found in many physical systems, such as 
dripping faucets, magnetospheric substorms, etc. In this paper it is demon- 
strated that the only nonlinearity required to yield chaos in relaxation oscillator 
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942 D'Innocenzo and Renna 

systems is a sudden change in behavior when a threshold is reached. Bern- 
hardt's result seems to suggest that the mechanism of formation of the drop 
at the threshold is crucial in order to yield chaos in mathematical models of 
a dripping faucet. In order to clarify this point, we have considered the model 
proposed in Martien et al. (1985) and we analyzed the effects introduced by 
different mechanisms of release of the drop at threshold. The amount of 
water which is released into the falling drop can depend on several physical 
quantities at the threshold, such as the speed, the mass, or the momentum 
of the forming drop, the time of formation of the drop, etc. Moreover, as the 
drop leaves the faucet, it creates oscillations in the residue (which set the 
initial conditions for the following drop), affecting the time of release of the 
next drop, so that the successive drops are causally related. This correlation 
between successive drops can be built up into a mathematical model in several 
ways: one can, for example, set the initial conditions for the following drop 
at the nozzle, or simulate a sudden (nonzero) reduction of the residue position. 
Finally, a change of the threshold can lead to further significant modifications 
in the results of the model. 

In this paper we analyze only some of the various modalities and shapes 
of the formation of a drop. Our aim is to investigate a path that should lead 
to the establishment of the deterministic equations describing the system. In 
doing this we limit ourselves mainly to the study of the dependence of the 
model on the parameters of  the threshold: we think in fact that, owing to 
the large variety of the parameters and the richness of the chaotic patterns 
that can be obtained, the theoretical model can be improved by exploring 
mostly the mechanism of threshold that, in a certain sense, is with less 
evidence connected to the physical constraints of the process. We believe 
that an investigation of the influence of the critical parameters of the model 
and the structure of the drop formation can furnish suggestions for the estab- 
lishment of the mathematical equations describing the formation and succes- 
sive breaking of the drops. 

In Section 2, the mathematical model is explained and in Section 3 
bifurcation and return map drawings obtained with fixed values of critical 
parameters and initial conditions are shown. In Section 4, a larger variation 
of parameters is performed and effects of surface tension and temperature 
are analyzed. Finally, conclusions are presented in Section 5. 

2. MATHEMATICAL MODEL 

We start from the simple mechanical model for the dripping faucet 
proposed in Martien et al. (1985). This model consists of a mass M which 
grows linearly with time, pulling on a spring with stretch constant k. The 
spring produces a linear restoring force equal to -k_x, where x is the position 
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of the center of mass of the forming drop and the spring constant k represents 
surface tension. The damping of  the residual oscillations is included in the 
friction force -bv ,  where v = dx./dt is the speed of  the center of mass of  the 
forming drop. This unidimensional mass on a spring may be described by 
the equation 

d(Mv) 
- -  - M g  - k x -  b v  (1)  

dt 

where g is gravitational acceleration and the mass of the drop grows at a 
constant rate R, 

dM 
- R (2)  

dt 

When the downward displacement of  the water reaches a critical value xc, 
the mass is suddenly reduced by AM and the position of the remaining mass 
oscillates according to (1) and grows according to (2). The drop mass AM 
is taken proportional to the speed dx/dt of the mass at the critical distance xc. 

There is, in this model, a certain arbitrariness in the choice of  the values 
of the parameters, and so far an exhaustive exploration of the behavior of 
equation (1) in terms of  these parameters has not been given. However, one 
cannot ignore the physics, and we believe it to be convenient to take an 
initial set of  the parameters which is close to the physical ones. Two more 
aspects of the problem seem interesting: the way by means of  which (a) the 
mass of the breaking-off drop is defined and (b) the position and speed of 
the successive drop in formation are related to the variables M and v at x,.. 

The drop mass AM can be produced in several ways; we have analyzed 
the following: 

(i) AM = etMcv,. (3) 

(ii) AM = etVc (Martien et al., 1985) 

where vc and Mc are the speed and the mass at the threshold and et is a 
parameter of  proportionality to be suitably adjusted. The behavior of  the 
solutions of  equations ( t )  and (2) depends on at least four independent 
parameters g, k, b, and R. In addition to these parameters we have considered, 
within the mechanisms of  drop formation shown in relations (3), two addi- 
tional parameters: the coefficient of  proportionality et and the critical distance 
xc. In the following we will show that the values of  the last two parameters 
are crucial in order to obtain transition to chaos. In doing this we will maintain 
constant, almost everywhere, all other parameters (except, eventually, R). 

