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Supplemental Chapter 1 deals with my Fusion Markov chain Monte Carlo (FM-
CMC) algorithm, an extension of the work introduced in the latter part of Chapter
12 of the textbook. FMCMC is a special version of the Metropolis algorithm that
incorporates parallel tempering, genetic crossover operations, and an automatic
simulated annealing. Each of these features facilitate the detection of a global min-
imum in chi-squared in a highly multi-modal environment. By combining all three,
the algorithm greatly increases the probability of realizing this goal. It is a pow-
erful general purpose tool for Bayesian model fitting which I have been using to
great success in the arena of extra-solar planets. The FMCMC is controlled by a
unique adaptive control system that automates the tuning of the MCMC proposal
distributions for efficient exploration of the model parameter space even when the
parameters are highly correlated.

Chapter 1 also includes important new work on Bayesian model comparison and
introduces a new marginal likelihood estimator, called Nested Restricted Monte
Carlo (NRMC), used in the calculation of Bayes’ factors. Its performance is com-
pared with two other marginal likelihood estimators that depend on the posterior
MCMC samples. There are three supporting appendices to Chapter 1.

Supplemental Chapter 2 provides an introduction to hierarchical or multilevel
Bayes. It examines how to handle hidden variables and missing data. There are
numerous examples of the use of fusion MCMC in Bayesian regression and re-
gression involving selection effects, providing an important enhancement to the
coverage of the textbook.

These supplemental chapters are intended to maintain and strengthen the book’s
appeal as a text for graduate-level courses in the physical sciences. Although the
main textbook provides some examples using Mathematica commands, the sup-
plemental chapters are standalone and do not make use of any specific computer
language.
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1
Fusion Markov chain Monte Carlo:

A Powerful Tool for Bayesian Data Analysis

1.1 Introduction

The purpose of this chapter is to introduce a new tool for Bayesian data analysis
called fusion Markov chain Monte Carlo (FMCMC), a new general purpose tool
for nonlinear model fitting and regression analysis. It is the outgrowth of an earlier
attempt to achieve an automated MCMC algorithm discussed in Section 12.8 of
my book “Bayesian Logical Data Analysis for the Physical Sciences,” Cambridge
University Press (2005, 2010) [24].

FMCMC is a special version of the Metropolis MCMC algorithm that incorpo-
rates parallel tempering, genetic crossover operations, and an automatic simulated
annealing. Each of these features facilitate the detection of a global minimum in
chi-squared in a highly multi-modal environment. By combining all three, the al-
gorithm greatly increases the probability of realizing this goal.

The FMCMC is controlled by a unique adaptive control system that automates
the tuning of the MCMC proposal distributions for efficient exploration of the
model parameter space even when the parameters are highly correlated. This con-
trolled statistical fusion approach has the potential to integrate other relevant sta-
tistical tools as desired. The FMCMC algorithm is implemented in Mathematica
using parallized code to take advantage of multiple core computers.

The power of this approach will be illustrated by considering a particular model
fitting problem from the exciting area of extra-solar planet (exoplanets) research. In
a subsequent chapter we will examine other applications in multilevel (hierarchi-
cal) Bayesian analysis. The next section of this chapter provides some background
information on exoplanet discoveries to motivate the Bayesian analysis. Section 1.3
provides a brief self contained introduction to Bayesian logical data analysis ap-
plied to the Kepler exoplanet problem leading to the MCMC challenge. For more
details on Bayesian logical data analysis please see my book [24].

The different components of Fusion MCMC are described in Section 1.4. In
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Figure 1.1 The pace of exoplanet discoveries as of Dec. 2014.

Section 1.5, the performance of the algorithm is illustrated with some exoplanet
examples. Section 1.6 deals with the challenges of Bayesian model comparison
and describes a new method for computing marginal likelihoods called Nested Re-
stricted Monte Carlo (NRMC). Several appendices provide important details on
FMCMC control system, and details behind the choices of priors.

1.2 Exoplanets

A remarkable array of new ground based and space based astronomical tools are
providing astronomers access to other solar systems. Close to 2000 planets have
been discovered to date, starting from the pioneering work of [9, 66, 46, 45].
Fig. 1.1 illustrates the pace of discovery1 up to Oct. 2014.

A wide range of techniques including radial velocity, transiting, gravitational
micro-lensing, timing, and direct imaging, have contributed exoplanet discoveries.
Because a typical star is approximately a billion times brighter than a planet, only
a small fraction of the planets have been detected by direct imaging. The majority
of the planets have been detected through transits or the reflex motion of the star
caused by the gravitational tug of unseen planets, using precision radial velocity
(RV) measurements. There are currently 1832 planets in 1145 planetary systems
(as of 17 October 2014). 469 planets are known to be in multiple planet systems, the
largest of which has seven planets [44]. Many additional candidates from NASA’s

1 Data from the Extrasolar planet Encyclopedia, Exoplanet.eu. [57]
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Kepler transit detection mission are awaiting confirmation. One recent analysis of
the Kepler data [49] estimates that the occurrence rate of Earth-size planets (radii
between 1-2 times that of the Earth) in the habitable zone (where liquid water could
exist) of sun like stars is 22 ± 8%.

These successes on the part of the observers has spurred a significant effort to
improve the statistical tools for analyzing data in this field (e.g., [42, 41, 11, 24,
25, 19, 20, 21, 70, 12, 13, 17, 1, 5, 60, 35]. Much of this work has highlighted a
Bayesian MCMC approach as a way to better understand parameter uncertainties
and degeneracies and to compute model probabilities. MCMC algorithms provide a
powerful means for efficiently computing the required Bayesian integrals in many
dimensions (e.g., an 8 planet model has 42 unknown parameters). More on this
below.

1.3 Bayesian primer

What is Bayesian probability theory (BPT)?

BPT = extended logic.

Deductive logic is based on axiomatic knowledge. In science we never know any
theory of nature is absolutely true because our reasoning is based on incomplete
information. Our conclusions are at best probabilities. Any extension of logic to
deal with situations of incomplete information (realm of inductive logic) requires
a theory of probability.

A new perception of probability has arisen in recognition that the mathematical
rules of probability are not merely rules for manipulating random variables. They
are now recognized as valid principles of logic for conducting inference about any
hypothesis of interest. This view of, “Probability Theory as Logic”, was champi-
oned in the late 20th century by E. T. Jaynes in his book 2, “Probability Theory:
The Logic of Science,” Cambridge University Press 2003.
It is also commonly referred to as Bayesian Probability Theory in recognition of
the work of the 18th century English clergyman and Mathematician Thomas Bayes.

Logic is concerned with the truth of propositions. A proposition asserts that
something is true. Below are some examples of propositions.

• A ≡ “Theory X is correct.”
• Ā ≡ “Theory X is not correct.”
• D ≡ “The measured redshift of the galaxy is 0.15 ± 0.02.”
• B ≡ “The star has 5 planets.”

2 The book was published 5 year after Jaynes’ death through the efforts of a former graduate student Dr. G. L.
Bretthorst.
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• A ≡ “The orbital frequency is between f and f + d f .”

In the last example, f is a continuous parameter giving rise to a continuous hypoth-
esis space. Negation of a proposition is indicated by a bar over top, i.e, Ā.

The propositions that we want to reason about in science are commonly referred
to as hypotheses or models. We will need to consider compound propositions like
A, B which asserts that propositions A and B are both true conditional on the truth
of another proposition C. This is written A, B|C.

Rules for manipulating probabilities and Bayes’ theorem

There are only two rules for manipulating probabilities.

Sum rule : p(A|C) + p(Ā|C) = 1 (1.1)

Product rule : p(A, B|C) = p(A|C) × p(B|A,C) (1.2)

= p(B|C) × p(A|B,C)

Bayes’ theorem is obtained by rearranging the two right hand sides of the product
rule.

Bayes′ theorem : p(A|B,C) =
p(A|C) × p(B|A,C)

p(B|C)
(1.3)

Figure 1.2 shows Bayes’ theorem in its more usual form for data analysis pur-
poses. In a well posed Bayesian problem the prior information, I, specifies the
hypothesis space of current interest (range of models actively under consideration)
and the procedure for computing the likelihood. The starting point is always Bayes’
theorem. In any given problem the expressions for the prior and likelihood may be
quite complex and require repeated applications of the sum and product rule to
obtain an expression that can be solved. This will be more apparent in Chapter 2
dealing with hidden and missing variables.

As a theory of extended logic, BPT can be used to find optimal answers to well
posed scientific questions for a given state of knowledge, in contrast to a numerical
recipe approach.

1.3.1 Two common inference problems

1. Model comparison (discrete hypothesis space): Which one of 2 or more mod-
els (hypotheses) is most probable given our current state of knowledge? Exam-
ples:

• Hypothesis or model M0 asserts that the star has no planets.
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Figure 1.2 How to proceed in Bayesian data analysis.

• Hypothesis M1 asserts that the star has one planet.

• Hypothesis Mi asserts that the star has i planets.

2. Parameter estimation (continuous hypothesis): Assuming the truth of M1,
solve for the probability density distribution for each of the model parameters
based on our current state of knowledge. Example:

• Hypothesis P asserts that the orbital period is between P and P + dP.

For a continuous hypothesis space the same symbol P is often employed in two
different ways. When it appears as an argument of a probability, e.g., p(P|D, I) it
acts as a proposition (obeying the rules of Boolean algebra) and asserts that the true
value of the parameter lies in the infinitesmal numerical range P to P+dP. In other
situations it acts as an ordinary algebraic variable standing for possible numerical
values.

Figure 1.3 illustrates the significance of the extended logic provided by Bayesian
probability theory. Deductive logic is just a special case of Bayesian probability
theory in the idealized limit of complete information. For demonstration of this see
Section 2.5.4 of my book [24].
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Figure 1.3 Significance of the extended logic provided by Bayesian probability
theory.

Calculation of a simple likelihood p(D|M, I)

Let di represent the ith measured data value . We model di by,

di = fi(X) + ei, (1.4)

where X represents the set of model parameters and ei represents our knowledge of
the measurement error which can be different for each data point (heteroscedastic
data).

If the prior information I indicates that distribution of the measurement errors
are independent Gaussians, then

p(Di|M, X, I) =
1

σi
√

2π
Exp[−

e2
i

2σ2
i

]

=
1

σi
√

2π
Exp

− (di − fi(X))2

2σ2
i

 . (1.5)

For independent data the likelihood for the entire data set D = D1,D2, · · · ,DN

is the product of N Gaussians.

p(D|M, X, I) = (2π)N/2

 N∏
i=1

σ−1
i

 Exp

−0.5
N∑

i=1

(di − fi(X))2

σ2
i

 (1.6)

= (2π)N/2

 N∏
i=1

σ−1
i

 Exp
[
−0.5 χ2

]
,

where the summation within the square brackets is the familiar χ2 statistic that is
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minimized in the method of least-squares. Thus maximizing the likelihood corre-
sponds to minimizing χ2.

Recall: Bayesian posterior ∝ prior × likelihood.

Thus only for a uniform prior will a least-squares analysis yield the same result
as the Bayesian maximum a posterior solution.

In the exoplanet problem the prior range for the unknown orbital period P is very
large from 1/2 day to 1000 yr (upper limit set by perturbations from neighboring
stars). Suppose we assume a uniform prior probability density for the P parameter.
According to Equation 1.7, this would imply that we believed that it was 104 times
more probable that the true period was in the upper decade (104 to 105 d) of the
prior range than in the decade from 1 to 10 d.∫ 105

104 p(P|M, I)dP∫ 10
1 p(P|M, I)dP

= 104 (1.7)

Usually, expressing great uncertainty in some quantity corresponds more closely
to a statement of scale invariance or equal probability per decade (uniform on lnP.
A scale invariant prior has this property. A recent analysis of the occurrence rate
of transiting planets [49] versus orbital period found that the occurrence rate is
constant, within 15%, between 12.5 and 100 d.

p(lnP|M, I) dlnP =
d lnP

ln(Pmax/Pmin)
(1.8)

1.3.2 Marginalization: an important Bayesian tool

Suppose our model parameter set, X, consists of two continuous parameters θ and
ϕ. In parameter estimation, we are often interested in the implications of our current
state of knowledge data D and prior information I for each parameter separately,
independent of the values of the other parameters. As shown in Section 1.5 of my
book [24], we can write

p(θ|D, I) =
∫

dϕ p(θ, ϕ|D, I). (1.9)

This can be expanded using Bayes’ theorem. If our prior information for ϕ is inde-
pendent of θ, this yields

p(θ|D, I) ∝ p(θ|I)
∫

dϕ p(ϕ|I)p(D|θ, ϕ, I). (1.10)
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This gives the marginal3 posterior distribution p(θ|D, I), in terms of the weighted
average of the likelihood function, p(D|θ, ϕ, I), weighted by p(ϕ|I), the prior prob-
ability density function for ϕ. This operation marginalizes out the ϕ parameter. For
exoplanet detection, the need to be to fit at least an 8 planet model to the data re-
quires integration in 42 dimensions. The integral in Equation (1.9) can sometimes
be evaluated analytically which can greatly reduce the computational aspects of
the problem especially when many parameters are involved. If the joint posterior
in θ, ϕ is non Gaussian then the marginal distribution p(θ|D, I) can look very dif-
ferent from the projection of the joint posterior onto the θ axis as Figure 11.3 in
my book [24] clearly demonstrates. This is because the marginal, p(θ|D, I), for any
particular choice of θ, is proportional to the integral over ϕ which depends both on
width of the distribution in the ϕ coordinate as well as the height.

In Bayesian model comparison, we are interested in the most probable model,
independent of the model parameters (i.e., marginalize out all parameters). This is
illustrated in the equation below for model M2.

p(M2|D, I) =
∫
∆X

dX p(M2, X|D, I), (1.11)

where ∆X designates the appropriate range of integration for the set of model pa-
rameters designated by X, as specified by our prior information, I.

Integration and Markov chain Monte Carlo (MCMC)

It should be clear from the above that a full Bayesian analysis involves integrat-
ing over model parameter spaces. Integration is more difficult than minimization.
However, the Bayesian solution provides the most accurate information about the
parameter errors and correlations without the need for any lengthy additional calcu-
lations, i.e., Monte Carlo simulations. Fortunately the Markov chain Monte Carlo
(MCMC) algorithms [48] provide a powerful means for efficiently computing in-
tegrals in many dimensions to within a constant factor. This factor is not required
for parameter estimation.

The output at each iteration of the MCMC is a sample from the model parame-
ter space of the desired joint posterior distribution (called the target distribution).
All MCMC algorithms generate the desired samples by constructing a kind of ran-
dom walk in the model parameter space. The random walk is accomplished using a
Markov chain, whereby the new sample, Xt+1 , depends on previous sample Xt ac-
cording to an entity called the transition probability or transition kernel, p(Xt+1|Xt).
The transition kernel is assumed to be time independent. Each sample is correlated

3 Since a parameter of a model is not a random variable, the frequentist statistical approach is denied the
concept of the probability of a parameter.



1.3 Bayesian primer 9

Figure 1.4 The Metropolis-Hastings algorithm. In this example the same Gaus-
sian proposal distribution is used for both parameters.

with nearby samples4. The remarkable property of p(Xt+1|Xt) is that after an initial
burn-in period (which is discarded) it generates samples of X with a probability
density equal to the desired joint posterior probability distribution of the parame-
ters.

The marginal posterior probability density function (PDF) for any single param-
eter is given by a histogram of that component of the sample for all post burn-in
iterations. Because the density of MCMC samples is proportional to the joint poste-
rior probability distribution, it doesnt waste time exploring regions where the joint
posterior density is very small in contrast to straight Mont Carlo integration.

In general the target distribution is complex and difficult to draw samples from.
Instead new samples are drawn from a distribution which is easy to sample from,
like a multivariate Normal with mean equal to the current Xt. Figure 1.4 shows the
operation of a Metropolis-Hastings MCMC algorithm 5. In this example the same
Gaussian proposal distribution is used for both parameters. For details on why the
MetropolisHastings algorithm works, see Section 12.3 of my book [24].

Figure 1.5 shows the behavior of the Metropolis-Hastings algorithm for a sim-
ple toy target distribution consisting of two 2 dimensional Gaussians. A single
Gaussian proposal distribution (with a different choice of σ in each panel) was em-

4 Care must be taken if independent samples are desired (typically by thinning the resulting chain of samples
by only taking every nth value, e.g. every 100th value).

5 Gibbs sampling is a special case of the MetropolisHastings algorithm which is frequently employed. Gibbs
sampling is applicable when the joint distribution is not known explicitly or is difficult to sample from
directly, but the conditional distribution of each variable is known and is relatively easy to sample from. One
advantage is that it does not require the tuning of proposal distributions.
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Figure 1.5 Toy Metopolis-Hastings MCMC simulations for a range of poposal
distribution σ.

ployed for both parameters, X1, X2. Each simulation started from the same location
(top left) and used the same number of iterations. For σ = 0.1 the acceptance rate
is very high at 95% and the samples are strongly correlated. For σ = 1 the ac-
ceptance rate is 63% and the correlations much weaker. One can barely detect the
burn-in samples in this case. For σ = 10 the acceptance rate is only 4%. In this
case most samples were rejected resulting in many repeats of the current sample.
Simulation (b) is close to ideal, while the other two would have to be run much
longer to achieve reasonable sampling of the underlying target distribution. Based
on empirical studies, Roberts, Gelman, and Gilks [52] recommend calibrating the
acceptance rate to about 25% for high-dimensional models and to about 50% for
models of one or two dimensions.

1.4 Fusion MCMC

Frequently, MCMC algorithms have been augmented with an additional tool such
as parallel tempering, simulated annealing or differential evolution depending on
the complexity of the problem. The exoplanet detection problem is particularly
challenging because of the large search range in period space coupled with the
sparse sampling in time which gives rise to many peaks in the target probability
distribution. The goal of fusion MCMC (FMCMC) [31] has been to fuse together
the advantages of all of the above tools together with a genetic crossover opera-
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tion in a single automated MCMC algorithm to facilitate the detection of a global
minimum in χ2 (maximum posterior probability in the Bayesian context).

To achieve this, a unique multi-stage adaptive control system was developed
that automates the tuning of the proposal distributions for efficient exploration of
the model parameter space even when the parameters are highly correlated. The
FMCMC algorithm is currently implemented in Mathematica using parallelized
code and run on an 8 core PC. When implemented with a multi-planet Kepler
model6, it is able to identify any significant periodic signal component in the data
that satisfies Kepler’s laws and function as a multi-planet Kepler periodogram7.

The adaptive FMCMC is intended as a very general Bayesian nonlinear model
fitting program. After specifying the model, Mi, the data, D, and priors, I, Bayes’
theorem dictates the target joint probability distribution for the model parameters
which is given by

p(X|D,Mi, I) = C p(X|Mi, I) × p(D|Mi, X, I). (1.12)

where C is the normalization constant which is not required for parameter estima-
tion purposes and X represent the set of model parameters. The term, p(X|Mi, I), is
the prior probability distribution of X, prior to the consideration of the current data
D. The term, p(D|, Mi, I), is called the likelihood and it is the probability that we
would have obtained the measured data D for this particular choice of parameter
vector X, model Mi, and prior information I. At the very least, the prior informa-
tion, I, must specify the class of alternative models being considered (hypothesis
space of interest) and the relationship between the models and the data (how to
compute the likelihood). In some simple cases the log of the likelihood is simply
proportional to the familiar χ2 statistic. For further details of the likelihood function
for this type of problem see Gregory [25].

1.4.1 Parallel tempering

An important feature that prevents the fusion MCMC from becoming stuck in a
local probability maximum is parallel tempering [23] (and re-invented under the
name exchange Monte Carlo [36]). Multiple MCMC chains are run in parallel. The
joint distribution for the parameters of model Mi, for a particular chain, is given by

π(X|D,Mi, I, β) ∝ p(X|Mi, I) × p(D|X,Mi, I)β. (1.13)

Each MCMC chain corresponding to a different β, with the value of β ranging from
zero to 1. When the exponent β = 1, the term on the LHS of the equation is the

6 For multiple planet models, there is no analytic expression for the exact radial velocity perturbation. In many
cases, the radial velocity perturbation can be well modeled as the sum of multiple independent Keplerian
orbits which is what has been assumed in this work.

7 Following on from the pioneering work on Bayesian periodograms by [38, 7]
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Figure 1.6 Parallel tempering schematic.

target joint probability distribution for the model parameters, p(X|D,Mi, I). For
β ≪ 1, the distribution is much flatter.

In Equation 1.13, an exponent β = 0 yields a joint distribution equal to the
prior. The reciprocal of β is analogous to a temperature, the higher the tempera-
ture the broader the distribution. For parameter estimation purposes 8 chains were
employed. A representative set of β values is shown in Fig. 1.6. At an interval of
10 to 40 iterations, a pair of adjacent chains on the tempering ladder are chosen
at random and a proposal made to swap their parameter states. A Monte Carlo
acceptance rule determines the probability for the proposed swap to occur (e.g.,
Gregory [24], Equation 12.12). This swap allows for an exchange of information
across the population of parallel simulations. In low β (higher temperature) sim-
ulations, radically different configurations can arise, whereas in higher β (lower
temperature) states, a configuration is given the chance to refine itself. The lower β
chains can be likened to a series of scouts that explore the parameter terrain on dif-
ferent scales. The final samples are drawn from the β = 1 chain, which corresponds
to the desired target probability distribution. The choice of β values can be checked
by computing the swap acceptance rate. When they are too far apart the swap rate
drops to very low values. In this work a typical swap acceptance rate of ≈ 30% was
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Figure 1.7 First two stages of the adaptive control system.

employed but rates in a broad range from 0.15 to 0.5 were deemed acceptable as
they did not exhibit any clear differences in performance. For a swap acceptance
rate of 30%, jumps to adjacent chains will occur at an interval of ∼ 230 to 920 iter-
ations while information from more distant chains will diffuse much more slowly.
Recently, Atchade et al. (2010) have shown that under certain conditions, the opti-
mal swap acceptance rate is 0.234. An extension to the control system to automate
the selection of an optimal set of β values is described in Section A.5.

1.4.2 Fusion MCMC adaptive control system

At each iteration, a single joint proposal to jump to a new location in the parameter
space is generated from independent Gaussian proposal distributions (centered on
the current parameter location), one for each parameter. In general, the values of
σ for these Gaussian proposal distributions are different because the parameters
can be very different entities. If the values of σ are chosen too small, successive
samples will be highly correlated and will require many iterations to obtain an
equilibrium set of samples. If the values of σ are too large, then proposed samples
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Figure 1.8 Schematic illustrating how the second stage of the control system is
restarted if a significantly more probable parameter set is detected.

will very rarely be accepted. The process of choosing a set of useful proposal values
of σ when dealing with a large number of different parameters can be very time
consuming. In parallel tempering MCMC, this problem is compounded because of
the need for a separate set of Gaussian proposal distributions for each tempering
chain. This process is automated by an innovative statistical control system [27, 29]
in which the error signal is proportional to the difference between the current joint
parameter acceptance rate and a target acceptance rate [52], λ (typically λ ∼ 0.25).
A schematic of the first two stages of the adaptive control system (CS) is shown 8

in Fig. 1.7. Details on the operation of the control system are given in Appendix A.
The adaptive capability of the control system can be appreciated from an ex-

amination of Fig. 1.8. The upper left portion of the figure depicts the FMCMC
iterations from the 8 parallel chains, each corresponding to a different tempering
level β as indicated on the extreme left. One of the outputs obtained from each
chain at every iteration (shown at the far right) is the log prior + log likelihood.
This information is continuously fed to the CS which constantly updates the most

8 The interval between tempering swap operations is typically much smaller than is suggested by this
schematic.
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Figure 1.9 This schematic shows how the genetic crossover operation is inte-
grated into the adaptive control system.

probable parameter combination regardless of which chain the parameter set oc-
curred in. This is passed to the ‘Peak parameter set’ block of the CS. Its job is to
decide if a significantly more probable parameter set has emerged since the last
execution of the second stage CS. If so, the second stage CS is re-run using the
new more probable parameter set which is the basic adaptive feature of the exist-
ing CS9. Fig. 1.8 illustrates how the second stage of the control system is restarted
if a significantly more probable parameter set is detected regardless of which chain
it occurs in. This also causes the burn-in phase to be extended.

The control system also includes a genetic algorithm block which is shown in
the bottom right of Fig. 1.9. The current parameter set can be treated as a set of
genes. In the present version, one gene consists of the parameter set that specify
one orbit. On this basis, a three planet model has three genes. At any iteration there
exist within the CS the most probable parameter set to date Xmax, and the current

9 Mathematica code that implements a recent version of fusion MCMC is available on the Cambridge
University Press web site for my textbook [24], ‘Bayesian Logical data Analysis for the Physical Sciences’,
in the free resources section. There you will also find ‘Additional book examples with Mathematica 8
tutorial’. Non Mathematica users can download a free Wolfram CDF Player to view the resource material.
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Figure 1.10 A simulated toy posterior probability distribution (PDF) for a single
parameter model with (dashed) and without (solid) an extra noise term s.

iteration most probable parameter set of the 8 chains, Xcur. At regular intervals
(user specified) each gene from Xcur is swapped for the corresponding gene in
Xmax. If either substitution leads to a higher probability it is retained and Xmax

updated. The effectiveness of this operation was tested by comparing the number
of times the gene crossover operation gave rise to a new value of Xmax compared
to the number of new Xmax arising from the normal parallel tempering MCMC
operations. The gene crossover operations proved to be very effective, and gave
rise to new Xmax values ≈ 1.7 times more often than MCMC operations. It turns
out that individual gene swaps from Xcur to Xmax are much more effective (in one
test by a factor of 17) than the other way around (reverse swaps). Since it costs just
as much time to compute the probability for a swap either way we no longer carry
out the reverse swaps. Instead, we have extended this operation to swaps from Xcur2,
the parameters of the second most probable current chain, to Xmax. This gave rise
to new values of Xmax at a rate ∼ 70% that of swaps from Xcur to Xmax. Crossover
operations at a random point in the entire parameter set did not prove as effective
except in the single planet case where there is only one gene.

1.4.3 Automatic simulated annealing

The annealing of the proposal σ values occurs while the MCMC is homing in on
any significant peaks in the target probability distribution. Concurrent with this,
another aspect of the annealing operation takes place whenever the Markov chain
is started from a location in parameter space that is far from the best fit values.
This automatically arises because all the models considered incorporate an extra
additive noise [25], whose probability distribution is independent and identically
distributed (IID) Gaussian with zero mean and with an unknown standard devia-
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Figure 1.11 The upper panel is a plot of the Log10[Prior × Likelihood] versus
MCMC iteration. The lower panel is a similar plot for the extra noise term s.
Initially s is inflated and then rapidly decays to a much lower level as the best fit
parameter values are approached.

tion s. When the χ2 of the fit is very large, the Bayesian Markov chain automat-
ically inflates s to include anything in the data that cannot be accounted for by
the model with the current set of parameters and the known measurement errors.
This results in a smoothing out of the detailed structure in the χ2 surface and, as
pointed out by [20], allows the Markov chain to explore the large scale structure
in parameter space more quickly. This is illustrated in Figure 1.10 which shows a
simulated toy posterior probability distribution (PDF) for a single parameter model
with (dashed) and without (solid) an extra noise term s. Figure 1.11 shows the be-
havior of Log10[Prior × Likelihood] and s versus MCMC iteration for a some real
data. In the early stages s is inflated to around 38 m s−1 and then decays to a value
of ≈ 4 m s−1 over the first 9,000 iterations as Log10[Prior × Likelihood] reaches a
maximum. This is similar to simulated annealing, but does not require choosing a
cooling scheme.

1.4.4 Highly correlated parameters

For some models the data is such that the resulting estimates of the model param-
eters are highly correlated and the MCMC exploration of the parameter space can
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Figure 1.12 An example of two highly correlated parameters and possible ways
of dealing with this issue which includes a transformation to more orthogonal
parameter set.

be very inefficient. Fig. 1.12 shows an example of two highly correlated parame-
ters and possible ways of dealing with this issue which includes a transformation
to more orthogonal parameter set. It would be highly desirable to employ a method
that automatically samples correlated parameters efficiently. One potential solution
in the literature is Differential Evolution Markov Chain (DE-MC) [6]. DE-MC is
a population MCMC algorithm, in which multiple chains are run in parallel, typi-
cally from 15 to 40. DE-MC solves an important problem in MCMC, namely that
of choosing an appropriate scale and orientation for the jumping distribution.

For the fusion MCMC algorithm, I developed and tested a new method [30], in
the spirit of DE, that automatically achieves efficient MCMC sampling in highly
correlated parameter spaces without the need for additional chains. The block in the
lower left panel of Fig. 1.13 automates the selection of efficient proposal distribu-
tions when working with model parameters that are independent or transformed to
new independent parameters. New parameter values are jointly proposed based on
independent Gaussian proposal distributions (‘I’ scheme), one for each parameter.
Initially, only this ‘I’ proposal system is used and it is clear that if there are strong
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Figure 1.13 This schematic illustrates the automatic proposal scheme for han-
dling correlated (’C’) parameters.

correlations between any parameters the σ values of the independent Gaussian pro-
posals will need to be very small for any proposal to be accepted and consequently
convergence will be very slow. However, the accepted ‘I’ proposals will generally
cluster along the correlation path. In the optional third stage of the control system
every second 10 accepted ‘I’ proposal is appended to a correlated sample buffer.
There is a separate buffer for each parallel tempering level. Only the 300 most
recent additions to the buffer are retained. A ‘C’ proposal is generated from the
difference between a pair of randomly selected samples drawn from the correlated
sample buffer for that tempering level, after multiplication by a constant. The value
of this constant (for each tempering level) is computed automatically [30] by an-
other control system module which ensures that the ‘C’ proposal acceptance rate is
close to 25%. With very little computational overhead, the ‘C’ proposals provide
the scale and direction for efficient jumps in a correlated parameter space.

The final proposal distribution is a random selection of ‘I’ and ‘C’ proposals
such that each is employed 50% of the time. The combination ensures that the
10 Thinning by a factor of 10 has already occurred meaning only every tenth iteration is recorded.
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whole parameter space can be reached and that the FMCMC chain is aperiodic.
The parallel tempering feature operates as before to avoid becoming trapped in a
local probability maximum.

Because the ‘C’ proposals reflect the parameter correlations, large jumps are
possible allowing for much more efficient movement in parameter space than can
be achieved by the ‘I’ proposals alone. Once the first two stages of the control sys-
tem have been turned off, the third stage continues until a minimum of an additional
300 accepted ‘I’ proposals have been added to the buffer and the ‘C’ proposal ac-
ceptance rate is within the range ≥ 0.22 and ≤ 0.28. At this point further additions
to the buffer are terminated and this sets a lower bound on the burn-in period.

Tests of the ‘C’ proposal scheme

Gregory [30] carried out two tests of the ‘C’ proposal scheme using (a) simulated
exoplanet astrometry data, and (b) a sample of real radial velocity data. In the lat-
ter test we analyzed a sample of seventeen HD 88133 precision radial velocity
measurements [18] using a single planet model in three different ways. Fig. 1.14
shows a comparison of the resulting post burn-in marginal distributions for two
correlated parameters χ and ω, together with a comparison of the autocorrelation
functions. The black trace corresponds to a search in χ and ω using only ‘I’ propos-
als. The red trace corresponds to a search in χ and ω with ‘C’ proposals turned on.
The green trace corresponds to a search in the transformed orthogonal coordinates
ψ = 2πχ+ω and ϕ = 2πχ−ω using only ‘I’ proposals. It is clear that a search in χ
and ω with ‘C’ proposals turned on achieves the same excellent results as a search
in the transformed orthogonal coordinates ψ and ϕ using only ‘I’ proposals.

1.5 Exoplanet applications

As previously mentioned the FMCMC algorithm is designed to be a very general
tool for nonlinear model fitting. When implemented with a multi-planet Kepler
model it is able to identify any significant periodic signal component in the data that
satisfies Kepler’s laws and is able to function as a multi-planet Kepler periodogram.
This approach leads to the detection of planetary candidates. One reason to think
of them is planetary candidates is because it is known that stallar activity (spots,
and larger scale magnetically active regions) can lead to RV artifacts signals (e.g.,
[50, 53]). A great deal of attention is now being focussed on correlating stellar
activity signals with those found in the RV data. Also it is necessary to carry out
N-body simulations to establish the long term stability of the remaining candidate
planets.

In this section we describe the model fitting equations and the selection of priors
for the model parameters. For a one planet model the predicted radial velocity is
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Figure 1.14 The two panels on the left show a comparison of the post burn-in
marginal distributions for χ andω. The two panels on the right show a comparison
of their MCMC autocorrelation functions. The black trace corresponds to a search
in χ and ω using only ‘I’ proposals. The red trace corresponds to a search in χ
and ω with ‘C’ proposals turned on. The green trace corresponds to a search in
the transformed orthogonal coordinates ψ = 2πχ+ω and ϕ = 2πχ−ω using only
‘I’ proposals.

given by

f (ti) = V + K[cos{θ(ti + χP) + ω} + e cosω], (1.14)

and involves the 6 unknown parameters

• V = a constant velocity.
K = velocity semi-amplitude = 2π a sin i

P
√

1−e2
,

where a = semi-major axis and i = inclination.
• P = the orbital period.
• e = the orbital eccentricity.
• ω = the longitude of periastron.
• χ = the fraction of an orbit, prior to the start of data taking, that periastron

occurred at. Thus, χP = the number of days prior to ti = 0 that the star was at
periastron, for an orbital period of P days.
• θ(ti+χP) = the true anomaly, the angle of the star in its orbit relative to periastron

at time ti.

We utilize this form of the equation because we obtain the dependence of θ on ti
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by solving the conservation of angular momentum equation

dθ
dt
− 2π[1 + e cos θ(ti + χ P)]2

P(1 − e2)3/2 = 0. (1.15)

Our algorithm is implemented in Mathematica and it proves faster for Mathematica
to solve this differential equation than solve the equations relating the true anomaly
to the mean anomaly via the eccentric anomaly. Mathematica generates an accu-
rate interpolating function between t and θ so the differential equation does not
need to be solved separately for each ti. Evaluating the interpolating function for
each ti is very fast compared to solving the differential equation. Details on how
Equation 1.15 is implemented are given in the Appendix C [31].

We employed a re-parameterization of χ and ω to improve the MCMC conver-
gence speed motivated by the work of Ford (2006). The two new parameters are
ψ = 2πχ+ω and ϕ = 2πχ−ω. Parameter ψ is well determined for all eccentricities.
Although ϕ is not well determined for low eccentricities, it is at least orthogonal to
the ψ parameter. We use a uniform prior for ψ in the interval 0 to 4π and uniform
prior for ϕ in the interval −2π to +2π. This insures that a prior that is wraparound
continuous in (χ, ω) maps into a wraparound continuous distribution in (ψ, ϕ). To
account for the Jacobian of this re-parameterization it is necessary to multiply the
Bayesian integrals by a factor of (4π)−nplan, where nplan = the number of planets
in the model. By utilizing the orthogonal combination (ψ, ϕ), there is less need to
make use of the ’C’ proposal scheme outlined in Section 1.4.4 but to allow for other
possible correlations (e.g., a planet with a period greater than the data duration) it
is safest to always make use of the ’C’ proposal scheme as well.

1.5.1 Exoplanet priors

In a Bayesian analysis we need to specify a suitable prior for each parameter. These
are tabulated in Table 1.1. For the current problem, the prior given in Equation 1.13
is the product of the individual parameter priors. Detailed arguments for the choice
of each prior are given in Appendix B [26, 29].

As mentioned in Section 1.4.3, all of the models considered in this paper incor-
porate an extra noise parameter, s, that can allow for any additional noise beyond
the known measurement uncertainties 11. We assume the noise variance is finite
and adopt a Gaussian distribution with a variance s2. Thus, the combination of the
known errors and extra noise has a Gaussian distribution with variance = σ2

i + s2,
whereσi is the standard deviation of the known noise for ith data point. For example,

11 In the absence of detailed knowledge of the sampling distribution for the extra noise, we pick a Gaussian
because for any given finite noise variance it is the distribution with the largest uncertainty as measured by
the entropy, i.e., the maximum entropy distribution [37] and [24] (section 8.7.4.)
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Table 1.1 Prior parameter probability distributions.

Parameter Prior Lower bound Upper bound

Orbital frequency p(ln f1, ln f2, · · · ln fn |Mn, I) = n!
[ln( fH/ fL)]n 1/0.5 d 1/1000 yr

(n =number of planets)

Velocity Ki Modified scale invarianta 0 (K0 = 1) Kmax
( Pmin

P

)1/3 1√
1−e2

(m s−1)
(K+K0)−1

ln
[
1+ Kmax

K0

(
Pmin

P

)1/3
1√

1−e2

] Kmax = 2129

V (m s−1) Uniform −Kmax Kmax

e Eccentricity 3.1(1 − e)2.1 0 0.99

χ orbit fraction Uniform 0 1

ω Longitude of Uniform 0 2π
periastron

s Extra noise (m s−1) (s+s0)−1

ln
(
1+ smax

s0

) 0 (s0 = 1 to 10) Kmax

a Since the prior lower limits for K and s include zero, we used a modified scale invariant prior of the form

p(X|M, I) =
1

X + X0

1

ln
(
1 + Xmax

X0

) (1.16)

For X ≪ X0, p(X|M, I) behaves like a uniform prior and for X ≫ X0 it behaves like a scale invariant prior.
The ln

(
1 + Xmax

X0

)
term in the denominator ensures that the prior is normalized in the interval 0 to Xmax.

suppose that the star actually has two planets, and the model assumes only one is
present. In regard to the single planet model, the velocity variations induced by the
unknown second planet acts like an additional unknown noise term. Other factors
like star spots and chromospheric activity can also contribute to this extra veloc-
ity noise term which is often referred to as stellar jitter. In general, nature is more
complicated than our model and known noise terms. Marginalizing s has the desir-
able effect of treating anything in the data that can’t be explained by the model and
known measurement errors as noise, leading to conservative estimates of orbital
parameters. See Sections 9.2.3 and 9.2.4 of [24] for a tutorial demonstration of this
point. If there is no extra noise then the posterior probability distribution for s will
peak at s = 0. The upper limit on s was set equal to Kmax. This is much larger than
the estimates of stellar jitter for individual stars based on statistical correlations
with observables (e.g., [54, 55, 67]). In our Bayesian analysis, s serves two pur-
poses. First it allows for an automatic simulated annealing operation as described
in Section 1.4.3 and for this purpose it is desirable to have a much larger range. The
final s value after the annealing is complete provides a crude measure of the residu-
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als that can’t be accounted for by the model and known measurement uncertainties.
Of course, the true residuals will exhibit correlations if there are additional planets
present not specified by the current model. In addition, stellar activity RV artifacts
can lead to correlated noise and a number of attempts are being explored to jointly
model the planetary signals and stellar activity diagnostics (e.g., [51, 1, 60, 35]).
These correlations are not accounted for by this simple additional noise term. We
use the same prior range for s for all the models ranging from the zero planet case
to the many planet case. We employed a modified scale invariant prior for s with a
knee, s0 in the range 1 − 10m s−1, according to Equation (1.15).

1.5.2 HD 208487 example

In 2007, Gregory [26], using an automatic Bayesian multi-planet Kepler peri-
odogram, found evidence for a second planetary candidate with a period of ∼ 900
d in HD 208487. We use this as an example data set to illustrate a number of issues
that can arise in the analysis using an FMCMC powered multi-planet Kepler pe-
riodogram. Figure 1.15 shows sample FMCMC traces for the two planet fit to the
35 radial velocity measurements [61] for HD 208487 based on our latest version
of the FMCMC algorithm and employing the updated eccentricity prior. The top
left panel is a display of the Log10 Prior × Likelihood versus FMCMC iteration
number. In total 5 × 105 iterations were executed and only every 10th value saved.
It is clear from this trace that the burn-in period is very short. In this example the
control system ceased tuning ’I’ and ’C’ proposal distributions at iteration 3220
iterations. The top right panel shows the trace for the extra noise parameter. Dur-
ing the automatic annealing operation it dropped from a high around 18 m s−1 to
an equilibrium value of around 1 m s−1 within the burn-in period. As explained
in Appendix B.2 it is more efficient to allow the individual orbital frequency pa-
rameters to roam over the entire frequency space and re-label afterwards so that
parameters associated with the lower frequency are always identified with planet
one and vice versa. In this approach nothing constrains f1 to always be below f2 so
that degenerate parameter peaks often occur. This behavior can be seen clearly in
the panels for P1 and P2, where there are frequent transitions between the 130 and
900 d periods. The lower four panels show corresponding transitions occurring for
the other orbital parameters. The traces shown in Figure 1.15 are before relabeling
and those in Figure 1.16 afterwards.

Figure 1.17 illustrates a variety of different types of two planet periodogram
plots for the HD208487 data. The top left shows the evolution of the two period
parameters (after relabeling) from their starting values marked by the two dots that
occur before the zero on the iteration axis. With the default scale invariant orbital
frequency prior only two periods were detected. The top right panel shows a sam-
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Figure 1.15 Sample FMCMC traces for a two planet fit to HD 208487 radial
velocity data before relabeling.

ple of the two period parameter values versus a normalized value of Log10[Prior
× Likelihood]. The bottom left shows a plot of eccentricty verus period and the
bottom right K versus eccentricity. It is clear from the latter plot that eccentricity
values are heavily concentrated around a value of 0.2 for the 130 d signal. The
distribution of eccentricity for the secondary period is broader but the greatest con-
centration is towards low values. The MAP values are shown by the filled black
circles. The combination of the lower two panels indicates that the eccentricity of
the secondary period is lowest towards the 800 d end of the period range.

Figure 1.18 shows a plot of K versus eccentricity for a one planet fit to the HD
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Figure 1.16 Sample FMCMC traces for a two planet fit to HD 208487 radial
velocity data after relabeling.

208487 data for comparison. Clearly the single planet fit finds a larger K value for
the dominant 130 d period. The MAP solution is shown by the filled black circle.
Even for the single planet fit there is a preference for an eccentrincity of ∼ 0.2.

Panel (a) of Figure 1.19 shows the radial velocity data [61]. Panel (b) and (c)
show the two planet fit to the data and the fit residuals, respectively. Figure 1.20
shows the FMCMC marginal distributions for a subset of the two planet fit param-
eters for HD 208487. The dominant 130 d peak prefers a modest eccentricity of
∼ 0.2. The secondary period of 900 d exhibits a broader eccentricity range with a



1.5 Exoplanet applications 27

0 1 2 3 4 5

1

10

100

1000

104

Iterations H� 105
L

P
er

io
d

s

P
=

1
3

0
d

P
=

8
0

0
d

P
=

1
0

0
0

d

100 300 1000
-4

-3

-2

-1

0

Periods

L
o

g
10
HP

ri
o

r�
L

ik
el

ih
o

o
d
L

P
=

1
3

0
d

P
=

8
0

0
d

P
=

1
0

0
0

d

100 300 1000
0.0

0.2

0.4

0.6

0.8

1.0

Periods

E
cc

en
tr

ic
it

y

0.0 0.2 0.4 0.6 0.8 1.0
5

10

15

20

Eccentricity
K

Figure 1.17 A variety of two planet periodogram plots for HD 208487.
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Figure 1.18 A K versus eccentricty plot for a one planet fit for HD 208487.

preference for low values. The marginal for the extra noise parameter peaks near
zero.