As regards the relation with the initial conditions for the residue mass 
m = Mc - AM, when a drop falls, one can attempt to place the residue at 
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the nozzle, putting x0 = 0, with the speed v0 = vc, of the previous drop 
at the threshold. Instead, we have considered two different model systems 
of the breaking drop at the critical point xc: 

(a) A spherical drop and a residue point mass (one-sphere) .  

(b) Two spherical drops, one falling off, the other forming a residue 
for the successive drop ( two-sphere) .  

Figure la shows the system of point mass and sphere; the system center 
of mass is at xc; the initial position for the residue mass is given by 

AM 
x0 = x ~ , -  r (4) 

M, 

where r = (3AM/4rrp) u3 and p is the liquid density. Figure lb shows the 
two-sphere model; with the center of mass at xc we obtain for the position 
of the residue the relation 

&M 
Xo = x,. - (rl + r 2 ) - -  (5) M,. 

where rl.2 = (3AMi.214~rp) u3 and MI = A M ,  M2 =- m = Mc - A M .  

By setting in both models v0 = Vc the total momentum P is unaffected 
by the breaking. In the following section, by choosing values of the 
parameters g, k, and b near the physical ones, corresponding to a standard 
experimental apparatus, we give an exhaustive study of the two modalities 
of the drop formation (3) with the previously suggested breaking shape 
of Fig. la. Work is in progress in order to extend the analysis to the 
breaking shape of Fig. tb (D'Innocenzo and Renna, n.d.); a preliminary 
result is given in the following. 

3. NUMERICAL SIMULATIONS 

We have set the initial values of the parameters with reference to the 
physical properties of the drops. 

As the surface tension represents a force per length, we have, for a 
w ate r  drop, a value of k roughly equal to 500 dynes/cm, while the friction 
force depends on the liquid viscosity Xl and on the eyedropper characteristics. 

A preliminary test was performed, on the basis of which we have set 
throughout k = 475 dynes/cm, b = 1 sec - I , m  = 0.01 g, and v0 = 0.10 
crn/sec. This choice is justified by the necessity of limiting the number of 
variables of the model: however, one must keep in mind that there exist other 
values of these parameters for which a sensible variation of the solutions can 
be obtained. For example, intermittencies with period doubling of a period- 
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X, 

a} 

Xc 

b} 
M~- A M ~  

A M  

Fig. 1. Mechanism of drop breaking at the threshold: (a) one-sphere and (b) two-sphere models. 

3 attractor or  chaotic patterns are obtained for m = 0.10 g. In Section 4 a 
larger variation o f  parameter  values is carried out. 

Substituting the solution 

M(t) = m + Rt (6) 
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Table I. Parameters Kept Fixed 

m v o k g b x,. 

0.01 g 0. I cm/sec 475 dynes/cm 980 cm/sec 2 I g/sec 0.19 cm 

of equation (2) into equation (1) and introducing the speed v = dx /d t ,  we 
transform these equations into the equivalent system 

dr 
- - =  v ( 7 )  
d t  

MdU 
d t  = M g  - k x  - (R  + b ) v  

. 0 5 5  

.05 

"~ .045 
[-~ 

. 0 4  

. 0 3 5  

.03 

--I I I I , I , , , , I , , J , l , , , ,  / 
I I I 1"""' l I I 

t - I  i i I I I i I I i I i i [ , 

. 0 3  . 0 3 5  .04 .045 

T n 

I I 

. 0 5  

l t i l i t  
. 0 5 5  

Fig. 4. Dripping patterns (7",+1 versus T,) for AM ~ M,v<.. The ranges for ordinates and 
abscissae are the same (units, seconds). Flow rate (ml/sec): (a) 0.885, (b) 0.95, (c) 1.05. 
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Fig. 4. Continued. 

whose numerical solutions are obtained by means of a standard variable-step 
fourth-order Runge-Kutta method in the modification due to Gill (see Butcher, 
1987). Equations (7) are integrated until x exceeds xc: thus the integration is 
performed back to xc by using the H6non (1982) method for the numerical 
computation of Poincar6 maps. In our calculations we have verified that in 
any case the fluid flow rate is always conserved. 