Independent analysis of this data by Wright et al (2007) [68] found two possible
solutions for the second period at 27 and 1000 d. Restricting the period range for the
second period in our analysis, to a range that excluded the 900 d period, confirmed
a feature near to their shorter period value. We subsequently investigated the effect
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Figure 1.19 Panel (a) shows the radial velocity data [61]. Panel (b) and (c) show
the two planet fit to the data and the fit residuals, respectively.
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Figure 1.20 A plot of a subset of the FMCMC parameter marginal distributions
for the two planet fit of the HD 208487 data.

of redoing our analysis with a frequency prior p( f |M, I) ∝ 1/
√

f to give more
weight to shorter period signals and this resulted in the parallel tempering jumping
between 28 and 900 d periods for the secondary period. The periodogram plots for
the frequency prior p( f |M, I) ∝ 1/

√
f are shown in Figure 1.21. Because there

are now three periods present, the dominant signal (P = 130 d) does not have a
unique color as it pairs first with the longer period signal (p = 900 d) and then
with the shorter period (p = 28 d). We now find it useful to employ both choices of
priors during the search for interesting cantidate planetary systems. It is only in the
model comparison phase that we strictly employ a scale invariant frequency prior
to allocate the relative probabilities of two different 2 planet models with different
combinations of periods.

In the right panel of Figure 1.21, the red stars are samples of the 28d period
and the black stars are the corresponding samples of the dominant 130 d period.
Similarly, the blue boxes are samples of the 900 d period and the small boxes are
the corresponding samples for the 130 d period. The MAP values are shown by the
filled black circles. Both the 28 and 900 d samples have their highest concentration
at low values of eccentricity where the average K values for the 28 and 900 d
periods are ∼ 8 m s−1 and ∼ 9 m s−1, respectively.

The extra noise parameter for the two planet fit peaks at zero which indicates that
there is no additional signal to be accounted for. For consistency purposes, a three
planet model was run using a frequency prior ∝ 1/

√
f . Both the 130 d and 900 d



30 Fusion Markov chain Monte Carlo

0 1 2 3 4 5

1

10

100

1000

104

Iterations H� 105
L

P
er

io
d

s

P
=

2
8

.7
d

P
=

1
3

0
d

P
=

8
0

0
d

P
=

1
0

0
0

d

30 100 300 1000
-4

-3

-2

-1

0

Periods

L
o

g
10
HP

ri
o

r�
L

ik
el

ih
o

o
d
L

P
=

2
8

.7
d

P
=

1
3

0
d

P
=

8
0

0
d

P
=

1
0

0
0

d

30 100 300 1000
0.0

0.2

0.4

0.6

0.8

1.0

Periods

E
cc

en
tr

ic
it

y

å

åå
å

åå
å

å
å
å
å

å

å
å

å

å å
å å

å å

å
åå å

å

å

å

å
å å å

å
å å

åå

å

åå
å

å

å

å

å

å
å å

åå
å å
å

å

å

å
å
å
å

å
å å å

å

å å

å

å å
ååå

å åå
å

å

å
åå å

å
å

åå

ååå

å

å
å
å

åå å å

å

åå

å å

å
å
å

å

å

å

å
å

å å
å

å

åå

å
åå

å
å

å
å

å
å

å

å

å

å

å

åå
å å

å

å

å

å

åå
å

å
å

å

å

å
å

å

å
å

å

å

å

å

å å

å å
å

å

å

å

å

å

ååå

å å

å

å
å

å

å

å

å

å
å

å
å

å
å

å

å

å

å

å

å

å
å

å

å

åå
å

å

å
å

ååå

å
å

å

å

å

åå

å

å

å

å

å

å
å

å

å
å
å

å
å

å
å åå

å

å

å

å

á

á

á
á

á

áá

á

á

á

áá á á

á

á
á

á áá

á
á

á

á

á
á á

á

á

áá

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á
á

á

á

á

á

á

áá

á

á

á
á á

á

á

á

á

á

á

á

áá
á

á

á

á
á

á

á

áá

á

á

á

á

á

á

á

á

á
á

á

á

á
á

á

á

á
á

á

á
á

á

á

á

á

á
á

á

á

á

á
á

á

á

á

á
á

á

á

á

á á
áá

á

á

á
á

á

á

á

á

á

á

á

á

á
á

á

á

á

á

á

á
á

á

áá
á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á
á
á

á

á

á
á
áá
á

á
á

á

á

áá
á

á
á

á
á

á

á á

á
á

á

á
á

á

á

á

á
á

á

á

á

á

á

á

á

á

á

á

á

á
á

á

á

á

á

á

á
á

á

á

á

á

á

á
á

á á

á

á

á

á

÷

÷

÷

÷
÷

÷

÷
÷

÷

÷

÷ ÷

÷

÷
÷

÷

÷

÷

÷

÷

÷

÷

÷
÷

÷

÷

÷

÷÷

÷
÷

÷

÷

÷

÷

÷

÷

÷
÷

÷
÷

÷

÷

÷

÷

÷
÷ ÷

÷

÷
÷

÷

÷

÷ ÷

÷

÷

÷

÷

÷

÷

÷

÷

÷
÷

÷

÷

÷

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
5

10

15

20

Eccentricity
K

Figure 1.21 Two planet periodogram plots for HD 208487 using a frequency prior
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Figure 1.22 Times of HD 208487 radial velocity observations folded modulo the
time of day and time of year. We used t = JD − 2, 451, 224.19 for convenience.

signals were clearly detected. A wide range of third period options were observed
but did not include a clear detection of the 28 d signal.
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1.5.3 Aliases

Dawson and Fabrycky (2010) [13] drew attention to the importance of aliases in
the analysis of radial velocity data even for nonuniform sampling. Although the
sampling is nonuniform when the star is observable, the restrictions imposed by the
need to observe between sunset and sun rise, and when the star is above the horizon
means that there are periodic intervals of time where no sample is possible. These
periodicities give rise to aliases which we investigate in this section. Figure 1.22
shows the location of the HD 208487 radial velocity samples [61] modulo time of
day and time of year using t = JD − 2, 451, 224.19 for convenience.

Deeming [14] [15] showed that a discrete Fourier transform (FN) can be defined
for arbitrary sampling of a deterministic time series (including a periodic function)
and that FN is equal to the convolution12 of the true Fourier transform (FT) with a
spectral window function

FN( f ) = F( f ) ∗ w( f ) ≡
∫ ∞

−∞
F( f − f ′)w( f ′)d f ′, (1.17)

where F( f ), true FT of the continuous time series is given by

F( f ) =
∫ ∞

−∞
f (t)ei2π f t. (1.18)

If f (t) is a pure cosine function of frequency f0, then F( f ) will be a pair of Dirac
delta functions δ( f ± f0). w( f ) is the spectral window function given by

w( f ) =
N∑

k=1

ei2π f tk . (1.19)

It is also evident that w(− f ) = w∗( f ). In the limit of continuous sampling in the
time interval (−T/2,+T/2), w( f ) tends to the Dirac delta funtion δ(0) as t → ∞. In
general, the sampling will not be continuous so w( f ) may be significantly different
from zero at frequencies other than f = 0. For N evenly sampled data, unless the
only physically possible frequencies are less than the Nyquist frequency = N/(2T ),
the frequencies cannot be unambiguously determined. An important point is that
w( f ) can be calculated directly from the data spacing alone.

It is common practice to use a normalized spectral window function

W( f ) = N−1
N∑

k=1

ei2π f tk , (1.20)

normalized so W(0) = 1. In this case, the convolution Equation (1.17) becomes

1
N

FN( f ) = F( f ) ∗W( f ) ≡
∫ ∞

−∞
F( f − f ′)W( f ′)d f ′. (1.21)

12 Such a convolution is nicely illustrated in Figures 13.6 and B.2 of my book [24].
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Figure 1.23 Amplitude of the spectral window function for the HD 208487 radial
velocity measurements.

In general both F( f ) and W( f ) are complex so it is usual to examine the am-
plitude 13 of W( f ). Also, Dawson and Fabricky [13] show how the phase infor-
mation is sometimes useful to distinquish between an alias and a physical fre-
quency. Figure 1.23 shows a plot of the amplitude of the spectral window func-
tion, W( f ). Clearly with such sparce sampling there are many peaks in W( f ).

13 Deeming [14] shows that for a deterministic signal (as opposed to a stochastic signal)

1
N2 |FN ( f )|2 = 1

N2 FN ( f )F∗N ( f ) = [F( f ) ∗W( f )][F∗( f ) ∗W∗( f )]

, [F( f )F∗( f )] ∗ [W( f )W∗( f )]. (1.22)

It is thus not meaningful to plot |W( f )|2.
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Figure 1.24 Amplitude of the weighted spectral window function for the HD
208487 radial velocity measurements.

The plots show well defined peak at f = 0 with a width of order T−1 as well
as strong peaks at 1 sidereal day, 1 solar day, the synodic month (29.53 d), and
32.13 = 1/(1/29.53 − 1/365.25) d.

Most exoplanet periodogram analysis makes use of the data weighted by wtk =
1/σ2

k so it is more appropriate to employ a spectral window function of the form

W( f ) = wt−1
sum

N∑
k=1

wtk ei2π f tk , (1.23)

where wtsum =
∑N

k=1 wtk. The dominant spectral features at 1 day, the synodic
month and one year remain but the contrast is reduced in the weighted case.
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Now that we understand the W( f ) for HD 208487, can we see how the 28 d
period could be an alias of the 900 d period and vice versa? If the true spectrum
contains a physical signal of frequency f , then when convolved with W( f ) we
expect to see aliases in the observed spectrum at f ± fw. If fw > f , we will still
see a positive frequency alias at | f − fw| but to see this you need to recall that W( f )
has negative frequency peaks that satisfy W(− f ) = W∗( f ). Also, the true spectrum
of a periodic signal likewise has positive and negative frequencies when we use
the common exponential notation as employed in the Fourier transform defined by
Equation 1.17.

Suppose the 28 d period is the true signal. The 68% credible region boundaries
of the 28 d peak extend from 28.58 to 28.70 d. One of the aliases produced by the
synodic month feature (29.53 d) in W( f ) would be expected to give rise to an alias
somewhere in the range 1/(1/28.58−1/29.53) = 890 d to 1/(1/28.70−1/29.53) =
1026 d. This range nicely overlaps the 68% credible region of 804 to 940 d of the
900 d peak. Similarly, if the 900 d signal is the true signal, its synodic month alias
should be found in the 68% credible range 28.48 to 28.63 d, which it does.

1.5.4 Which is the alias?

In this section we attempt to answer the question of which of the two secondary
Kepler solutions at 28 and 900 d is a real physical signal. Below we consider some
criteria that have proven useful:

1. Dawson and Fabrycky [13] outline a method for helping to distinguish a phys-
ical signal from an alias which makes use of the Generalized Lomb-Scargle
(GLS) periodogram [70]. The method involves comparing the periodogram of
the true residuals of an n signal fit to perodograms of noise free simulations of
possible choices of the n + 1 signal and includes comparison of the GLS phase
of each spectral peak as well. GLS improves on the Lomb-Scargle method by
allowing for a floating offset and weights.

We illustrate the general idea of the Dawson-Fabrcyky method in Figure 1.25
as it applies to our HD 208487 analysis for aliases arising from the strongest
peaks in the window function. The top row shows three portions of GLS pe-
riodogram of the one planet MAP fit residuals with phase circle above several
peaks of interest. In the first two columns, dashed lines show the locations of the
854 and 28 d candidate signals together with one year aliases and the the dotted
lines show one synodic month aliases of the 28 d candidate signal (overlaps the
854 d signal) and 854 d signal. In the third column, the dashed lines show the
aliases of the 1 solar day and one sidereal day widow function peaks with the
28 d candidate signal and the dotted lines are for the 854 d candidate signal.
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Figure 1.25 The Dawson-Fabrcyky method for distinguishing an alias from a
physical signal. Top row shows 3 portions of GLS periodogram of the one planet
MAP fit residuals with a phase circle above the peaks of interest. In the first two
columns, dashed lines show the locations of the 854 and 28 d candidate signals
together with one year aliases and the the dotted lines show one synodic month
aliases of the 28 d candidate signal (overlaps the 854 d signal) and 854 d signal.
In the third column, the dashed lines show the aliases of the 1 solar day and one
sidereal day widow function peaks with the 28 d candidate signal and the dot-
ted lines are for the 854 d candidate signal. The second row shows 3 portions of
GLS periodogram of the P = 130 d planet residuals obtained from a two planet
(P = 130 d and P = 28 d) fit. The third row is a similar GLS periodogram of the
P = 130 d planet residuals obtained from a two planet (P = 130 d and P = 854
d) fit. Row 4 is a GLS periodogram of a noise free simulation of the 854 d signal.
Row 5 is a GLS periodogram of a noise free simulation of the 28 d signal.

In the left two columns, the strongest peaks are for our two candidates for the
physical signal, ∼ 854 and 28.65 d, respectively. If the 28 d peak corresponds
to the physical signal, then when convolved with the spectral window func-
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tion 14 shown in Figures 1.23 and 1.24 additional aliases would be expected at
26.57 = 1/(1/28.65+1/365.25) and 31.09 = 1/(1/28.65−1/365.25). The alias
at 26.57 d is clearly present but not the expected peak at 31.09. If the 854 d peak
corresponds to the physical signal, then additional aliases would be expected
near 256 = 1/(1/365.25 + 1/854), 638 = 1/(1/365.25 − 1/854) and 30.59 =
1/(1/29.53−1/854). The peak near to 256 d is at 267 = 1/(1/365.25+1/1000)
or just within the period uncertainty. There is no clear evidence for a peak near
638 d. In the third column the dashed lines show the four aliases of the 28 d
candidate signal, two for the 1 solar day and two for the 1 sidereal day peaks in
the window function. Smaller peaks are just discernible for aliases of the 854 d
candidate signal.

As shown in Figures 1.17 and 1.18, the typical K value of the dominant 130
d signal in the K versus eccentricity plot for the one planet fit is considerably
higher than for the two planet fits regardless of whether the second real physical
signal is 28 or 854 days. This suggested it might be useful to constructed two
other typical 130 d planet residuals as show in rows 2 and 3. The second row
shows the same two portions of GLS periodogram of the P = 130 d planet
residuals obtained from a two planet (P = 130 d and P = 28 d) fit. The third
row is for the P = 130 d planet residuals obtained from a two planet (P = 28 d
and P = 854 d) fit. In the second row, a feature corresponding to the expected
alias at 31.09 d has increased in height lending more support to 28 d as the
physical signal. In the third row, the feature nearest the expected 256 d alias of
a possible 854 d physical signal is stronger, peaking at ∼ 1/(1/365.25+1/940).
However, there is still no clear feature near 638 d.

Row 4 is a GLS periodogram of a noise free simulation of the 854 d signal
and row 5 is a GLS periodogram of a noise free simulation of the 28 d signal.
An examination of all the rows in Figure 1.25 indicates that the 28 day aliases
are slightly stronger. This analysis does not lead to a definite conclusion as to
which is the true signal but slightly favors the 28 d candidate.

2. Both exhibit a preference for low eccentricities and the K value of the 900 d
signal is slightly stronger. On this grounds it is more likely to be the real signal.
However, noise may add coherently to the alias causing the alias to be stronger.

3. In Section 1.6 we show how to do Bayesian model comparison using the Bayes
factor. The Bayes factor favors a two planet Kepler model with periods of 130
and 900 d by a factor of 9.0 over the 28, 130 d combination. We also show that
the Bayesian false alarm probability for a two planet model (regardless of the
true second period) is 4.4×10−3, but that the false alarm probability for the best

14 The dominant peaks in the spectral window function are at 1 sidereal day, one synodic month (29.53 d) and
one year.
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candidate two planet model (130 & 900 d) is too high at 0.10 to conclude that
the 900 d signal is the correct second signal.

4. Can we form a long term stable two planet system together with the 130 d
Kepler orbit? Clearly if only one choice is viable this argues it is the real signal.
An approximate Lagrange stability 15 analysis was carried out for both HD
208487 solutions, following the work of Tuomi [62] which in turn is based on
the work of Barnes and Greenberg [4]. This analysis indicates that both choices
appear to be long term stable but full-scale numerical integrations are needed to
confirm this.

1.5.5 Gliese 581 example

In Section 1.6 we will intercompare three different Baysian methods for model
comparison making use of our FMCMC model fits to precision radial velocity data
for a range of models from 1 to 5 planets. In anticipation of this we re-analyzed the
latest HARPS [22] data for Gliese 581 (Gl 581) for models spaning the range 3 to
6 planets using our latest version of FMCMC together with the priors discussed in
Section 1.5.1. Gl 581 is an M dwarf with a mass of 0.31 times the mass of the sun
at a distance of 20 light years which received a lot of attention because of the possi-
bility of two super-earths in the habitable zone where liquid water could exist [64].
Our earlier Bayesian analysis [31] of the HARPS [47] and HIRES data [64] did
not support the detection of a second habitable zone planet known at the time as Gl
581g. Subsequent analysis of a larger sample of HARPS data [22] failed to detect
more than 4 planets. Recent analysis of Hα stellar activity for Gliese 581 indicate
a correlation between the RV and stellar activity which leads to the conclusion that
the 67 d signal (Gl 581d) is not planetary in origin [53]. In the context of compar-
ing marginal likelihood estimators, we will not be concerned about the origin of
the signals but only on how many signals are significant on the basis of the RV data
and Keplerian models.

Our current analysis clearly detects the earlier periods of 3.15, 3.56, 12.9 and
67 days and only hints at a fifth signal with a period of 192 d. Still it is an in-
teresting model comparison challenge to quantify the probability of this 5 signal
model. With this in mind we show a variety of periodogram results for the 4 and 5
Keplerian signal models.

Figure 1.26 shows a variety of 4 planet periodogram plots for the GL 581 data for
a scale invariant orbital frequency prior ∝ f −1. The top right shows the Log10[Prior
15 Work in the 1970s and 1980s showed that the motions of a system of a star with two planets (not involved in

a low-order mean motion resonance) would be bounded in some situations. Two dominant definitions of
stability emerged, Hill stability and Lagrange stability. In Hill stability the ordering of the two planets in
terms of distance from the central star is conserved. In addition, for Lagrange stability the planets remain
bound to the star and the semimajor axis and eccentricity remain bounded.
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Figure 1.26 A variety of 4 planet periodogram plots for GL 581.

× Likelihood] versus FMCMC iteration for every 100th point. The bottom left
shows the evolution of the 4 period parameters from their starting values marked
by the four dots that occur before the zero on the iteration axis. It is clear that the
FMCMC did not make transitions to any other peaks. The top right panel shows a
sample of the 4 period parameter values versus a normalized value of Log10[Prior
× Likelihood]. The bottom right shows a plot of eccentricty verus period.

Figures 1.27 and 1.28 shows the 5 planet Kepler periodogram results using two
different orbital frequency priors. The latter is scale invariant and the former em-
ploys a frequency prior ∝ 1/

√
f , which helps with the detection of shorter period

signals. The best set of parameters from the 4 planet fit were used as start parame-
ters. The starting period for the fifth period was set = 30 d and the dominant fifth
period found in both trials was ∼ 192 d, on the basis of the number of samples. As
illustrated in these example, the parallel tempering feature identifies not only the
strongest peak but other potential interesting ones as well. In Fig. 1.28 the MAP
value of the fifth period is 192 d which is > 10 times larger than the next strongest
with a period of 45 d. Two other peaks at 72 and 90 are consistent with one year
aliases of each other. For the scale invariant trial shown in Fig. 1.28, 89% of the
samples include the 192 d peak. The previous 4 periods in the 4 planet fit are clearly
present in both trials.

Looking at the eccentricity distributions of fifth period candidate signals, it is
clear that only the 192 d peak favors low eccentricities. Fig. 1.29 shows a plot of
a subset of the FMCMC parameter marginal distributions for the 5 signal fit of the
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Figure 1.27 A variety of 5 planet periodogram plots for GL 581 for an orbital
frequency prior ∝ 1/

√
f .
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Figure 1.28 A variety of 5 planet periodogram plots for GL 581 for a scale in-
variant orbital frequency prior ∝ f −1.

HARPS data after filtering out the post burn-in FMCMC iterations that correspond
to the 5 dominant period peaks at 3.15, 5.37, 12.9, 66.9, and 192 d. Still, on the
basis of this data, the author is not inclined to claim this as a likely candidate
planet. The main point of this exercise is taken up in the next section where we
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Figure 1.29 FMCMC parameter marginal distributions for the 5 planet fit of the
HARPS data after filtering out the post burn-in FMCMC iterations that corre-
spond to the 5 dominant period peaks at 3.15, 5.37, 12.9, 66.9, and 192 d

will see what probability theory has to say about the relative probability of this
particular 5 signal model to the 4 signal model, for our choice of priors.

It is sometimes useful to explore the option for additional Keplerian-like signals
beyond the point at which the false alarm probability starts to increase. This is
because the presence of other signals not accounted for in the model can give rise to
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Figure 1.30 A variety of 6 planet periodogram plots for GL 581. Orbital fre-
quency prior ∝ ν−1/2

an effective correlated noise that once removed can sometimes lead to significantly
improved detections. Figure 1.30 shows the results for a 6 signal fit. As will be
shown in Section 1.6.5, the false alarm probability of the 6 signal case is lower
than for the 5 signal case, but is still too high to be considered significant. Both 7
signal and 8 signal models were run but resulted in large false alarm probabilities
and are not shown.

1.6 Model Comparison

One of the great strengths of Bayesian analysis is the built-in Occam’s razor. More
complicated models contain larger numbers of parameters and thus incur a larger
Occam penalty, which is automatically incorporated in a Bayesian model compar-
ison analysis in a quantitative fashion (see for example, Gregory [24], p. 45). The
analysis yields the relative probability of each of the models explored.

To compare the posterior probability of the ith planet model 16 to the one planet
model we need to evaluate the odds ratio, Oi1 = p(Mi|D, I)/p(M1|D, I), the ratio of
the posterior probability of model Mi to model M1. Application of Bayes’ theorem
leads to,

Oi1 =
p(Mi|I)
p(M1|I)

p(D|Mi, I)
p(D|M1, I)

≡ p(Mi|I)
p(M1|I)

Bi1 (1.24)

16 More accurately these are models that assume different numbers of Kepler-like signals. As previously
mentioned stellar activity can also generate Kepler-like signals which need to be ruled out before the signal is
ascribed to a planetary candidate.
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where the first factor is the prior odds ratio, and the second factor is called the
Bayes factor, Bi1. The Bayes factor is the ratio of the marginal (global) likelihoods
of the models. The marginal likelihood for model Mi is given by

p(D|Mi, I) =
∫

dXp(X|Mi, I) × p(D|,Mi, X, I). (1.25)

Thus Bayesian model comparison relies on the ratio of marginal likelihoods, not
maximum likelihoods. The marginal likelihood is the weighted average of the con-
ditional likelihood, weighted by the prior probability distribution of the model pa-
rameters and s. This procedure is referred to as marginalization.

The marginal likelihood can be expressed as the product of the maximum like-
lihood and the Occam penalty (e.g., see Gregory [24], page 48). The Bayes factor
will favor the more complicated model only if the maximum likelihood ratio is
large enough to overcome this penalty. In the simple case of a single parameter
with a uniform prior of width ∆X, and a centrally peaked likelihood function with
characteristic width δX, the Occam factor is ≈ δX/∆X. If the data is useful then
generally δX ≪ ∆X. For a model with m parameters, each parameter will con-
tribute a term to the overall Occam penalty. The Occam penalty depends not only
on the number of parameters but also on the prior range of each parameter (prior
to the current data set, D), as symbolized in this simplified discussion by ∆X. If
two models have some parameters in common then the prior ranges for these pa-
rameters will cancel in the calculation of the Bayes factor. To make good use of
Bayesian model comparison, we need to fully specify priors that are independent
of the current data D. The sensitivity of the marginal likelihood to the prior range
depends on the shape of the prior and is much greater for a uniform prior than a
scale invariant prior (e.g., see Gregory [24], page 61). In most instances we are
not particularly interested in the Occam factor itself, but only in the relative prob-
abilities of the competing models as expressed by the Bayes factors. Because the
Occam factor arises automatically in the marginalization procedure, its effect will
be present in any model comparison calculation. Note: no Occam factors arise
in parameter estimation problems. Parameter estimation can be viewed as model
comparison where the competing models have the same complexity so the Occam
penalties are identical and cancel out.

The MCMC algorithm produces samples which are in proportion to the posterior
probability distribution which is fine for parameter estimation but one needs the
proportionality constant for estimating the model marginal likelihood. Clyde et
al. [10] reviewed the state of techniques for model comparison from a statistical
perspective and Ford and Gregory [21] have evaluated the performance of a variety
of marginal likelihood estimators in the exoplanet context.

Nested Sampling, developed by Skilling [59], is another powerful way for calcu-
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lating model marginal likelihoods (referred to as the evidence by Skilling). Nested
sampling reverses the historical approach. The marginal likelihood (evidence) is
now the prime target, with representative posterior samples available as an optional
by-product. An invariance (over monotonic relabelling) allows Nested Sampling to
deal with a class of phase-change problems which Skilling argues are a problem
for thermal annealing methods like thermodynamic integration (see Section 1.6.1).
A variant of Nested Sampling, called MultiNest [17], has been employed in the
analysis of RV data.

Other techniques for computing marginal likelihoods that have recently been
proposed include: Nested Restricted Monte Carlo (NRMC) [29], Annealing Adap-
tive Importance Sampling (AAIS) [43], and Reversible Jump Monte Carlo using a
kD-tree [16].

For one planet models with 7 parameters, a wide range of techniques perform
satisfactorily. The challenge is to find techniques that handle high dimensions. A
six planet model has 32 parameters and one needs to develop and test methods
of handling at least 8 planets with 42 parameters. At present there is no widely
accepted method to deal with this challenge.

In this work we will compare the results from three marginal likelihood esti-
mators: (a) Parallel Tempering, (b) the Ratio Estimator, and (c) Nested Restricted
Monte Carlo. A brief outline of each method is presented in Sections 1.6.1, 1.6.2,
and 1.6.3. A comparison of the three methods is given in Section 1.6.4.

1.6.1 Parallel tempering estimator

The MCMC samples from all (nβ) simulations can be used to calculate the marginal
likelihood of a model according to Equation (1.26) [24]. This method of estimating
the marginal likelihood is commonly referred to as thermodynamic integration.

ln[p(D|Mi, I)] =
∫

dβ⟨ln[p(D|Mi, X, I)]⟩β, (1.26)

where i = 0, 1, · · · ,m corresponds to the number of planets, and X represent the set
of the model parameters which includes the extra Gaussian noise parameter s. In
words, for each of the nβ parallel simulations, compute the expectation value (av-
erage) of the natural logarithm of the likelihood for post burn-in MCMC samples.
It is necessary to use a sufficient number of tempering levels that we can estimate
the above integral by interpolating values of

⟨ln[p(D|Mi, X, I)]⟩β =
1
n

∑
t

ln[p(D|Mi, Xt,β, I)], (1.27)

in the interval from β = 0 to 1, from the finite set and where n is the number of post
burn-in samples in each set. For this problem we used 44 tempering levels in the
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Figure 1.31 A plot of ⟨ln[p(D|M2, X, I)]⟩β versus β for the two planet HD 208487
model results. The inset shows a blow-up of the range β = 0.01 to 1.0.
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Figure 1.32 A plot of the marginal likelihood, p(D|M2, X, I)PT , versus FMCMC
iteration for the two planet HD 208487 model results for two trials.

range β = 10−9 to 1.0. Figure 1.31 shows a plot of ⟨ln[p(D|M2, X, I)]⟩β versus β for
a two planet model fit to the HD 208487 radial velocity data of Tinney (2005) [61].
The inset shows a blow-up of the range β = 0.1 to 1.0.

The relative importance of different ranges of β can be judged from Table 1.2.
The first column gives the range of β included. The second column gives the esti-
mated marginal likelihood, p(D|M2, I) for that range. The third column gives the
fractional error relative to the p(D|M2, I) value derived from the largest β range
extending from 10−9 to 1. Thus, if we neglected the contribution from the β range
extending from 10−6 to 10−9 this would result in a fractional error of 0.06. The



1.6 Model Comparison 45

Table 1.2 Parallel tempering marginal likelihood estimate,
p(D|M2, I)PT , and fractional error versus β range for the two

planet HD 208487 model results.

β range p(D|M2, I)PT Fractional error

10−1 − 1.0 3.290 × 10−52 3 × 109

10−2 − 1.0 4.779 × 10−60 43
10−3 − 1.0 2.817 × 10−61 2.6
10−4 − 1.0 1.635 × 10−61 0.51
10−5 − 1.0 1.306 × 10−61 0.21
10−6 − 1.0 1.148 × 10−61 0.06
10−7 − 1.0 1.091 × 10−61 0.008
10−8 − 1.0 1.083 × 10−61 0.0008
10−9 − 1.0 1.082 × 10−61 0.0

fractional error falls rapidly with each decade. If we wanted an answer good to
∼ 20% then a β range from 10−5 to 1 would suffice. An earlier one planet model
results for HD 188133 yielded a fractional error of 0.26 for β = 10−5 to 1. Later we
will see from a comparison of three different Bayesian marginal likelihood meth-
ods that differences of order of a factor of two are not uncommon so a β range of
10−5 − 1.0 will generally be sufficient.

Figure 1.32 show the dependence of the parallel tempering (PT) marginal like-
lihood estimate versus FMCMC iteration number for the two planet HD 208487
model results for two trials. Only every tenth iteration is saved so the true number
of iterations is a factor of 10 larger.

Figure 1.33 compares marginal likelihood estimates for 1 to 5 planet radial ve-
locity fits. The one and two planet fits are to the HD 208487 data, the 3, 4 and 5
planet fits are for Gliese 581 data. The left hand column of plots show PT marginal
likelihood estimates versus iteration. For the one and two planet cases, where re-
peats were carried out, the the agreement was good, to within 10%. For the 4 planet
case, it is clear that the parallel tempering derived marginal likelihood results did
not reach an equilibrium value in 2.5×106 iterations. A PT derived marginal likeli-
hood for a 5 planet model was not attempted. The right hand column of plots are for
the marginal likelihoods derived from the ratio estimator (RE) and nested restricted
Monte Carlo (NRMC) methods which are discussed in the next two sections.
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Figure 1.33 Comparisons of three different marginal likelihood estimators versus
iteration for one to five planet radial velocity model fits. The left hand column of
plots show parallel tempering marginal likelihood values versus FMCMC itera-
tion number. The curves in the right hand column of panels show ratio estimator
marginal likelihood values versus iteration. The horizontal black dashed lines are
the marginal likelihoods from the NRMC method together with the numerical
value of the mean and range of 5 repeats. The horizontal gray dashed lines are the
NRMC marginal likelihood value within the 95% credible region of the model
parameters.
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1.6.2 Marginal likelihood ratio estimator

Our second method 17 was introduced by Ford and Gregory (2007) [21]. It makes
use of an additional sampling distribution h(X). Our starting point is Bayes’ theo-
rem

p(X|D, Mi, I) =
p(X|Mi, I)p(D|Mi, X, I)

p(D|Mi, I)
. (1.28)

Re-arranging the terms and multiplying both sides by h(X) we obtain

p(D|Mi, I)p(X|D, Mi, I)h(X) =

p(X|Mi, I)p(D|MI , X, I)h(X). (1.29)

Integrate both sides over the prior range for X.

p(D|Mi, I)RE

∫
p(X|D,Mi, I)h(X)dX =∫

p(X|Mi, I)p(D|MI , X, I)h(X)dX. (1.30)

The ratio estimator of the marginal likelihood, which we designate by p(D|Mi, I)RE ,
is given by

p(D|Mi, I)RE =

∫
p(X|Mi, I)p(D|Mi, X, I)h(X)dX∫

p(X|D,Mi, I)h(X)dX
. (1.31)

To obtain the marginal likelihood ratio estimator, p(D|Mi, I)RE , we approximate
the numerator by drawing samples X̃1, X̃2, · · · , X̃n′s from h(X) and approximate the
denominator by drawing samples X1, X2, · · · , Xns from the β = 1 MCMC post
burn-in iterations.

p(D|Mi, I)RE =

1
n′s

∑n′s
i=1 p(X̃i|Mi, I)p(D|Mi, X̃i, I)

1
ns

∑ns
i=1 h(Xi)

. (1.32)

The arbitrary function h(X) was set equal to a multivariate normal distribution
(multinormal) with a covariance matrix equal to twice the covariance matrix com-
puted from a sample of the β = 1 MCMC output. We used 18 n′s = 105 and ns

from 104 to 2 × 105. Some of the samples from a multinormal h(X) can have non
physical parameter values (e.g. K < 0). Rejecting all non physical samples corre-
sponds to sampling from a truncated multinormal. The factor required to normalize
the truncated multinormal is just the ratio of the total number of samples from the
full multinormal to the number of physical valid samples. Of course we need to

17 Initially proposed by J. Berger, at an Exoplanet Workshop sponsored by the Statistical and Applied
Mathematical Sciences Institute in Jan. 2006

18 According to [21], the numerator converges more rapidly than the denominator.
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use the same truncated multinormal in the denominator of Equation (1.31) so the
normalization factor cancels.

Mixture model

It is clear that a single multinormal distribution cannot be expected to do a very
good job of representing the correlation between the parameters that is frequently
evident. Following [21], we improved over the single multinormal by using a mix-
ture of multivariate normals by setting

h(X) =
1
nc

nc∑
j=1

h j(X). (1.33)

We chose each mixture component to be a multivariate normal distribution, h j(X) =
N(X|X j,Σ j), and determined a covariance matrix for each h j(X) using the pos-
terior sample. As a first step, compute ρ⃗, defined to be a vector of the sample
standard deviations for each of the components of X, using the posterior sam-
ple 19. Next, define the distance between the posterior sample Xi and the center
of h j(X), d2

i j =
∑

k

(
Xki − Xk j

)2
/ρ2

k , where k indicates the element of X and ρ⃗. Now
draw another random subset of 100nc samples 20 from the original posterior sam-
ple (without replacement), select the 100 posterior samples closest to each mixture
component and use them to calculate the covariance matrix, Σ j, for each mixture
component. To compute the covariance matrix for each component we adopted the
following approach. A random pair of the 100 posterior samples was selected with
the intention of constructing a difference vector. For the angular parameters ψ and
ϕ, we compute both the straight difference (d1) and the difference of these compo-
nents (d2) after adding 2π to each. The smaller of these two differences avoids the
wrap around problem mentioned in the previous footnote. This process of select-
ing random pairs and computing their difference vector is repeated until we have
100 difference vectors. The covariance matrix for this mixture component is then
computed from this set of difference vectors. Actually, it proves useful to employ
this difference covariance matrix with components that are twice those of the true
covariance matrix. Since the posterior sample is assumed to have fully explored
the posterior, h(X) should explore in all regions of significant probability, provided
that we use enough mixture components.

In the case of the five planet Kepler model fit to GL 581, the FMCMC analysis
leads to multiple choices of five signal configurations. For both the RE and NRMC

19 The angular parameters need to be treated in a special way because the PDF can pile-up at both ends of the
range with a big gap in the middle. The two ends of the PDF are actually close to one another in a wrap
around sense because they are angular coordinates. Without allowing for this a simple variance calculation
can lead to a misleadingly large value.

20 This needs to be increased to 200nc samples for a ≥ 5 planet model.
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methods, it is possible to filter the FMCMC samples to select the individual signal
configurations separately allowing for a calculation of their relative probability. For
five planet fit to GL 581, the results reported here are only for the 3.15, 5.36, 12.9,
67, 192 d period configuration. For the PT method this would not be possible, only
the global marginal likelihood of the model can be evaluated.

The right hand column of plots in Figure 1.33 show RE marginal likelihoods
versus FMCMC iteration for one to five planet model fits using a mixture model
with 150 centers. The RE curve was computed twice (solid and dashed) to demon-
strate the level of repeatability. In the worst case (five planets) the agreement was
within a factor of 2. Agreement with the other two marginal likelihood estimators
was best when the RE method was used with FMCMC data which was thinned
sufficiently (by a factor of 50 to 100) that the samples were essentially independent
.

1.6.3 Nested Restricted Monte Carlo

Straight Monte Carlo (MC) integration can be very inefficient because it involves
random samples drawn from the prior distribution to sample the whole prior vol-
ume. The fraction of the prior volume of parameter space containing significant
probability rapidly declines as the number of dimensions increase. For example, if
the fractional volume with significant probability is 0.1 in one dimension then in
32 dimensions the fraction might be of order 10−32. In restricted MC integration
(RMC) this problem is reduced because the volume of parameter space sampled is
greatly restricted to a region delineated by the outer borders of the marginal dis-
tributions of the parameters for the particular model. However, in high dimensions
most of the MC samples will fall near the outer boundaries of that volume and so
the sampling could easily under sample interior regions of high probability leading
to an underestimate of the marginal likelihood.

In NRMC integration [29, 33], multiple boundaries of a restricted hypercube in
parameter space are constructed based on credible regions ranging from 30% to
≥ 99%, as needed. To construct the X% hypercube we compute the X% credible
region of the marginal distribution for each parameter of the particular model. The
hypercube is delineated by the the X% credible range of the marginal for each
parameter. Note that the fraction of the total probability of the joint posterior dis-
tribution contained within the hypercube will be greater than X%, in part because
the marginal distributions of the parameters will be broadened by any parameter
correlations.

The next step is to compute the contribution to the total NRMC integral from
each nested interval and sum these contributions. For example, for the interval
between the 30% and 60% hypercubes, we generate random parameter samples
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within the 60% hypercube and reject any sample that falls within the 30% hyper-
cube. Using the remaining samples we can compute the contribution to the NRMC
integral from that interval. For NRMC, if there is more than one peak in the joint
probability of the parameters that emerge from the FMCMC analysis, then NRMC
must be performed for each peak separately.

The left panel of Figures 1.34 through 1.38 shows the NRMC contributions to
the marginal likelihood from the individual intervals for five repeats of 1 and 2
planet fits to the HD 208487 data and 3, 4, and 5 planet fits to the GL 581 data.
The right panel shows the summation of the individual contributions versus the
volume of the credible region. The credible region encoded as 9995% is defined
as follows. Let XU99 and XL99 correspond to the upper and lower boundaries of
the 99% credible region, respectively, for any of the parameters. Similarly, XU95

and XL95 are the upper and lower boundaries of the 95% credible region for the
parameter. Then XU9995 = XU99+ (XU99−XU95) and XL9995 = XL99+ (XL99−XL95).
Similarly21, XU9984 = XU99+(XU99−XU84). For the 3 planet fit the spread in results
is within ±23% of the mean. For each credible region interval, 80,000 MC samples
were used (4 repeats of 20,000 samples each). The Mathematica code parallelizes
the computation. The mean value of the prior × likelihood within the 30% credible
region is a factor of 2×105 larger than the mean in the shell between the 97 and 99%
credible regions. However, the volume of parameter space in the shell between the
97 and 99% credible regions is a factor of 8×1011 larger than the volume within the
30% credible region so the contribution from the latter to the marginal likelihood
is negligible.

Fig. 1.39 shows the fraction of the total NRMC marginal likelihood within the
95% and 99% credible regions versus the number of planets. The contribution to
the marginal likelihood from a region bounded by the 95% credible region de-
creases systematically from 74% for a one planet fit to 22% for a 5 planet fit. The
same trend is evident at a lower level for the region bounded by the 99% region
with the exception of the last point.

What about the repeatability of the NRMC results? The 5 repeats span ±
1, 9, 23, 30, 30% for the 1, 2, 3, 4, and 5 planet fit, respectively. The biggest con-
tribution to the spread in repeated NRMC marginal likelihood estimates comes

21 Import details:
Test that the extended credible region outer boundary (like 9930) for each period parameter does not overlap
the credible region of an adjacent period parameter in a multiple planet fit. Also, in the case of a probability
distribution with multiple peaks it is advisable to define cutoffs in period parameter space about each peak to
prevent this overlap from happening. Even in the case of a single peak it is useful to define period cutoffs as
follows. Note the combination of upper and lower period parameter values that just contain all the MCMC
samples. Then define cutoff period intervals that are approximately 1% larger. In high dimensions this
translates to a significant increase in parameter space volume.

Determining the marginal PDF boundaries of angular parameters needs to be treated in a special way
because the PDF can pile-up at both ends of the range with a big gap in the middle. The two ends of the PDF
are actually close to one another in a wrap around sense because they are angular coordinates.
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Figure 1.34 Left panel shows the contribution of the individual nested intervals
to the NRMC marginal likelihood (for five repeats) based on a 1 planet model
fit to the HD 208487 data. The right panel shows the sum of these contributions
versus the parameter volume of the credible region. See the text for meaning of
the XXXX% boundary (e.g. 9995%).
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Figure 1.35 Left panel shows the contribution of the individual nested intervals to
the NRMC marginal likelihood (for five repeats) based on a 2 planet model fit to
the HD 208487 data. The right panel shows the sum of these contributions versus
the parameter volume of the credible region.
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Figure 1.36 Left panel shows the contribution of the individual nested intervals to
the NRMC marginal likelihood (for five repeats) based on a 3 planet model fit to
the Gliese 581 data. The right panel shows the sum of these contributions versus
the parameter volume of the credible region.
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Figure 1.37 Left panel shows the contribution of the individual nested intervals to
the NRMC marginal likelihood (for five repeats) based on a 4 planet model fit to
the Gliese 581 data. The right panel shows the sum of these contributions versus
the parameter volume of the credible region.
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Figure 1.38 Left panel shows the contribution of the individual nested intervals to
the NRMC marginal likelihood (for five repeats) based on a 5 planet model fit to
the Gliese 581 data. The right panel shows the sum of these contributions versus
the parameter volume of the credible region.
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Figure 1.39 The fraction of the total NRMC marginal likelihood within the
MCMC 95% and 99% credible regions versus the number of planets.
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Figure 1.40 Left panel shows the maximum and min values of the Log10[prior ×
likelihood] for each interval of credible region versus parameter volume for the
NRMC 4 planet fit samples. The right panel shows the maximum and mean values
of the Log10[prior × likelihood] versus the parameter volume.

from the outer credible region intervals starting around 99%. The reason for the in-
creased scatter in the Log10[∆Marginal Likelihood] is apparent when we examine
the NRMC samples. Fig 1.40 shows plots of the maximum and minimum values
(Left) and maximum and mean values (Right) derived from the NRMC samples,
for the 4 planet model, of the Log10[prior × likelihood] for each interval of credible
region, versus the parameter volume. The range of Log10[prior × likelihood] values
increase rapidly with increasing parameter volume starting around the 99% cred-
ible region boundary. This makes the Monte Carlo evaluation of the mean value
more difficult in these outer intervals. Based on Figure 1.39 for the 4 planet model,
the fraction of the total marginal likelihood estimate that arises for the intervals
beyond the 99% credible region is 28%. This fraction increases to 76% for all in-
tervals beyond the 95% credible region.