Table I gives the values of the parameters that we have kept fixed. The 
experimental behavior of a dripping faucet during the transition to chaos has 
been examined by several authors (Martien et  al., 1985; Ndfiez Y6pez et  al., 
1989; Wu et  al. ,  1989; Wu and Schelly, 1989; Cahalan et  al., 1990; Dreyer 
and Hickey, 1991). The experiments involve measurement of time intervals 
between successive drips. For each constant flow rate, the data are represented 
in a time delay diagram (t,+l versus t,) or discrete map. 
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The experimental investigations can be summarized as follows. At low 
flow rate, dripping is found to be periodic (period-1 and period-2 attractors). 
As the flow rate is varied and set to increasingly larger values, a period- 
doubling sequence leading, above a critical flow rate, to chaos appears; the 
system exhibits a broad range of  dynamical behavior, with many examples 
of strange attractors. Examples of an intermittent route to chaos, with period- 
3 and period-4 attractors, are also given (Dreyer and Hickey, 1991). Varying 
the surface tension dramatically changes the dynamics (Wu and Schelly, 
1989). 

As in both previous theoretical and experimental studies, we have 
focused our attention on the time interval t,, between successive drips• Figure 
2 shows the drip spectra of water versus R, with AM given in Fig. 2a by 
formula (i) and Fig. 2b formula (ii) of  (3) (the first 150 of  200 drops 
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Fig. 5. Dripping time delay diagrams for A M  :x v,,. Ranges and units as in Fig. 4. Flow 
rate: (a) 0.90, (b) 0.94, (c) 1.0, 

are removed). These are clear diagrams of bifurcations: in Fig 2a at 
R --~ 0.61 ml/sec there is a bifurcation from an attractor of  period 1 to an 
attractor of  period 2. As R is increased, successive bifurcations occur until 
strange periodic attractors appear. Analogous results are obtained in Fig 2b; 
up to R = 0.825 ml/sec the behavior is the same as in Fig. 2a, then a biperiodic 
dripping leading to chaos appears. We have used for model (i) a = 0.25 
c m -  1 sec, for model (ii) c~ = 0.025 g c m -  ~ sec-  l and x~. = O. 19 cm for both. 

The enlargement of the spectra in Fig. 3 reveals the flow rates at which 
characteristic behaviors occur: for instance, in Fig. 3a transitions to different 
attractors are easily seen; bistability can be observed in Fig. 3b around flow 
rates ranging up to 20 .92  ml/sec. Figures 4 and 5 show time delay diagrams 
at three selected flow rates; each of these diagrams contains 5 X 103 points 
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(the first 10 points are removed). It can be observed in Fig. 4 that the 
complexity of  the attractor grows with increasing R; a sharp change occurs 
at R = 1.025 ml/sec (see also Fig. 3a). An analogous change occurs for Fig. 
3b at R = 0.93 ml/sec. As it can be seen from Figs. 5 and 6 with AM 
proportional to the speed, the attractors seem to change from a period-2 state 
to a chaotic state, but the analysis of  the data shows two curious aspects of  
the time of release. First, one can observe the resemblance of the attractors 
in parts (b) and (c) of  Figs. 4 and 5 in spite of  the difference of the flow 
rate spectra: this can be explained by observing that in case (a), ~ = 0.25 
cm -1 sec, while in case (b), e~ = 0.025 g cm -I  sec; this similarity can be 
understood since at the threshold both calculated masses are of  the order of  
Mc -~ 0.1 g. The second aspect is evident in Fig. 6, where time series diagrams 
of Figs. 5a and 5b are shown: in both diagrams, after a long transitory chaotic 
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rhythm, the time intervals alternate, exhibiting biperioding dripping: this 
happens after 250 drops in case (a), but after 2200 drops in case (b); thus 
this effect is not evidenced by the dripping spectra of Figs. 2b and 3b, which 
contain 50 drops. This behavior appears at R = 0.95 ml/sec. An analogous 
effect happens for case (i) at R = 0.93 ml/sec; however, in this case a chaotic 
pattern transforms after 800 drips to a multiperiodic pattern. As far as we 
know, these phenomena are not reported in the experimental studies. 

We finish this section by showing in Fig. 7 the drip spectra at R -- 0.9 
ml/sec as a function of  the critical distance xc. These diagrams are useful in 
that they suggest a strong dependence of the model on this parameter; the 
spectra calculated at different flow rates can furnish useful indications in 
order to obtain different forms for the chaotic attractor. Observing Fig. 7b, 
one can see an anomalous decrease of the dripping time intervals as the 
critical distance xc grows in the case where the drop mass AM is taken 
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Fig. 8. Time series diagram for the drop interval of Fig. 4a. (b-e): Time delay diagrams of 
the four attractors of the time series in (a). (f) Sixty successive drop intervals connected with 
straight lines for enhanced visual effect. 

proportional to the drop speed v. This argument seems to privilege the model 
(i) over (ii) of relation (3). 

Moreover, all these results suggest that a correct model of a dripping 
faucet must contain a certain dependence among a, xc, and R. 