What about the efficiency of the NRMC method? For example, when we sam-
ple the volume within the 95% credible region boundaries and reject all samples
within the 90% we need a significant portion to fall in the region between the two
boundaries. We also want some samples to be rejected to insure that the sampling
between the two boundaries extends throughout. This efficiency was examined as a
function of the number of planets fit for the particular choice of boundaries used in
the study. The average efficiency ranged from 60% for a one planet fit to 95% for
5 planet fit which is quite reasonable. Extending this analysis to many more planets
will likely require a finer grained selection of boundaries to avoid 100% efficiency.

1.6.4 Comparison of marginal likelihood methods

In my earlier discusion of the RMC method [28], I indicated that the method is
expected to underestimate the marginal likelihood in higher dimensions and this
underestimate is expected to become worse the larger the number of model pa-
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rameters, i.e. increasing number of planets. This is because, in high dimensions
most of the random MC samples will fall close the outer boundaries of that volume
and so the sampling can easily under sample interior regions of high probability
leading to an underestimate of the marginal likelihood. Nested RMC overcomes
this problem 22 and in addition extends the outer credible region boundary allow-
ing for a growing contribution (with increasing model complexity) to the marginal
likelihood from lower probability density regions as demonstrated in Figure 1.39.
Further confidence in this assertion comes from the comparison between the RE,
NRMC, and PT marginal likelihood estimators shown in Figure 1.33. For the one
planet case the RE, NRMC, PT yielded values in the ratio 1.0 : 0.96 : 1.82, respec-
tively. For the two planet case the values were in the ratio 1.0 : 0.75 : 0.52. For three
planets the values were in the ratio 1.0 : 2.22 : 0.94. For four planets the values for
the RE, NRMC methods were in the ratio 1.0 : 5.6, respectively. For five planets
the values for the RE, NRMC methods were in the ratio 1.0 : 2.4, respectively. So
for three planets and beyond the NRMC is yielding higher values by up to a factor
of nearly 6 in the 4 planet case. What is going on here?

To help understand this, the right hand column of plots in Figure 1.33 also shows
a dashed horizontal gray bar which corresponds to the NRMC marginal likelihood
contribution within the 95% credible region. For the 3 to 5 planet case this pro-
vides much better agreement with the RE estimate. The RE estimator depends on
the MCMC samples. The MCMC sample density is proportional to the probability
density of the target probability distribution, i.e., proportional to the Log10[prior ×
likelihood]. As expected, we found that the range of MCMC Log10[prior × likeli-
hood] values was significantly reduced when a one tenth subset of iterations was
extracted. This suggests that dynamic range issues can limit marginal likelihood
estimators that depend on the MCMC samples, like the RE estimator. In NRMC
we only use the MCMC samples as a guide for setting up nested hypercubes. The
exact values of the credible region associated with any given hypercube is not im-
portant. We proceed to generate additional nested intervals until the contribution to
the marginal likelihood is negligible. The contribution of lower probability density
regions to the NRMC estimator is responsible for the larger marginal likelihood
values.

It is clear from Figures 1.34 to 1.38, and 1.39, that the contribution from very
low probability density regions is much lower for the one and two planet cases so
the agreement between the NRMC and RE methods is better.

What lessons can be learned from this?

22 In several subsequent publications (e.g., [33]) I mistakenly claimed that the NRMC method, like the RMC
method, would be prone to underestimate the true marginal likelihood. The current analysis indicates that
NRMC only underestimates because we are neglecting the possible contribution to the marginal likelihood
from regions of parameter space outside those shown to be significant from the Fusion MCMC exploration.
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• The NRMC method is not limited by the dynamic range of methods relying on
the MCMC posterior samples (e.g., RE method), leading to a better estimate of
the marginal likelihood enabling shorter MCMC simulations.
• Of the three methods the NRMC is not only conceptually simpler to appreciate

but also much faster to compute making it quick to run multiple trials to examine
repeatability.
• In some situations the MCMC analysis leads to a multiple choice of signal con-

figurations. For both the RE and NRMC methods, it is possible to filter the
MCMC samples to select the individual signal configurations separately allow-
ing for a calculation of their relative probability. For the PT method this is not
possible and only the global marginal likelihood of that model can be evaluated.
• The PT method is really only computationally feasible for up to and including

three planets. The PT method must also suffer from dynamic range limitations
for a finite number of MCMC samples.
• The NRMC method works for even larger number of planets but care must be

taken in the choice of credible region boundaries to insure that some samples are
always being rejected to insure good sampling of each volume shell. To date, the
author has successfully employed NRMC on up to 8 planet models involving 43
parameters.
• As a general rule the repeatability spread increases with additional parameters

suggesting the need for more samples when dealing with larger numbers of pa-
rameters. However, keep in mind that in some cases we only need marginal
likelihoods that are accurate to a factor of 2 because we usually require Bayes
factors of > 100 to achieve sufficiently low Bayesian false alarm probabilities
(see Sec 1.6.5) to justify the more complicated model.

In the following sections our model comparison conclusions will be based on
Bayes factors computed from NRMC marginal likelihood estimates.

1.6.5 Bayesian false alarm probability

We can readily convert the Bayes factors, which was introduced in Equation 1.24,
to a Bayesian False Alarm Probability (FAP) which we define in Equation 1.34.
For example, in the context of claiming the detection of m planets the FAPm is the
probability that there are actually fewer than m planets, i.e., m − 1 or less.

FAPm =

m−1∑
i=0

(prob.of i planets) (1.34)

If we assume a priori that all models under consideration are equally likely, then
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the probability of each model is related to the Bayes factors by

p(Mi | D, I) =
Bi1∑N

j=0 B j1
(1.35)

where N is the maximum number of planets in the hypothesis space under consid-
eration, and of course B11 = 1. For the purpose of computing FAPm we set N = m.
Suppose m = 2 then Equation 1.34 gives

FAP2 =
(B01 + B11)∑2

j=0 B j1
(1.36)

Lets now evaluate the Bayes factors and false alarm probabilities for our two ex-
ample data sets, HD 208487 and Gliese 581.

HD 208487

Table 1.3 summarizes the NRMC marginal likelihood estimates for the models un-
der consideration and the corresponding Bayes factors relative to model 1. Initially,
we are interested in whether there is a single planet (m = 1) which yields a very
small false alarm probability of 1.4 × 10−4. The question then shifts to false alarm
probability of two planets (m = 2).

Table 1.3 HD 208487 NRMC marginal likelihood estimates, Bayes factors
relative to model 1, and false alarm probabilities. The quoted errors are the

spread in the results for 5 repeats, not the standard deviation.

Model Periods Marginal Bayes factor False Alarm
(d) Likelihood nominal Probability

M0 1.44 × 10−68 1.77 × 10−5

M1 (130) (8.13+0.09
−0.03) × 10−64 1 1.4 × 10−4

M2a (29, 130) (1.83+0.05
−0.03) × 10−62 22.5 0.90

M2b (130, 900) (1.65+0.19
−0.11) × 10−61 203 0.10

M2 (29, 130) or (130, 900) (1.83+0.19
−0.11) × 10−61 225 4.4 × 10−3

For HD 208487 there are two possible choices of two planet models which we
label 2a, for the 29, 130 d period combination, and 2b, for the 130, 900 d combi-
nation. In the case of model 2b, Equation 1.36 becomes

FAP2b =
(B01 + B11 + B2a1)

(B01 + B11 + B2a1 + B2b1)
= 0.10 (1.37)

We will use the label 2 to represent a two planet model regardless of which of
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the two period configurations is true. In this case we can rewrite Equation 1.36 as

FAP2 =
(B01 + B11)

(B01 + B11 + B2a1 + B2b1)
= 4.4 × 10−3 (1.38)

On this basis of the false alarm probailities, there is significant evidence for a
second planet like signal but at present not enough data to determine which of the
two period combinations is correct although the evidence currently favors the 130,
900 d combination.

Gliese 581

Table 1.4 Gliese 581 NRMC marginal likelihood estimates, Bayes factors relative
to model 4, and false alarm probabilities. The quoted errors are the spread in the

results for 5 repeats, not the standard deviation.

Model Periods Marginal Bayes factor False Alarm
(d) Likelihood nominal Probability

M0 5.32 × 10−393 7.9 × 10−139

M1 (5.37) (1.45 ± 0.004) × 10−295 2.2 × 10−41 3.7 × 10−98

M2 (5.37, 12.9) (5.55+0.26
−0.09) × 10−273 2.6 × 10−19 2.6 × 10−23

M3 (5.37, 12.9, 66.9) (1.40+0.5
−0.15) × 10−265 2.1 × 10−11 3.9 × 10−8

M4 (3.15, 5.37, 12.9, 66.9) (6.7+2.2
−1.8) × 10−255 1.0 2.1 × 10−11

M5a (3.15, 5.37, 12.9, 66.9, 192) (5.8+1.5
−1.9) × 10−254 8.7 0.19

M5b (3.15, 5.37, 12.9, 66.9,not 192) (0.7+0.18
−0.22) × 10−254 1.0 0.90

M5 (3.15, 5.37, 12.9, 66.9,all) (6.5+1.7
−2.1) × 10−254 9.7 0.093

M6 (3.15, 5.37, 12.9, 66.9, 71, 190) (5.21+1.5
−1.7) × 10−252 778 0.014

Table 1.4 summarizes the NRMC marginal likelihood estimates for the models
under consideration and the corresponding Bayes factors relative to model 4. The
false alarm probability makes a good case for up to 4 signals 23. For a 5 signal
case, we consider two alternatives. Case 5a corresponds to a fifth period of 192
days for which the contribution to the marginal likelihood for a 5 planet model was
computed to be (5.8+1.5

−1.9)×10−254 using the NRMC method. Other choices for a fifth
period were found (see Figure 1.27) and we represent them collectively as case 5b,
and designate the period as ”not 192 d.” We estimate their collective contribution
23 Recent analysis of Hα stellar activity for Gliese 581 indicate a correlation between the RV and stellar activity

which leads to the conclusion that the 67 d signal (Gl 581d) is not planetary in origin [53] (4 planet
candidates).
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to the marginal likelihood for a 5 planet model by multiplying the ratio of the post
burn-in FMCMC samples that were not in the 192 d peak region compared to the
number in the 192 d peak times the 192 d marginal likelihood contribution for the
scale invariant prior case. The final total 5 planet model marginal likelihood is then
the sum of these two contributions. The false alarm probability of our ”preferred”
192 d fifth period candidate is high at 0.19 so there no reasonable case to be made
for such a signal on the basis of our current state of knowledge. Also, the case for
a five planet model of any period in our prior range does not pass our minimum
threshold of a false alarm probability of ≤ 0.01 to be considered significant.

It is sometimes useful to explore the option for additional Keplerian-like signals
beyond the point at which the false alarm probability starts to increase. Additional
models ranging from 6 to 8 signals were also considered, e.g., see Figure 1.30. The
false alarm probability of the 6 signal case has decreased, compared to the 5 signal
case, to 0.014. This is still too high to be considered significant. Both 7 signal and
8 signal models were run but resulted in large false alarm probabilities and are not
listed.

1.7 Impact of stellar activity on RV

In several earlier sections we have referred to the challenges posed by stellar ac-
tivity that can induce line shape variations that mimic Keplerian RV signals on
time scales similar to planetary signals. Many of the presentations at the “Towards
Other Earth II” conference in Porto, Portugal (Sept. 2014) concerned methods to
deal with activity-induced RV variability. Currently a wide range of different ap-
proaches are being explored. They range from the simplest independent Gaussian
noise stellar jitter approach to methods that allow for the natural signal correlation
in time that results from stellar rotational modulation and the intrinsic evolution
of magnetized regions. At the meeting, Xavier Dumusque (Harvard-Smithsonian)
proposed a blind competition using realistic fake RV data plus photometry and di-
agnostics, to allow the community to determine the best strategy to distinguish real
planetary signals from stellar activity-induced signals. The results of the compe-
tition are to be presented at the ”Extreme Precision Radial Velocity” workshop at
Yale, New Haven (6-8 July 2015).

1.8 Conclusions

The main focus of this chapter has been on a new fusion MCMC approach to
Bayesian nonlinear model fitting. In fusion MCMC the goal has been to develop an
automated MCMC algorithm which is well suited to exploring multi-modal prob-
ability distributions such as those that occur in the arena of exoplanet research.
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This has been accomplished by the fusion of a number of different statistical tools.
At the heart of this development is a sophisticated control system that automates
the selection of efficient MCMC proposal distributions (including for highly cor-
related parameters) in a parallel tempering environment. It also adapts to any new
significant parameter set that is detected in any of the parallel chains or is bred by
a genetic crossover operation. This controlled statistical fusion approach has the
potential to integrate other relevant statistical tools as required. A scheme to auto-
mate the selection of an efficient set of β values used in the parallel tempering is
included in Appendix A.

For some special applications it is possible to develop a faster more specialized
MCMC algorithm, perhaps for dealing with real time analysis situations. In the cur-
rent development of fusion MCMC, the primary focus has not been speed but rather
to see how powerful a general purpose MCMC algorithm we could develop and au-
tomate. That said, the Mathematica code does implement parallel processing on as
many cores as are available. In real life applications to challenging multi-modal
exoplanet data, fusion MCMC is proving to be a powerful tool. One can anticipate
that this approach will also allow for the joint analysis of different types of data
(e.g., radial velocity, astrometry, and transit information) giving rise to statistical
fusion and data fusion algorithms.

In this document, considerable space has been devoted to Bayesian model com-
parison. In particular, significant new testing and comparison has been carried out
for three Bayesian marginal likelihood estimators: (1) parallel tempering (PT), (2)
the ratio estimator (RE), and nested restricted Monte Carlo (NRMC). All three are
shown to be in good agreement for up to 17 parameters (3 planet model). PT ceased
to be computationally practical for 4 or more planet models. Comparison between
RE and NRMC was extended to the 5 planet case (27 parameters). On the basis
of this comparison we recommend the NRMC method. The NRMC method is not
limited by the dynamic range of methods relying on the MCMC posterior samples,
leading to a better estimate of the marginal likelihood particular for models with
larger numbers of parameters. Of the three, NRMC is not only conceptually sim-
pler to appreciate but also much faster to compute making it quick to run multiple
trials to examine repeatability. The NRMC method works for even larger number
of planets but care must be taken in the choice of credible region boundaries to in-
sure that some samples are always being rejected to insure good sampling of each
volume shell.
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2
Hidden variables, missing data and multilevel

(hierarchical) Bayes

2.1 Introduction

In previous chapters we have been concerned with fitting models to data sets with
measurement errors in the dependent variable, y. In this chapter we will learn how
to deal with data subject to measurement errors in the independent x variable (co-
variate) as well. Thus each independent variable has a true “hidden” value, which
we represent by xti. All we know is the set of measured values which we represent
by {xi}, {yi}, or in vector form by the bold faced symbols, x, y, or more consisely by
the proposition D, plus any prior information about the distribution of measurement
errors. To solve the model parameter estimation problem it is necessary to extend
the conversation 1 to include propositions about the hidden independent variables
(sometimes called latent variables) by treating them as additional parameters.

To arrive at the Bayesian posterior distribution of the model parameters, con-
ditional on the measurements, we need to integrate over the numerous hidden xt
parameters/variables after specifying a prior for each xti. As we shall see, in some
cases we can carry out this integration analytically. In other cases the integration
can still be performed with MCMC. In both cases it proves useful to employ an
informative prior for the hidden parameters, one which itself has parameters and
these in turn have priors. You can begin to see multiple levels of parameters and
priors entering the discussion which is generally referred to as hierarchical Bayes
or multilevel modeling 2 (MLM). Hierarchical models can have enough parameters
to fit the data well, while the choice of an informative prior for the hidden parame-
ters, structures some dependence into these parameters thereby avoiding problems
of over fitting.

It turns out that we can introduce another complication which does not signif-

1 See Section 4.4 of my book for details about extending the conversation.
2 According to Loredo and Hendry (2010) [15], MLM is a relatively recent term that underlies several

important statistical innovations of the latter twentieth century, including empirical and hierarchical Bayes
methods, random effects and latent variable models, shrinkage and ridge regression.
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icantly complicate the equations for model fitting with errors in both variables,
but greatly extend the reach of the analysis. The complication is to allow for an
intrinsic scatter in the relationship between the true values of the dependent and
independent variables which takes us into the arena of regression analysis with
measurement errors in both variables. Useful results are derived for the specific
case of linear regression. Multilevel or hierarchical Bayesian regression can yield
representative samples of the underlying regression, effectively deconvolving the
blurring effect of the measurement errors. This is generalized to linear regression
with multiple independent variables.

The next step is to allow for selection effects which cause some potential data to
be missed but we would still like to allow for the effect of this “missing” data on
our regression model parameters.

2.2 Fitting a straight line with errors in both coordinates

We start by assuming that there is a precise deterministic linear relationship be-
tween two variables xt, yt of the form yt = α+ βxt. We will refer to xt, yt as the true
variables where xt is the independent variable and yt the dependent variable.

Now let’s distinguish between the measured value yi and the corresponding true
value yti, where yi = yti + ey,i, where ey,i represents an unknown error component.
Based on our prior knowledge I for this particular problem, the error is assumed to
be Gaussian distributed with mean zero and variance σ2

y,i, commonly written in the
statistical literature 3 as ey,i ∼ N(0, σ2

y,i). Substituting for yt from above gives

yi = α + β xti + ey,i. (2.1)

When we allow for the measurement error in the independent variable, the mea-
sured value xi is related to the true value by xi = xti + ex,i, where ex,i ∼ N(0, σ2

x,i)
and again the prior information for this particular problem assumes that σx,i will
be provided with the data.

This is a common problem in the physical sciences and we can readily ap-
ply probability theory to make inferences about α and β. The starting point is
the joint probability distribution p(α, β, {xti}, {xi}, {yi}|I) which can be written as
p(α, β, xt, x, y|I) or more concisely as p(α, β, xt,D|I), where α and β are the model
parameters. Next expand the joint probability in two different ways using the prod-

3 Note on notation: in statistics the symbol “∼” means “is drawn from” or “is distributed as” and should not
be confused with the common usage of implying “similar to”. For example, y ∼ N(0, σ2) means that y has a
normal distribution with mean 0 and variance σ2. Note: the prior information for this particular problem does
not include the precise values of the σy,i and σx,i, but rather assumes that they will be provided in the data set
together with the measured xi, yi values.
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uct rule.

p(α, β, xt,D, |I) = p(α, β, xt|I)p(D|α, β, xt, I)

= p(D|I)p(α, β, xt|D, I) (2.2)

Reorganizing the terms gives us Bayes theorem for this problem

p(α, β, xt|D, I) ∝ p(α, β, xt|I)p(D|α, β, xt, I)

= p(α, β|I)p(xt|α, β, I)p(D|α, β, xt, I). (2.3)

To obtain p(α, β|D, I), the marginal probability distribution4 for α, β, integrate over
xt.

p(α, β|D, I) ∝ p(α, β|I)
∫

p(xt|α, β, I)p(D|α, β, xt, I)dxt

= p(α, β|I)
∫

p(D, xt|α, β, I)dxt

= p(α, β|I)p(D|α, β, I), (2.4)

where p(D|α, β, I) =
∫

p(D, xt|α, β, I)dxt. The second and third line of equation (2.4)
demonstrate an alternate way of proceeding (introducing xt through the likelihood
term), obtained by using the product rule to form the joint probability of D, xt. In
what follows we will use this alternate approach to further extend the conversation
through the likelihood term.

If the measurement uncertainties are independent then the likelihood is given by

p(D|α, β, xt, I) =
n∏

i=1

1
√

2πσx,i
exp[− (xi − xti)2

2σ2
x,i

]

×
n∏

i=1

1
√

2πσy,i
exp[− (yi − α − β xti)2

2σ2
y,i

], (2.5)

Its clear from equation (2.4), that to complete the integral over xt we need to
specify a prior that characterizes our prior knowledge about possible xt values. We
will assume our prior knowledge about xt is independent of our prior knowledge of
α and β so that p(xt|α, β, I) = p(xt|I). As a first guess we might assume an indepen-
dent flat distribution for each p(xti|I) and specify some large prior range between
−λi and +λi that we are confident the xt values fall within. Suppose that the first n
samples of xi fall within the much smaller range −0.01λi and 0.1λi. Do we really
believe the next xti is likely to be anywhere in the range −λi and +λi? Another
choice for p(xt|I) is to choose what we will refer to as an informative prior like a
Gaussian and learn about the mean and variance of the xt values from the measured

4 Alternatively, we might be interested in p(xt |D, I), the marginal distribution of the hidden variables xt in
which case we need to integrate over α and β.
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sample 5 and avoid the biased estimates of the intercept and slope common to or-
dinary least-squares analysis of this situation (Kelly, 2007, Gull 1989). It is termed
a hierarchical prior because it depends on two more parameters, the mean µ and
variance τ2 according to

p(xti|µ, τ, I) =
1
√

2πτ2
exp[−1

2
(xti − µ)2

τ2 ]. (2.6)

One can well imagine situations where p(xt|I) is very different from a single Gaus-
sian. For the moment we will employ a single Gaussian but in Section 2.5 we will
consider a mixture or sum of Gaussians to better model p(xt|I). A mixture of Gaus-
sians is flexible enough to model a wide variety of distributions and simplifies the
integration over xt which we will need to carry out.

Figure 2.1 illustrates graphically the components of the Bayesian calculation.
This is a simple example of what is commonly referred to as ‘multilevel Bayes’ or
‘hierarchical Bayes’ as it involves more than two levels relating the parameters of
interest to the observed data.

Figure 2.1 Graphical model of the multilevel Bayes calculation. The solid lines
connecting nodes denote conditional dependencies with the conditional probabil-
ities listed below. The absence of a connection denotes conditional independence.
The dashed lines represent deterministic conditionals.

5 This leads to a probabilistic dependence among the xti values that implements a pooling of information that
can improve the accuracy of inference. Each xi measurement bears on the estimation of the unknown mean
and variance of the population of xt values, and thus indirectly, each measured xi bears on the estimation of
every other xti, via a kind of adaptive bias correction. This is referred to as borrowing strength from each
other.
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We need to specify priors for µ and τ and integrate over these nuisance pa-
rameters. The likelihood p(D|α, β, I) appearing on the last line of equation (2.5)
becomes

p(D|α, β, I) =
∫ ∫ ∫

p(D, xt, µ, τ|α, β, I) dxt dµ dτ. (2.7)

We expand equation (2.7) using the product rule and Replace D on the R.H.S. by
x, y.

p(D|α, β, I) =
∫ ∫ ∫

p(xt, µ, τ|α, β, I)p(x, y|α, β, xt, µ, τ, I) dxt dµ dτ

=

∫ ∫ ∫
p(µ, τ|I) p(xt|µ, τ, I)

× p(x|xt, I) p(y|α, β, xt, I) dxt dµ dτ

=

∫ ∫
dµ dτ p(µ, τ|I)

×
[∫

p(xt|µ, τ, I)p(x|xt, I)p(y|α, β, xt, I) dxt

]
=

∫ ∫
dµ dτ p(µ, τ|I) p(D|α, β, µ, τ, I) (2.8)

where, in component form,

p(D|α, β, µ, τ, I) =

 n∏
i=1

∫
p(xti|µ, τ, I)p(xi|xti, I)p(yi|α, β, xti, I) dxti

 . (2.9)

Integrating xti from−∞ to+∞ yields 6 an analytic solution [11] for p(D|α, β, µ, τ, I)
given by

p(D|α, β, µ, τ, I) =
n∏

i=1

1
2π
√

detVi
exp

[
−1

2
(zi − ζ)T V−1

i (zi − ζ)
]
, (2.10)

where

zi =

( yi

xi

)
, ζ =

(
α + βµ

µ

)
, (zi − ζ) =

( yi − α − βµ
xi − µ

)
, (2.11)

and

Vi =

(
β2τ2 + σ2

y,i βτ2

βτ2 τ2 + σ2
x,i

)
, (2.12)

and (zi − ζ)T is the transpose of (zi − ζ).

6 If the −∞ to +∞ limits are not a reasonable assumption then the result given in equation (2.9) needs to be
multiplied by the difference of two error functions (erf). These erf functions can be determined by evaluating
the integral with Mathematica.
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Substituting equation (2.8) into equation (2.5) we have

p(α, β|D, I) ∝ p(α, β|I)
∫ ∫

dµ dτ p(µ, τ|I) p(D|α, β, µ, τ, I). (2.13)

The remaining integrals can be evaluated numerically. We will find it convenient
to rewrite equation (2.13) as

p(α, β, µ, τ|D, I) ∝ p(α, β, µ, τ|I) p(D|α, β, µ, τ, I). (2.14)

This gives the joint posterior distribution for α, β, µ, τ. A useful way of comput-
ing the marginal distribution for any of these parameters is with a Markov chain
Monte Carlo approach like fusion MCMC (FMCMC) method described in Chap-
ter 1 of this supplement. We will do that shortly after first introducing a further
complication in Section 2.3.

2.2.1 Correlated xy data errors

Following Kelly (2007), we can generalize the result to allow for correlations in the
measurement errors of x and y. In this case we write yi, xi|yti, xti ∼ N2([yti, xti],Σi),
where N2 is a bivariate normal density distribution with a two element mean and a
2 × 2 covariance matrix Σ given by

Σi =

(
σ2

y,i σxy,i

σxy,i σ2
x,i

)
. (2.15)

The only change is to introduces a term σxy,i into the Vi matrix which becomes.

Vi =

(
β2τ2 + σ2

y,i βτ2 + σxy,i

βτ2 + σxy,i τ2 + σ2
x,i

)
. (2.16)

2.3 Linear regression with errors in both coordinates

In this section, we generalize our previous results for fitting a straight line with er-
rors in both coordinates by adding another feature which greatly extends the reach
of the solution to the arena of linear regression following the treatment of Kelly
(2007, 2013) [11] [13] and Gelman et al. (2004) [7]. Kelly (2007) [11] extended
the statistical model of Carroll et al. (1999) [3] to allow for measurement errors
of different magnitudes (i.e., heteroscedastic errors), non detections, and selection
effects, so long as the selection function can be modeled mathematically. Linear
regression is one of the most common techniques used in data analysis. We hasten
to add that the Bayesian approach developed here is not limited to linear models.

It is a common problem in astronomy to explore whether there is a correlation
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(i.e., a straight line relationship, commonly referred to as the regression line), be-
tween the dependent and independent variables. Initially we will consider a single
independent variable. There is often some intrinsic scatter about the regression
line. The intrinsic scatter arises from variations in the physical properties that are
not completely captured by the independent variables included in the regression,
i.e., in this case the single independent variable xt. We can allow for an intrinsic
scatter in the relationship between xt and yt according to the additive noise model

yti = α + β xti + ϵi, (2.17)

where ϵi ∼ N(0, σ2) and σ is unknown and treated as a model parameter.
We now allow for independent measurement errors in both the dependent and

independent variables according to

xi = xti + ex,i, (2.18)

where ex,i ∼ N(0, σ2
x,i) and σx,i is assumed known. Also

yi = yti + ey,i, (2.19)

where ey,i ∼ N(0, σ2
y,i) and σy,i is assumed known. For the moment we are ignor-

ing possible correlated errors. Now both xt and yt are hidden variables that we
need to marginalize over. A graphical model of this multilevel analysis is shown in
Figure 2.2 along with the conditional probabilities.

We could use as our starting point the joint probability distribution

p(α, β, µ, τ, σ, {xti}, {yti}, {xi}, {yi}|I)

which can be written as

p(α, β, µ, τ, σ, xt, yt, x, y|I)

or more concisely as

p(α, β, µ, τ, σ, xt, yt,D|I)

and follow the steps outlined in equations (2.2) to (2.4). Instead we will use the
equivalent approach mentioned following the discussion of equation (2.4) to intro-
duce the additional hidden variables, yt, and the intrinsic scatter σ parameter into
our likelihood equation as we did in equations (2.7) to (2.9) for xt, µ, τ. We need to
provide probability distributions that characterize our prior knowledge of yt and σ
and then integrate over these distribution7.

7 Alternatively, we might be interested in p(xt, yt |D, I), the marginal distribution of the hidden variables in
which case we need to integrate over α, β, µ, τ, σ.
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Figure 2.2 Graphical model for a simple multilevel Bayesian regression analysis.
The solid lines connecting nodes denote conditional dependencies with the condi-
tional probabilities listed below. The absence of a connection denotes conditional
independence. The dashed lines represent deterministic conditionals.

Starting from equation (2.7) we can add the additional terms as follows

p(D|α, β, I) =
∫ ∫ ∫ ∫ ∫

p(D, xt, yt, µ, τ, σ|α, β, I) dxt dµ dτ dyt dσ

=

∫ ∫ ∫ ∫ ∫
p(xt, yt, µ, τ, σ|α, β, I)

× p(D|α, β, xt, yt, µ, τ, σ, I) dxt dµ dτ dyt dσ. (2.20)

Expanding equation (2.20) further using the product rule, and recognizing that
p(xt, yt|α, β, µ, τ, σ, I) = p(xt|µ, τ, I) p(yt|α, β, xt, σ, I), yields

p(D|α, β, I) =
∫ ∫ ∫ ∫ ∫

p(µ, τ, σ|I) p(xt|µ, τ, I) p(yt|α, β, xt, σ, I)

× p(x|xt, I) p(y|yt, I) dxt dµ dτ dyt dσ

=

∫ ∫ ∫
p(µ, τ, σ|I) dµ dτ dσ
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×
∫ {∫

p(y|yt, I) p(yt|α, β, xt, σ, I) dyt

}
× p(x|xt, I) p(xt|µ, τ, I) dxt. (2.21)

Expanding equation (2.21) in terms of components yields

p(D|α, β, I) =
∫ ∫ ∫

dµ dτ dσ p(µ, τ, σ|I)

×
 n∏

i=1

∫
Iyi p(xti|µ, τ, I) p(xi|xti, I) dxti


=

∫ ∫ ∫
dµ dτ dσ p(µ, τ, σ|I) p(D|α, β, σ, µ, τ, I),

(2.22)

where

Iyi =

∫ +∞

−∞
p(yi|yti, I)p(yti|xti, α, β, σ, I) dyti

=

∫ +∞

−∞

1
√

2πσy,i
exp[− (yi − yti)2

2σ2
y,i

]

× 1
√

2πσ
exp[− (yti − α − βxti)2

2σ2 ] dyti

=
1√

2π (σ2 + σ2
yi)

exp[− (yi − α − βxti)2

2(σ2 + σ2
yi)

]. (2.23)

Inserting the result for Iyi from equation (2.23) into equation (2.22), and inte-
grating xti from −∞ to +∞, yields an analytic solution for
p(D|α, β, σ, µ, τ, I) given by

p(D|α, β, σ, µ, τ, I) =
n∏

i=1

1
2π
√

detVi
exp

[
−1

2
(zi − ζ)T V−1

i (zi − ζ)
]
, (2.24)

where

zi =

( yi

xi

)
, ζ =

(
α + βµ

µ

)
, (zi − ζ) =

( yi − α − βµ
xi − µ

)
, (2.25)

and

Vi =

(
β2τ2 + σ2 + σ2

y,i βτ2

βτ2 τ2 + σ2
x,i

)
. (2.26)

Comparing these last three equations to our earlier result in Section 2.2 (i.e., equa-
tions (2.10) to (2.12)), we see that the only change is the addition of a σ2 (intrinsic
scatter) to equation (2.12).
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To obtain the marginal distributions of any of the regression parameters, α, β, σ,
or nuisance parameters, µ, τ, we can integrate over the remaining parameters nu-
merically, perhaps by exploiting a MCMC approach like fusion MCMC (FM-
CMC), as described in Chapter 1 of this supplement. The results of such an analysis
are illustrated in the sample problem below.
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Figure 2.3 Panel (a) shows the true regression line (gray) and the simulated true
values (black points) which include the intrinsic scatter. Panel (b) shows the same
regression line (gray) and the simulated measured values which include both the
intrinsic scatter and measurement errors in both coordinates.

2.3.1 Example 1

x y xt yt

0.0182045 -1.01896 0.0428525 -0.0574915
-0.387978 -0.147827 -0.404814 -0.212603
-0.108916 0.497445 0.053096 -0.0516395
-0.65517 -0.141506 -0.460119 -0.384669
0.819814 0.834607 0.765019 1.26963
1.01058 1.36803 0.943613 1.35037
-1.91422 -1.99596 -1.98054 -1.69163
1.30227 0.481718 1.02763 0.635988

-0.701947 -1.22742 -0.825174 -0.847801
-0.103098 -0.106871 0.0740896 0.154979
-0.845334 -0.0436895 -0.801533 -0.283528
-0.0200126 -0.230387 -0.10878 -0.0262748
-0.667872 -1.3606 -0.479666 -1.12028
2.14888 1.58631 2.19575 2.14965

-0.287609 -0.450218 -0.360076 -0.226541

Table 2.1 The table contains 15 pairs of measured x, y values and true xt, yt

values.
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Figure 2.4 Panel (a) shows the true regression line (gray), the simulated measured
values including intrinsic scatter and measurement errors in both coordinates, the
mean fitted line (black) and the MAP fit (dot-dashed) derived from the FMCMC
iterations. The dashed lines are the mean fitted line ±1 standard deviation in the
FMCMC fit uncertainty. The error bars indicate the 1 sigma IID measurement
errors. Panel (b) is the same as (a) with the measured values replaced by the
simulated true values including only the intrinsic scatter (black points).

Panel (a) of Figure 2.3 shows the true regression line (gray) and the simulated
true values (black points) after including the intrinsic scatter. Panel (b) shows the
same regression line (gray) and the simulated measured values which were derived
from the simulated true values by adding measurement errors in both coordinates.
The data set is given in Table 2.1. The error bars indicate the 1 sigma IID measure-
ment errors which are σx = 0.155 and σy = 0.290. The values of the parameters
employed in this simulation were α = 0.0, β = 0.933, σ = 0.290, µ = 0.0, τ =
1.086. The true regression line equation is

yti = 0.0 + 0.933 xti + ϵi, (2.27)

where ϵi ∼ N(0, σ2) and σ = 0.290.
Our starting point is the joint posterior distribution for α, β, σ, µ, τ.

p(α, β, σ, µ, τ|D, I) ∝ p(α, β, σ, µ, τ|I) p(D|α, β, σ, µ, τ, I), (2.28)

where p(D|α, β, σ, µ, τ, I) is given by equations (2.24) to (2.26). We assume inde-
pendent prior distributions for α, β, σ, µ, τ so

p(α, β, σ, µ, τ|I) = p(α|I)p(β|I)p(σ|I)p(µ|I)p(τ|I). (2.29)

Flat priors were adopted for α, β, µ and normalized modified scale invariant priors
for both τ and σ of the form

p(τ|I) =
(τ + τ0)−1

ln(1 + τmax
τ0

)
. (2.30)

For τ < τ0, p(τ|I) behaves like a flat prior and for τ > τ0 behaves like a scale
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invariant prior. We designate this prior by FTSI for flat to scale invariant 8. The
break point τ0 was set = Mean[σx,i]. Similarly for σ,

p(σ|I) =
(σ + σ0)−1

ln(1 + σmax
σ0

)
. (2.31)

The break point σ0 was set = 2 ×Mean[σy,i].
We used the fusion Markov chain Monte Carlo (FMCMC) method to explore

p(α, β, σ, µ, τ|D, I), compute the marginal distributions and the mean and MAP re-
gression lines. Panel (a) of Figure 2.4 includes: (1) the measured values together
with the true regression line (gray), (2) the mean fitted line (black) and the max-
imum a posterior (MAP) fit derived from the FMCMC iterations (dot-dashed),
and (3) the mean fitted line ±1 standard deviation in the FMCMC fit uncertainty
(dashed curves). The fit uncertainty is computed as follows. Each post burn-in FM-
CMC iteration yields an intercept and slope. We compute a set of model y predic-
tions for a uniform grid of x values for that particular intercept and slope. This is
repeated for each FMCMC iteration. At each x grid point the mean and standard
deviation of the corresponding y values are computed. The fit uncertainty curves
are then plots of this grid of mean ± 1 standard deviation values.

Panel (b) of Figure 2.4 shows the same information as in panel (a) with the
measured data replaced by the true values (black points) of the simulated data set.
The maximum a posterior (MAP) fit coincides with the mean fit line to within the
line width.

Alternate approach

Next we investigate an alternate way of proceeding with a Bayesian regression
analysis which has some advantages and disadvantages. Our starting point is the
joint probability distribution for α, β, σ, µ, τ, xt, yt where we include the hidden
variables as additional parameters to explore with MCMC.

p(α, β, σ, µ, τ, xt, yt|D, I)

∝ p(α, β, σ, µ, τ, xt, yt|I) p(D|α, β, σ, µ, τ, xt, yt, I)

= p(α, β, σ, µ, τ|I)p(xt|µ, τ, I)p(yt|α, β, σ, xt, I)

× p(x|xt, I)p(y|yt, I) (2.32)

In our previous analysis we analytically integrated over the hidden variables which
was possible because we assumed Gaussian distributions for the intrinsic scatter,
σ, and the measurement errors. In other situations the relevant distributions might
be known but non-Gaussian and not amenable to an analytic integration. We can

8 If we are uncertain about the scale of a parameter it is common to employ a scale invariant prior. This has an
unfortunate singularity at 0 which the FTSI version overcomes by introducing a break point which is set
initially to a simple multiple of the mean measurement error in that coordinate.
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still explore the joint distribution within the Bayesian MCMC framework but now
need to treat xt and yt as additional parameters to explore with the MCMC. Another
advantage of this approach is that we can expose representative samples of the true
coordinates xt, yt of the underlying regression. In effect we are de-convolving the
blurring effect of the measurement errors.

What are the disadvantages? As the number of measurements increases so does
the number of parameters that must be computationally explored with the MCMC.
The total number of parameters has risen to 35 in this example. What information
do we have to constrain these parameters? We have 30 pieces of information repre-
sented by D, namely, the 15 values of xi and 15 values of yi. In addition, accomany-
ing D are the 15 values of σx,i, and the same again for σy,i. It is well to remember
that we also have a great deal of prior information on the parameters and their re-
lationships in the form of the deterministic and conditional probabilities illustrated
in the graphical model of the multilevel analysis shown in Figure 2.2. Multilevel
models can have enough parameters to fit the data well, while the choice of an
informative prior for the hidden parameters structures some dependence into these
parameters thereby avoiding problems of over fitting. The value of an informative
prior was discussed earlier in Section 2.1.

Another disadvantage is the joint distribution might contain multiple peaks. One
of these might have the highest peak probability by a significant factor but the
integrated probability associated with this peak might be negligible compared to
a much broader lower probability peak. The presence of this dominant peak with
negligible integrated probability can complicate the implementation of an MCMC
algorithm as we shall see in Section 2.3.2.

In the current problem p(xt|µ, τ, I)p(yt|α, β, σ, xt, I)p(x|xt, I)p(y|yt, I) that ap-
pears in equation (2.32) are given by

n∏
i=1

[
1
√

2πτ
exp[− (xti − µ)2

2τ2 × 1
√

2πσ
exp[− (yti − α − βxti)2

2σ2

× 1
√

2πσx,i
exp[− (xi − xti)2

2σ2
x,i

× 1
√

2πσy,i
exp[− (yi − yti)2

2σ2
y,i

]. (2.33)

The other priors in equation (2.32) are the same as before.
We again used the fusion Markov chain Monte Carlo (FMCMC) method to ex-

plore p(α, β, σ, µ, τ, xt, yt|D, I), compute the marginal distributions and mean and
MAP regression lines. Figure 2.5 shows our initial results compared to our pre-
vious results using analytic integration over xt, yt. Panel (a) shows log10[prior ×
likelihood] versus σ (the regression intrinsic scatter parameter) for a sample of the
FMCMC iterations that employed analytic integration over the hidden variables
xt, yt. Panel (b) shows the same plot for the second FMCMC run in which the
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Figure 2.5 First attempt. Panel (a) shows log10[prior × likelihood] versus σ (the
regression intrinsic scatter parameter) for a sample of the FMCMC iterations with
analytic integration over the hidden variables xt, yt. Panel (b) shows the same plot
for the second FMCMC run in which the hidden variables were treated as param-
eters in the joint distribution. Panels (c) to (g) compares the posterior marginal
distributions for the regression line parameters α, β, σ and nuisance parameters
µ, τ for the two cases. The dashed curves are for analytic integration over the hid-
den variables xt, yt and the solid curves apply for the hidden variables treated as
additional parameters in the FMCMC.

hidden variables were treated as parameters in the joint distribution. Although the
bulk of the samples fall in the same range from about 0.2 to 0.8 as in panel (a), the
log10[prior × likelihood] is much higher at small values of σ compared to analytic
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case 9. This arises when xt, yt are treated as parameters in the FMCMC because
there are two peaks in the full joint probability distribution. The highest occurs for
a σ near 0 but has a negligible integrated probability as evidenced from the first
analysis where the hidden variables are integrated analytically. The second peak in
σ coincides with the peak found in the analytic version of FMCMC.

Panels (c) to (g) compares the posterior marginal distributions for the regres-
sion line parameters α, β, σ and nuisance parameters µ, τ for the two cases. The
dashed curves are for analytic integration over the hidden variables xt, yt and the
solid curves apply for the hidden variables treated as additional parameters in the
FMCMC. The true parameter values are indicated by the vertical lines.

In the normal mode of operation the FMCMC control system anneals the Metropo-
lis proposal distributions with respect to the highest peak in the distribution. Be-
cause the highest peak coincided with low σ value, the width of the σ proposal
distribution for ‘I’ proposals 10 was driven to low values making it more difficult
for FMCMC to explore larger values of σ with the ‘I’ proposals. The ‘C’ proposals
continued to function effectively in this case.

Second run

Another option of FMCMC is to fix the width of the ‘I’ proposal distributions.
For this case we set the width of the ‘I’ proposal distributions to those found
from the analytic FMCMC run and set the width’s for the xt, yt parameters to
0.3×Mean[σx,i], 0.5×Mean[σy,i]. Figure 2.6 shows the results for this second run.
Again panel (a) shows a sample of the FMCMC iterations with analytic integra-
tion over the hidden variables, xt, yt, for log10[prior × likelihood] versus σ, the
regression intrinsic scatter parameter. Panel (b) shows the same plot for the sec-
ond FMCMC run in which the hidden variables were treated as parameters in the
joint distribution. In this case the two distributions are much more similar and the
marginal distributions shown in panels (c) to (g) are essentially identical. Again,
the true parameter values are indicated by the vertical lines.