4. ATTRACTORS 

Figure 8 shows the case illustrated in Fig. 4a in greater detail: the time 
series diagrams show four patterns that evolve in the chaotic attractors of 
Figs. 4b and 4c. In the time delay diagrams of Figs 8b-8e the four attractors 
of the time series of Fig. 8a are shown separately. The shape of Fig. 8d can 
be obtained from the shape of Fig. 8c by a double reflection about the time 
axes. In Fig. 8f 60 successive drop intervals from the middle of the time 
series of Fig. 8a are connected with straight lines for enhanced visual effect 
in order to see more clearly the alternate periodic behavior of the drop 
time intervals. 

Some interesting maps are obtained upon varying both x,. and c~. Figure 
9 shows some attractors for case (i) of (3); these attractors are very similar 
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I 

to experimental attractors. The dependence on these parameters is evidenced 
on comparing the map of  Fig. 9b with that of  Fig. 9d, whose attractor structure 
is quite different. 

The effect of  changing the liquid surface tension has been also analyzed; 
results are reported in Fig. 10 for a flow rate of  0.95 ml/sec. It can be noted 
that the strange attractor of  Fig. 4b becomes biperiodic with decreasing 
surface tension (k = 450 dynes/cm), while it evolves into an attractor of 
more complex structure for k = 500 dynes/cm. 

Finally, we show some delay diagrams and the corresponding time series 
for the two-sphere model of Fig. lb. In Fig. 11 an attractor-type dinosaur is 
obtained with drop mass A M  ~ Move, while in Fig. 12, taking AM cc vc, we 
show a closed discrete attractor with a suggestive regularity in the time 
series behavior. 
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Thus with the present model several features of the dripping faucet 
behavior can be observed as closed-loop patterns and periodic or strange 
attractors. 

5. C O N C L U S I O N S  

The model of a dripping faucet we have presented in this paper repro- 
duces many of  the experimental behaviors. In addition, it contains a dynamics 
which reveals many interesting features. Further investigations can be per- 
formed in order to understand the nature of  various attractors and the effect 
of those parameters which are not varied in our analysis. This mathematical 
model displays in fact various forms of chaos and thus lends itself well to 



Dripping Faucet 959 

+ 

d 

.042  

.041 

.04 

.039 

.038 

- / 
- 

- J ~ - 

- /  \ ', _ 
,,, \ _- 

: \ -  , 

- ' \ _ ' x  - 
- \ -, - 

- -  " i t  o 
i 

\ 
_ - ,  ? 

\ \  

- \ 
J l , , I , l ~ l l l l J , J , l , , , l l l , ,  

.038 .039 .04 
T n 

Fig. 8. Continued. 

.041 .042 

the representation of typical phenomena of nonlinear physics. The results of 
our work can be summarized as follows: 

(i) The differential equations (1) and (2), with one prefixed mechanism 
for the release of the drop, seem to us unable to reproduce all the characteristic 
patterns of the dripping faucet. 

(ii) The relevant nonlinearity required to yield chaos is given by the 
sudden changes at the threshold. 

(iii) A consistent definition of threshold is necessary in order to give 
unicity to the model. 

(iv) The mechanism of release of the drop with a mass proportional to 
momentum seems to be more realistic. 

(v) A link between the threshold parameters is necessary in order to 
obtain a more complete reproduction of experimental results. 

We think that further studies along the above lines can lead to a good 
refinement of the model. 
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x,. = 0 .15 ;  (c) ~ = 0 .4 ,  R = 0 .6 ,  xc = 0 .25 ;  (d) ~ = 0 .5 ,  R = 0 .3 ,  xc = 0 .3 ;  (e) ~t = 0 .6 ,  

R = 0 .6 ,  xc = 0 .25 .  
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Fig. 10. Effects of  changing the surface tension on the drip patterns. (a) k = 450 dynes/cm; 
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Fig.  11. (a) Discre te  m a p  and (b) t ime series d i a g r a m  for the two-sphere  model  with AM 

M,v c. Values o f  the pa rame te r s  are (~ = l, R = 0.9, & = 0.25. Uni ts  are as in the p rev ious  

f igures for  the case  AM oc M,.v¢. 
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NOTE ADDED IN PROOFS 

After submission of this paper for publication, the authors became 
acquainted with an article by J. C. Sartorelli, W. M. Gon~alves, and R. D. 
Pinto (Physical Review E, 49 (1994), 3963), in which experimental evidences 
of sudden changes from chaotic to periodic regimes of a dripping faucet have 
been reported. These results are very similar to those shown in Fig. 6a and 
6b of this paper and are considered by the authors as strong encouragement 
to continue the study of these phenomena. 
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