One advantage of treating xt, yt as parameters in a multilevel (hierarchical) Bayesian
MCMC regression regression analysis is that it yields representative samples of
the underlying regression, effectively de-convolving the blurring effect of the mea-

9 Loredo and Hendry (2010) [15] note that a log-flat σ prior can lead to an un-normalizable posterior in some
MLM problems. When we treat xt, yt as additional parameters in the MCMC analysis, there is the potential
for a singularity at σ = 0 leading to an un-normalizable posterior. Instead, priors flat in σ or σ2 (among
others) are advocated. The prior for σ used in our analysis changes from flat for σ < 2 × σy to log-flat for
σ > 2 × σy. Kelly (2007) employed a flat prior for σ2 which corresponds to a σ prior ∝ σ. There is
considerable research on the topic of prior distributions for variance parameters in hierarchical models, e.g.,
[2] [8].

10 FMCMC employs two different proposal schemes, the ‘I’ proposals and the ‘C’ proposals as discussed in
Appendix A. The ‘I’ scheme is ideally suited for the exploration of independent parameters while the ‘C’
scheme is well suited to dealing with correlated parameters. Each scheme is employed 50% of the time and
the two are designed to work together.
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Figure 2.6 Second run. Panel (a) shows log10[prior × likelihood] versus σ (the
regression intrinsic scatter parameter) for a sample of the FMCMC iterations with
analytic integration over the hidden variables xt, yt. Panel (b) shows the same plot
for the second FMCMC run in which the hidden variables were treated as param-
eters in the joint distribution. Panels (c) to (g) compares the posterior marginal
distributions for the regression line parameters α, β, σ and nuisance parameters
µ, τ for the two cases. The dashed curves are for analytic integration over the hid-
den variables xt, yt and the solid curves apply for the hidden variables treated as
additional parameters in the FMCMC.

surement errors. This is illustrated in Figure 2.7. Panel (a) includes: (1) the true
regression line (gray) and measured values, (2) the mean fitted line (black) and the
maximum a posterior (MAP) fit (dot-dashed) derived from the FMCMC iterations,
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Figure 2.7 FMCMC analysis which includes the hidden variables as parameters.
Panel (a) shows the true regression line (gray) and measured values, the mean
fitted line (black) and MAP fit (dot-dashed) derived from the FMCMC iterations,
and the mean fitted line ±1 standard deviation in the FMCMC fit uncertainty
(dashed curves). Panel (b) shows the residuals from the mean fit. In panel (c), the
points and error bars are the mean and standard deviation of the MCMC estimates
of the true coordinates and the other lines are the same as in (a). Panel (d) shows
the residuals of the mean estimates of the true coordinates from the mean fit.

and (3) the mean fitted line ±1 standard deviation in the FMCMC fit uncertainty
(dashed curves). Panel (b) shows the residuals from the mean fit. In panel (c), the
points and error bars are the mean and standard deviation of the FMCMC estimates
of the true coordinates and the other lines are the same as in (a). The FMCMC start-
ing values for xt, yt were the measured data set. Panel (d) shows the residuals of
the mean estimates of the true coordinates from the mean fit. The residuals in panel
(d) are significantly smaller than in panel (b).

2.3.2 Example 2

In this example we increased the measurement errors in both coordinates compared
to the previous example and increased the number of data points from 15 to 22.
As with the previous example, we carried out the FMCMC regression analysis in
two different ways: (a) analytic integration over the hidden variables xt, yt and (b)
treating xt, yt as additional parameters. We again employed a FTSI (flat to scale
invariant) prior for the σ and τ parameters and flat priors for α, β and µ. We set the
width of the ‘I’ proposal distributions to those found from the analytic FMCMC run
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and set the width’s for the xt, yt parameters to 0.3× Mean[σx,i], 0.5× Mean[σy,i].
The values of the parameters employed in this simulation were
α = 0.0, β = 0.911, σ = 0.251, µ = 0.0, τ = 0.963. The measurement errors were
σx = 0.275 and σy = 0.501.

Panel (a) of Figure 2.8 shows a sample of the FMCMC iterations with ana-
lytic integration over the hidden variables xt, yt. It shows a plot of log10[prior ×
likelihood] versus σ, the regression intrinsic scatter parameter. The larger mea-
surement errors result in significant probability extending to a value of σ = 0,
although the marginal for σ shown by the dashed curve in panel (e) peaks close
to the true value of σ of 0.251. Panel (b) shows the corresponding plot for the
FMCMC run in which the hidden variables were treated as parameters in the joint
distribution. The log10[prior × likelihood] exhibits a narrow strong peak at a value
of ≈ 0.07 while the marginal distribution for σ exhibits a broad peak centered on
the true value as shown by the solid curve in panel (e). For the other parameters the
marginal distributions shown in panels (c), (d), (f) and (g) are essentially identical
for the two cases.

2.4 Effect of measurement error
on correlation and regression

In the previous two sections we carefully developed the equations for fitting a
straight line and conducting Bayesian linear regression when there are measure-
ment errors in both coordinates. In this section we will briefly explore the potential
consequences of ignoring these measurement errors as is commonly done in ordi-
nary least-squares regression.

The goal of regression is often to understand how one variable changes with
another. If the data are measured without error, the ordinary least squares estimate
of the regression slope, β̂OLS, and the estimated correlation coefficient, ρ̂, are

β̂OLS =
Cov(xt, yt)

Var(xt)
, (2.34)

ρ̂ =
Cov(xt, yt)√

Var(xt)Var(yt)
= β̂OLS

√
Var(xt)
Var(yt)

, (2.35)

where xt = (xt1, · · · , xtn) and yt = (yt1, · · · , ytn) are the true values of the variables.
Cov(xt, yt) is the sample covariance 11 between xt and yt and Var(xt) is the variance

11 The random variable sample covariance is given by

Cov =
1

n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ), (2.36)
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Figure 2.8 Panel (a) shows log10[prior × likelihood] versus σ (the regression in-
trinsic scatter parameter) for a sample of the FMCMC iterations with analytic
integration over the hidden variables xt, yt. Panel (b) shows the same plot for the
second FMCMC run in which the hidden variables were treated as parameters in
the joint distribution. Panels (c) to (g) compares the posterior marginal distribu-
tions for the regression line parameters α, β, σ and nuisance parameters µ, τ for
the two cases. The dashed curves are for analytic integration over the hidden vari-
ables xt, yt and the solid curves apply for the hidden variables treated as additional
parameters in the FMCMC. The vertical lines indicate the true values.

of xt. The square of the correlation coefficient can be shown to be proportional to

where X̄ is the mean of Xi. The correlation coefficient derived from the sample covariance and sample
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the fraction of Var(yt) which is accounted for by the regression and has values in
the range 0 to 1, while ρ can range from −1 to +1.
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Figure 2.9 The correlation coefficient distribution derived from the Bayesian lin-
ear regression analysis of Section 2.3.1. The distributions are from (a) simulations
of the hidden variables, xt, yt, based on the MAP parameters from the first solu-
tion (upper left), (b) from simulations of xt, yt based on the true parameter set
(upper right), and (c) from the estimates of the true coordinates, xt, yt from the
second solution (lower left). The black line indicates the correlation coefficient
computed from the simulated true data set given in Table 2.1.

In Section 2.3.1 we carried out a Bayesian linear regression analysis of a simu-
lated data set using two different approaches. The second of these treated the hidden
true coordinates as additional MCMC model parameters and yielded distributions
for the true coordinates. From these and equation (2.36) we estimated the distri-
bution of the correlation coefficient (ρ) which is shown in Figure 2.9. The three
distributions shown are from (a) simulations of the hidden variables, xt, yt, based
on the MAP parameters from the first solution (upper left), (b) from simulations
of xt, yt based on the true parameter set (upper right), and (c) from the estimates
of the true coordinates, xt, yt from the second solution (lower left). For (a) and (c)
the distributions peak around an ρ ≈ 0.9. The black line indicates the correlation
coefficient computed from the simulated true data set given in Table 2.1.

variance is given by

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ)√∑n
i=1(Xi − X̄)2 ∑n

i=1(Yi − Ȳ)2
, (2.37)

and is often called the Pearson product-moment correlation coefficient.
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Let b̂OLS = the estimated slope and r̂ = the estimated correlation coefficient
when there are measurement errors. Then

b̂OLS =
Cov(x, y)

Var(x)
=

Cov(xt, yt) + σxy

Var(xt) + σ2
x

, (2.38)

r̂ =
Cov(x, y)
√

Var(x)Var(y)
=

Cov(xt, yt) + σxy√
(Var(xt) + σ2

x)(Var(yt) + σ2
y)
, (2.39)

The second expression on the right of equations (2.38) and (2.39) relates the co-
variance and variances derived from the measured variables to the desired covari-
ance and variances of the true variables designated xt, yt. From this it is clear that
the effect of measurement error (σx) in the independent variable, x, is to bias the
slope towards zero and reduce the magnitude of the observed correlation. Measure-
ment error (σy) in the response, y, also reduces the magnitude of the correlation.
Finally, if the measurement errors are correlated the effect depends on the sign of
the correlation. If the measurement error correlation has the same sign as the in-
trinsic correlation between xt and yt, then the affect is to cause a spurious increase
in the observed correlation. If the sign is opposite this results in a spurious decrease
in observed correlation.

Equation (2.39) suggests that one way to estimate ρ using the measured coordi-
nates, assuming σxy = 0, is given by Equation (2.40).

ρ̂ =
Cov(x, y)√

(Var(x) − σ2
x)(Var(y) − σ2

y)
, (2.40)

where we replaced xt, yt by the measured values, x, y, and subtracted the variance
of the measured errors in the denominator 12. Using the measured data and mea-
surement errors from Section 2.3.1 we obtain a ρ = 0.9, in close agreement with
12 Alternative Linear Regression Approaches: Kelly (2007 & 2013) and Carroll et al. (2006), review some of

the other non Bayesian approaches to linear regression with measurement errors. In least-squares linear
regression analysis, estimates of the slope, intercept and intrinsic dispersion are obtained from moments of
the data. As we have just seen these yield biased estimators in the presence of measurement errors. A number
of other methods, termed method of moments estimators (MM), debiase the moments by removing the
contributions from the measurement errors (e.g., BCES method by Akritas & Bershady, 1996). The main
advantage of MM estimators are that they do not make any assumptions about the distribution of the
measurement errors, the distribution of xt, nor the intrinsic scatter. This makes MM estimators robust.
However, because they do not make use of prior information about the distributions of the errors, intrinsic
dispersion and xt, they are not as precise as methods that do or employ parametric models of these
distributions. Another disadvantage is that the MM estimators are highly variable when the sample size is
small and/or the measurement errors are large. According to Cheng & Van Ness (1999) the MM estimators
can be understood as arising from the minimization with respect to (α, β, σ) of a modified least-squares loss
function such as

1
σ2

n∑
i=1

[(yi − α − βxi)2 − σ2
y,i − β2σ2

x,i]. (2.41)
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the peak of the distribution calculated from the estimates of the true hidden coor-
dinates.

2.5 Gaussian mixture model

We can improve upon the single Gaussian model for the intrinsic dispersion of the
independent variable, xt, by employing a mixture of K Gaussian functions. The
basic idea is that with a large enough number of Gaussian functions we can more
accurately approximate the dispersion, even though the individual Gaussians have
no physical meaning. It is a common and well-studied model that allows flexibility
when estimating a distribution and is referred to in the statistical literature as a
“nonparametric” model.

p(xti|µ1, τ1, π1, · · · , µK , τK , πK , I) =
K∑

i=1

πk√
2πτ2

k

exp[− (xti − µk)2

2τ2
k

], (2.42)

where πk is the weighting of the kth Gaussian such that
∑K

k=1 πk = 1. The πk may be
interpreted as the probability of drawing a data point xti from the kth Gaussian func-
tion ∼ N(µk, τ

2
k). The mixture of Gaussians is also a conjugate distribution for the

measurement errors and assumed regression relationship given in equation (2.17),
thus simplifying the mathematics. To include the Gaussian mixture model [11],
equations (2.24) to (2.26) needs to be replaced by

p(D|α, β, σ, ψ, I) =
n∏

i=1

K∑
k=1

πk

2π
√

detVk,i
exp

[
−1

2
(zi − ζk)T V−1

k,i (zi − ζk)
]
, (2.43)

where ψ is an abbreviation for the nuisance parameters µk, τk, πk for k = 1 to K,
and

zi =

( yi

xi

)
, ζk =

(
α + βµk

µk

)
, (zi − ζk) =

( yi − α − βµk

xi − µk

)
, (2.44)

and

Vk,i =

(
β2τ2

k + σ
2 + σ2

y,i βτ2
k

βτ2
k τ2

k + σ
2
x,i

)
. (2.45)

We need to specify priors for the nuisance parameters, πk, µk and τk. We adopt
a Dirichlet 13 prior for πi.

π1, π2, · · · , πk ∼ Dirichlet[γ1, γ2, · · · , γk], where γi = 1 for all i. (2.46)

13 The Dirichlet distribution is a multivariate generalization of the β distribution. The β distribution is a
conjugate prior for the binomial distribution while the Dirichlet distribution is a conjugate prior for the
multinomial distribution.
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This insures that
∑K

i=1 πi = 1. The expectation value of πi is given by

⟨πi⟩ =
γi∑K

i=1 γi
= 1/K (2.47)

It is often sufficient to use only two Gaussian components in the mixture model, in
which case π2 = 1 − π1.

Figure 2.10 Graphical model of the multilevel Bayes calculation for a Gaussian
mixture model. The solid lines connecting nodes denote conditional dependen-
cies with the conditional probabilities listed below. The absence of a connection
denotes conditional independence. The dashed lines represent deterministic con-
ditionals.

We adopt a Gaussian prior for the individual µk, with a common mean µ0 and
variance u2. This reflects a prior belief that the distribution of xt is likely to be
fairly unimodal, i.e., the individual Gaussian functions are more likely to be close
together than far apart. Thus

µk ∼ N(µ0, u2). (2.48)
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We will adopt a normalized modified scale invariant prior for u according to

p(u|I) =
(u + u0)−1

ln(1 + umax
u0

)
. (2.49)

Based on prior knowledge of the measurement apparatus, the break point u0 was
set = Mean[σx,i]. For u < u0, p(u|I) behaves like a flat prior and for u > u0 behaves
like a scale invariant prior.

Figure 2.10 illustrates graphically the multilevel Bayes components of the cur-
rent Bayesian calculation 14.

2.5.1 Example

A two Gaussian mixture model was employed to fit a simple regression line data
set, consisting of 22 points, that is given in Table 2.3 and described in more detail
in example 2 of Section 2.7.4. In this case the model parameters are
α, β, σ, π1, µ1, τ1, µ2, τ2, µ0, u. It is convenient to refer to Figure 2.10. Here π1 is the
weighting of the first Gaussian and since there are only two, π2 = 1−π1 so π2 is not
required as a separate parameter. We assumed flat to scale invariant (FTSI) priors
for the σ, τ1, τ2, u as described in Section 2.3.2, and flat priors for the remaining
parameters. The results are shown in Figure 2.11.

The marginal distributions for the two pairs of µ parameters (dashed and solid),
and τ parameters are shown in panels (a) and (b) of Figure 2.12. Since both µ1

and µ2 are free to explore the entire prior range, their distributions are degenerate
leading to similar multi-peak marginals as expected. The same is true of τ1 and
τ2. We can re-label these subscripts for the parameter vectors by organizing them
such that π1 < π2. This yields panels (c) and (d) in Figure 2.12 in which the lower
weight distributions are dashed. These latter distributions are more distinctive and
it is clear that the lower weight Gaussian allows for a range of narrower peaks that
supplement a better defined higher weight broad Gaussian.

The same data set was re-analyzed using a single Gaussian model and yielded
almost identical results to those shown in Figure 2.11. Thus the current data set
does not justify a multiple Gaussian mixture model.

14 According to Loredo (2013), “The impact of the graph structure on a model’s predictive ability becomes less
intuitively accessible as complexity grows, making predictive tests of MLMs important, but also nontrivial;
simple posterior predictive tests may be insensitive to significant discrepancies. An exemplary feature of the
SNe Ia MLM work of Mandel et al. (2011) is the use of careful predictive checks, implemented via a
frequentist cross-validation procedure, to quantitatively assess the adequacy of various aspects of the model
(see Carroll et al. 2006 for intro to this topic).”



2.6 Regression with multiple independent variables 89

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x

y

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x

y

0
.0

4
0

-0.1 0.15
0

2

4

6

8

Α

P
D

F

0
.6

5

0.5 1.
0

1

2

3

4

Β
P

D
F

0
.1

3
2

0.15 0.3
0

2

4

6

8

10

12

14

Σ

P
D

F

Figure 2.11 The top left panel shows the true regression line and the simulated
data. The right panel shows overlaid the FMCMC mean regression line fit (black
solid line) and the mean ±1σ fit uncertainty (dashed curves) compared to the true
regression line (gray). The following 3 panels compares the posterior marginal
distributions for the regression line parameters α, β, σ to their true values.

2.6 Regression with multiple
independent variables

The results of Section 2.3 and 2.5 assume a single independent variable. In many
situations a number of different factors significantly influence the dependent vari-
able. For example income may depend on education, sex and age. In astronomy
the X-ray luminosity of a galaxy might be related to the optical luminosity and
redshift. We can readily extend the formalism developed to p independent variable
(following Kelly 2007) [11]. Equation (2.17) becomes

yti = α + β
T xti + ϵ, (2.50)

where β is now a p-element column vector and xti is a a p-element column vector
containing the true values of the independent variables for the ith data point. For
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Figure 2.12 The marginal distributions for the two pairs of µ parameters (solid
and dashed curves), and the two τ parameters are shown in panels (a) and (b).
Panels (c) and (d) show the re-labeled µ and τ distributions (see text).

example, for p = 2, equation (2.50) becomes

yti = α + β1 xti,1 + β2 xti,2 + ϵ. (2.51)

If we use a Gaussian mixture model to approximate the intrinsic dispersion of
the independent variables then the xti is given by K multivariate normal densities
with p-element mean vectors µk, p × p covariance matrices Tk, and weights πk.
Thus

p(xti|ψ, I) =
K∑

k=1

πkNp(µk,Tk), (2.52)

where ψ is an abbreviation for the nuisance parameters πk, µk,Tk for k = 1 to K.
We also use the symbol θ as an abbreviation for the regression parameters α,β, σ.
The Tk matrix is

Tk =


Tk11 Tk12 · Tk1p

Tk21 Tk22 · Tk2p

· · · ·
· · · ·

Tkp1 · · Tkpp

 =

τ2

k1 Tk12 · Tk1p

Tk21 τ2
k2 · Tk2p

· · · ·
· · · ·

Tkp1 · · τ2
kp

 , (2.53)

The measured value of xti is the p-element vector xi. As before the combina-
tion of the measured dependent variable, yi, and independent variable vector, xi is
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represented by zi, a p + 1 element column vector.

zi =


yi

x1i

·
x(p+1)i

 , (2.54)

At this point we can also allow for the possibility of correlations in the measure-
ment errors by employing a (p + 1) × (p + 1) covariance matrix Σi. Thus

p(yi, xi|yti, xti, I) = Np+1(
[
yti, xti

] |Σi). (2.55)

If the measurements are uncorrelated then Σi is a diagonal matrix.
The likelihood is given by

p(D|θ, ψ, I) =
n∏

i=1

K∑
k=1

πk

(2π)p+1
√

detVk,i
exp

[
−1

2
(zi − ζk)T V−1

k,i (zi − ζk)
]
, (2.56)

where

ζk =


α + βTµk

µ1

·
µ(p+1)i

 , (zi − ζk) =


yi − α − βTµk

x1i − µ1

·
x(p+1)i − µ(p+1)i

 , (2.57)

and

Vk,i =

(
βT Tkβ + σ

2 + σ2
y,i βT Tk + σ

T
xy,i

Tkβ + σxy,i Tk + Σx,i

)
. (2.58)

ζk is the mean vector of zi, Vk,i is the (p + 1) × (p + 1) covariance matrix of zi for
Gaussian function k, σ2

y,i is the variance of the measurement error for yi, σxy,i is the
p-element vector of covariances between the measurement errors on yi and xi, and
Σx,i is the p × p covariance matrix of measurement errors on xi.

2.6.1 Example: two independent variables

Consider the special case of p = 2, for two independent variables. We start with Σi

Σi =


σ2

y,i σx1y,i σx2y,i

σx1y,i σ2
x1,i

σx1 x2,i

σx2y,i σx1 x2,i σ2
x2,i

 . (2.59)

This can be factored as

Σi =

(
σ2

y,i σT
xy,i

σxy,i Σx,i

)
. (2.60)
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Of course, if the covariances between the measurement errors are all zero then
Equation (2.59)

Σi =


σ2

y,i 0 0
0 σ2

x1,i
0

0 0 σ2
x2,i

 . (2.61)

The Tk matrix in equation (2.53) becomes

Tk =

(
τ2

k1 Tk12

Tk12 τ2
k2

)
, (2.62)

and Vk,i from equation (2.58) becomes
β2

1τ
2
k1 + β

2
2τ

2
k2 + σ

2 + σ2
y,i β1τ

2
k1 + β2Tk12 + σx1y,i β1Tk12 + β2τ

2
k2 + σx2y,i

β1τ
2
k1 + β2Tk12 + σx1y,i τ2

k1 + σ
2
x1,i Tk12 + σx1 x2,i

β1Tk12 + βk2τ
2
k2 + σx2y,i Tk12 + σx1 x2,i τ2

k2 + σ
2
x2,i


(2.63)

If the covariances between the measurement errors are all zero as well as the off
diagonal elements of Tk, then Vk,i simplifies to

Vk,i =


β2

1τ
2
k1 + β

2
2τ

2
k2 + σ

2 + σ2
y,i β1τ

2
k1 β2τ

2
k2

β1τ
2
k1 τ2

k1 + σ
2
x1,i 0

β2τ
2
k2 0 τ2

k2 + σ
2
x2,i

 . (2.64)

2.7 Selection effects

Selection effects play an important role in many observations and measurements.
For example instrumental detection systems often result in an upper and/or lower
limit on what can be detected. This could result in a biased estimate of the regres-
sion parameters. Here we explore how the combination of selection effects and
measurement errors affect our regression results. Suppose one collects a sample
of n sources out of a possible sample of N sources where N itself is unknown
parameter in the analysis. For example, in astronomy one often performs a flux-
limited survey of some sample area of the sky containing N sources where N is
an unknown. Because of selection effects and noise we only detect n which yield
the observed/measured values. We would like to know what effect the missing
sources would have on the regression. Let’s examine how this can be achieved
in the Bayesian framework (following Kelly 2007, Kelly & Fan, 2008) [11] [12] .

In Section 2.3, x, y denoted the known observed/measured independent and de-
pendent variables and xt, yt, the true but unknown values of these variables. The
xt, yt values were referred to as hidden variables. Here we need to introduce the
idea of missing data and extend the conversation to include the missing data just as
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we did for the hidden variables. We first extend the meaning of x, y to include both
the n observed data and the N − n missing data, e.g., x = (xobs, xmis). Similarly, we
will extend the meaning of xt, yt to include true coordinates of both the n observed
data and the N − n the missing data, e.g., xt = (xtobs , xtmis). We can incorporate the
sample selection into the likelihood by introducing a new variable for each source
called an indicator variable qi. For anyone of the n detected sources qi = 1, and
qi = 0 for any of the N − n missing sources. Let q represent a vector of all N
values of qi. In this analysis we will assume that the selection function, p(q|x, y, I),
depends only on the measured quantities, x and y.

To make the length of the equations more manageable we will let θ represent
the linear regression variables α, β, σ and ψ represent all the nuisance variables
needed to define the probability of the hidden variables, xt. In the example shown
in Figure 2.10, ψ included the variables µ0, u, µk, τk, πk. As usual, I represents our
prior information that includes knowledge of σ2

xi, σ
2
yi, the known variances of the

Gaussian measurement errors. I also include any prior knowledge of the selection
effect(s).

The complete likelihood of the observed data, hidden variables, missing data,
and N is given by

p(x, y, xt, yt, q,N|θ, ψ, I) = p(N|I) p(q|x, y, I) p(x, y|xt, yt, I)

× p(yt|xt, θ, I) p(xt|ψ,N, I). (2.65)

After integrating over the hidden variables (we saw how in Section 2.3) equa-
tion (2.65) becomes

p(x, y, q,N|θ, ψ, I) = p(N|I) p(x, y, q|θ, ψ,N, I). (2.66)

Factor p(x, y,q|θ, ψ,N, I), the second term on the right of equation (2.66), using the
product rule and remove redundant conditionals.

p(x, y,q|θ, ψ,N, I) = p(q|x, y, I) p(x, y|θ, ψ,N, I). (2.67)

We can marginalize over q in equation (2.67) as follows

p(x, y|θ, ψ,N, I) =
∑

q
p(q|x, y, I) p(x, y|θ, ψ,N, I), (2.68)

where the sum is over all possible configurations of the vector q. Since p(x, y|θ, ψ,N, I)
is conditional on N, each possible configuration of the q vector contains n values
with q = 1 and N − n values of q = 0. The total number of these configurations is
given by the binomial coefficient CN

n = N!/n!(N − n)!. In component form equa-
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tion (2.68) becomes

p(x, y|θ, ψ,N, I) = CN
n

n∏
(i=1)obs

p(qi = 1|xi, yi, I) p(xi, yi|θ, ψ, I)

×
N−n∏

( j=1)mis

p(qi = 0|x j, y j, I) × p(x j, y j|θ, ψ, I),

(2.69)

In general, N is an unknown parameter in the analysis which we will will even-
tually marginalize over. To do this we will have treat N as the random variable
and consider the number of sources detected, n, as given. The probability of N is
described by a negative binomial distribution which we will get to shortly.

Now integrate this equation over dxmis and dymis, the missing data for which
q = 0, to obtain the observed likelihood p(xobs, yobs|θ, ψ,N, I) conditional on N.
Recall that x = xobs, xmis and y = yobs, ymis.

p(xobs, yobs|θ, ψ,N, I) = CN
n

n∏
(i=1)obs

p(qi = 1|xi, yi, I) p(xi, yi|θ, ψ, I)

×
N−n∏

( j=1)mis

∫ ∞

−∞

∫ ∞

−∞
p(qi = 0|x j, y j, I)

× p(x j, y j|θ, ψ, I)dxmis j dymis j , (2.70)

As a next step, rewrite the integral in equation (2.70).

N−n∏
( j=1)mis

∫ ∞

−∞

∫ ∞

−∞
p(q j = 0|x j, y j, I) p(x j, y j|θ, ψ, I)dxmis j dymis j

=

[∫ ∞

−∞

∫ ∞

−∞
p(q = 0|x, y, I) p(x, y|θ, ψ, I)dx dy

]N−n

=
[
p(q = 0|θ, ψ, I)

]N−n . (2.71)

The quantity p(q = 0|θ, ψ, I) is the weighted average probability (over all x, y) of
not selecting a source for a particular choice of θ, ψ. The weighting function is
p(x, y|θ, ψ, I). Also

p(q = 0|θ, ψ, I) = 1 − p(q = 1|θ, ψ, I), (2.72)

where p(q = 1|θ, ψ, I) = the probability of selecting a source.
Using equation (2.71), we can rewrite equation (2.70) as

p(xobs, yobs|θ, ψ,N, I) = CN
n

[
p(q = 0|θ, ψ, I)

]N−n



2.7 Selection effects 95

×
n∏

(i=1)obs

p(qi = 1|xi, yi, I) p(xi, yi|θ, ψ, I)

(2.73)

We can simplify the term involving the product over the observed sources in
equation (2.73).

n∏
(i=1)obs

p(qi = 1|xi, yi, I) p(xi, yi|θ, ψ, I) =
n∏

(i=1)obs

p(qi = 1|xi, yi, I)

×
n∏

(i=1)obs

p(xi, yi|θ, ψ, I. (2.74)

The first product on the RHS does not depend on the regression parameters and is
just a constant which can be dropped.

We are now ready to marginalize over N. First rewrite equation (2.66) for the
subset of observed quantities now that we have marginalized over q and the missing
data.

p(xobs, yobs,N|θ, ψ, I) = p(N|I) p(xobs, yobs|θ, ψ,N, I). (2.75)

To marginalize over N, we sum over p(xobs, yobs,N|θ, ψ, I) from N = n to ∞, after
specifying a suitable prior for N. We will assume a scale invariant prior for N so
that p(N|I) ∝ 1/N.

p(xobs, yobs|θ, ψ, I) ∝ A ×
N∑

N=n

1
N

CN
n

[
p(q = 0|θ, ψ, I)

]N−n , (2.76)

where

A =
n∏

(i=1)obs

p(xi, yi|θ, ψ, I) (2.77)

Now
1
N

CN
n =

1
N

CN−1
n−1

N
n
=

1
n

CN−1
n−1 . (2.78)

Substitute for 1
N CN

n in equation (2.76) and multiply by[
p(q = 1|θ, ψ, I)

]n × [
p(q = 1|θ, ψ, I)

]−n

The RHS of equation (2.76) can be rewritten as

{
∞∑

N=n

CN−1
n−1

[
p(q = 1|θ, ψ, I)

]n [
p(q = 0|θ, ψ, I)

]N−n}

×A 1
n

[
p(q = 1|θ, ψ, I)

]−n . (2.79)
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Now the terms within the {· · ·} brackets is the sum of a negative binomial distribu-
tion, so

{
∞∑

N=n

CN−1
n−1

[
p(q = 1|θ, ψ, I)

]n [
p(q = 0|θ, ψ, I)

]N−n} = 1. (2.80)

Within the context of this analysis, the negative binomial distribution gives the
probability that the total number of sources is N, given that we have selected
n sources where the probability of selecting a single source is given by p(q =
1|θ, ψ, I). As a reminder, p(q = 1|θ, ψ, I) is the weighted average probability (over
all x, y) of selecting a single source for a particular choice of θ, ψ. The weighting
function is p(x, y|θ, ψ, I).

p(q = 1|θ, ψ, I) =
∫ ∫

p(q = 1|x, y, I) p(x, y|θ, ψ, I)dx dy. (2.81)

As a consequence equation (2.80), and ignoring the constant 1/n factor, equa-
tion (2.76) simplifies to

p(xobs, yobs|θ, ψ, I) ∝ [
p(q = 1|θ, ψ, I)

]−n

×
n∏

(i=1)obs

p(xi, yi|θ, ψ, I), (2.82)

where
∏n

(i=1)obs
p(xi, yi|θ, ψ, I) = p(D|θ, ψ, I). For a single Gaussian model for the

intrinsic dispersion of xt, p(D|θ, ψ, I) is given by equation (2.24). If we represent
the intrinsic dispersion of xt by a mixture of K Gaussian functions then p(D|θ, ψ, I)
is given by equation (2.43).

2.7.1 Selection on measured independent variables

Our previous results pertain to the general case where the selection is based on
measured dependent and independent variables. If the sample is selected based on
the measured independent variables (p(q|x, y, I) = p(q|x, I)) and the measurement
errors for x and y are independent, then inference on the regression parameters θ is
unaffected by selection effects because x is independent of θ.

2.7.2 Selection on measured dependent variable

Sharp lower cutoff in measured dependent variable

In this case suppose there is a sharp lower cutoff, ycut, so p(qi = 1|yi, I) = 1 for
yi ≥ ycut and p(qi = 1|yi, I) = 0 for yi < ycut. The argument of the first term in equa-
tion( 2.82) is

[
p(q = 1|θ, ψ, I)

]−n, the single source selection probability averaged
over all x, y, for a give choice of regression parameters θ. For some values of θ the
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selection probability will be higher than for other values. By depending inversely
on the selection probability, this term corrects for this effect.

A common selection effect that arises in astronomy is referred to as the Malmquist
bias after Swedish astronomer Gunnar Malmquist (1893 to 1982) who discussed it
in the 1920’s. For a good discussion of the topic see Wall & Jenkins (2012) [17].
In a flux-limited sample there is a built in luminosity versus distance correlation
because brighter objects can be detected at greater distances 15. The threshold flux
or flux density limit is usually set at a level of 3 to 5 times the measurement uncer-
tainty in the dependent coordinate, designated slim where s stands for flux density.

This same measurement uncertainty introduces another effect 16 that competes
with the Malmquist bias because in general there are many more low luminosity
objects than high luminosity objects - the number of objects as a function of the
observed flux density N(s) (referred to as source counts) usually rises steeply to
small values of s. In a flux-limited survey an object is only considered detected if
the flux exceed the lower limit slim. Since the selection function depends on the
measured flux density, si, some objects with true s > slim can be missed in the
survey because of a negative noise excursion while others with a true s < slim

can be detected because of a positive noise excursion. Since there are more low
luminosity sources than high luminosity sources this can bias the faint end of the
catalog towards lower luminosity objects 17.

In the following section we analyze in detail a simple problem for which the
selection function is a smooth function of the measured dependent variable instead
of a sharp cutoff.

2.7.3 Example 1: gradual cutoff in measured y

Panel (a) of Figure 2.13 shows the true regression line together with the full sim-
ulated data set after adding intrinsic scatter and measurement errors in both coor-
dinates. The full data set is given in Table 2.2. The error bars indicate the 1σ IID
measurement errors. Panel (b) shows the selection function p(q = 1|y, I) which
depends only on the measured value of the dependent variable y. The selection
function employed is a cumulative normal distribution given by

p(q = 1|y, I) =
1

√
2πσs

∫ y

−∞
exp

[
− (t − ϕ)2

2σ2
s

]
dt

15 This also means that two statistically independent luminosities (e.g., X-ray and optical) may appear to
correlate because of their mutual correlation with distance.

16 Sometimes this effect is also confusingly referred to by the generic term Malmquist bias.
17 This effect does not occur if the observational error is a constant fraction of the flux density, and the source

counts are close to a power law [17].
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Figure 2.13 Panel (a) shows the simulated straight line together with the full sim-
ulated data set after adding intrinsic scatter and measurement errors in both coor-
dinates. The error bars indicate the 1σ IID measurement errors. Panel (b) shows
the selection function p(q = 1|y, I). Panel (c) shows the same simulated straight
line with only the selected data set. Panel (d) shows the FMCMC mean regression
line fit (black solid line) to the selected data set, ignoring the selection function,
and the mean ±1σ fit uncertainty (dashed curves) compared to the simulated line
(gray). Panel (e) is the same as panel (c) with four additions. The thick solid
black wiggly curve is the mode of the FMCMC regression line fit distribution.
The solid black line is the median of the regression line fit distribution. The dot-
dashed black line is the mean of the regression line fit distribution. The dashed
gray line is the MAP fit. The upper and lower dashed curves are the 68% credible
region boundaries of the FMCMC regression line fit distribution. In panel (f), the
mode of the fit distribution (wiggly curve in panel (e)) has been replaced by the
best fitting straight line.

=
1
2

(1 + erf[
y − ϕ
√

2σs
]), (2.83)

where the break parameter ϕ = 0.16 and σs = 0.1. The selected data is indicated
in the third column of Table 2.2 by a “Yes.” The error bars indicate the 1σ IID
measurement errors which are equal to σx = 0.046 and σy = 0.080. The true
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x y Selected

-0.4649 -0.1723 No
-0.3748 -0.1549 No
-0.4397 -0.3229 No
-0.3315 -0.1996 No
-0.2944 -0.1313 No
-0.2604 -0.3780 No
-0.1842 0.2741 Yes
-0.1451 -0.1637 No
-0.1651 0.0305 No
-0.0836 -0.0816 No
-0.0685 0.1097 Yes
0.0044 0.2641 Yes
0.0368 -0.0563 No
0.0849 -0.0343 No
0.0886 0.0538 No
0.1293 0.2086 Yes
0.1941 0.1645 Yes
0.2561 0.1490 Yes
0.3419 0.1475 No
0.2941 0.4528 Yes
0.3963 0.6220 Yes
0.3976 0.3283 Yes
0.5351 0.3292 Yes

Table 2.2 The table contains 23 pairs of measured x, y values.

regression line equation is

yti = 0.0481 + 0.8730 xti + ϵi, (2.84)

where ϵi ∼ N(0, σ2) and σ = 0.16. Panel (c) of Figure 2.13 shows the true regres-
sion line with only the selected points.

Our starting point is the joint posterior distribution for θ, ψ.

p(θ, ψ|D, I) ∝ p(θ, ψ|I) p(D|θ, ψ, I)

= p(θ, ψ|I) p(xobs, yobs|θ, ψ, I), (2.85)

where

p(xobs, yobs|θ, ψ, I) ∝ [
p(q = 1|θ, ψ, I)

]−n

×
n∏

(i=1)obs

p(xi, yi|θ, ψ, I). (2.86)

where
∏n

(i=1)obs
p(xi, yi|θ, ψ, I) is given by equation (2.24) together with equa-
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Figure 2.14 The dependence of the selection function on the regression slope
parameter β for different choices of the selection function break parameter, ϕ,

tions (2.25) and (2.26).
Recall that θ is short for the regression parameters α, β, σ. In this example we

employ a single Gaussian model for the intrinsic dispersion of the independent
variable, xt, so ψ = µ, τ. The first term in equation (2.86) contains the quantity
p(q = 1|θ, ψ, I) = p(q = 1|α, β, σ, ψ, I) which is computed from equation (2.81). It
is the weighted average probability (over all x, y) of selecting a source for a partic-
ular choice of α, β, σ, ψ. The weighting function is p(x, y|α, β, σ, ψ, I). Figure 2.14
shows some examples of the dependence of p(q = 1|α, β, σ, ψ, I) on the slope pa-
rameter, β, with the other parameters held constant, for several different choices of
the selection function break parameter ϕ. With ϕ = −50, which is much less than
the minimum measured y value, p(q = 1|α, β, σ, ψ, I) = 1 for all β as would be
expected. As ϕ increases the selection function shows a strong dependence on β.

A useful way of computing the marginal distribution for any of the parameters is
with the fusion Markov chain Monte Carlo (FMCMC) method described in Chap-
ter 1 of this supplement. We assumed flat priors for α, β, µ and a FTSI (flat to scale
invariant) prior for both τ and σ of the form

p(τ|I) =
(τ + τ0)−1

ln(1 + τmax
τ0

)
. (2.87)
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The break point, τ0, was set equal to the characteristic measurement error in that x
coordinate (Mean[σx,i]), based on prior knowledge of the measurement apparatus.
The break point, σ0, was set = 2 ×Mean[σy,i].
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Figure 2.15 Posterior marginal distributions for the regression line parameters
α, β, σ and nuisance parameters µ, τ.

Panel (d) of Figure 2.13 shows the FMCMC mean regression line fit (black solid
line) to the selected data set, ignoring the selection function, and the mean ±1σ
fit uncertainty (dashed curves) compared to the true regression line (gray). The fit
uncertainty is computed as follows. Each post burn-in FMCMC iteration yields an
intercept and slope. We compute a set of model y predictions for a uniform grid of
x values for that particular intercept and slope. This is repeated for each FMCMC
iteration. At each x grid point the mean and standard deviation of the corresponding
y values are computed. The fit uncertainty curves are then plots of this grid of mean
± 1 standard deviation values.

Ignoring the selection effect, results in a good regression fit to the selected data
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which is much shallower than the true regression line. The maximum a posterior
(MAP) fit for this case is identical to the mean fit within the line thickness.

In panel (e) we allow for the selection function in the analysis. Panel (e) is the
same as panel (c) with four additions. The thick solid black wiggly curve is the
mode of the FMCMC regression line fit distribution. The solid black line is the
median of the regression line fit distribution. The dot-dashed black line is the mean
of the regression line fit distribution. The dashed gray line is the MAP fit. The upper
and lower dashed curves are the 68% credible region boundaries of the FMCMC
regression line fit distribution. Clearly the regression line fit distribution is very
asymmetic. In panel (f), the mode of the fit distribution (wiggly curve in panel (e))
has been replaced by best fitting straight line given by equation (2.88). This line is
much closer to the true regression line than either the median or mean.

y = −0.0349 + 0.821 x, (2.88)

Figure 2.15 shows the marginal distributions for the regression line parameters
α, β, σ and nuisance parameters µ, τ. The values used in the simulation for α, β, σ,
shown by the solid vertical lines, are in good agreement with the distributions.

2.7.4 Example 2: gradual cutoff in measured y

The full data set for this example is given in Table 2.3 and the selected data is
indicated in the third column by a “Yes.” Panel (a) of Figure 2.16 shows the true
regression line together with the full simulated data set after adding intrinsic scatter
and measurement errors in both coordinates. The error bars indicate the 1σ IID
measurement errors which are equal to σx = 0.051 and σy = 0.066. The true
regression line (gray line) equation is given by

yti = 0.0396 + 0.6502 xti + ϵi, (2.89)

where ϵi ∼ N(0, σ2) and σ = 0.132. Panel (b) shows the selection function p(q =
1|y, I) which depends only on the measured value of the dependent variable y.
The selection function employed is the same cummulative normal distribution em-
ployed in the previous example, only the break parameter is ϕ = 0.18. Panel (c) of
Figure 2.16 shows the same simulated straight line with only the selected data set.

Panel (d) of Figure 2.13 shows the FMCMC mean regression line fit (black solid
line) to the selected data set, ignoring the selection function, and the mean ±1σ
fit uncertainty (dashed curves) compared to the simulated line (gray). Ignoring the
selection effect results in a good regression fit to the selected data which is much
shallower than the true regression line. The maximum a posterior (MAP) fit for
this case is identical to the mean fit within the line thickness.

In panel (e) we allow for the selection function in the analysis. The solid black
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x y Selected

-0.2268 -0.1069 No
-0.2472 -0.3163 No
-0.1124 -0.1824 No
-0.0624 -0.1056 No
-0.0213 0.3405 Yes
0.0421 -0.0441 No
0.0826 0.1417 No
0.1212 0.0195 No
0.1550 0.2552 Yes
0.2849 0.2312 No
0.2451 0.0931 Yes
0.3298 0.2030 Yes
0.4059 0.0083 No
0.3347 0.3687 Yes
0.4719 0.6837 Yes
0.5035 0.4236 Yes
0.6641 0.5265 Yes
0.5395 0.3458 Yes
0.7036 0.3756 Yes
0.6428 0.5320 Yes
0.7528 0.5235 Yes
0.7193 0.4216 Yes

Table 2.3 The table contains 22 pairs of measured x, y values.

wiggly curve is the mode of the FMCMC regression line fit distribution after al-
lowing for the selection function. It is very close to the simulated line (gray). The
upper and lower dashed curves are the 68% credible region boundaries of the FM-
CMC regression line fit distribution. The fit uncertainty is larger when we allow for
the selection effects and is very asymmetric. In panel (f), the mode of the fit distri-
bution (wiggly curve in panel (e)) has been replaced by the best fitting straight line
to the mode curve given by equation (2.90). The MAP fit line is indicated by the
dot-dashed line.

y = 0.01004 + 0.674 x, (2.90)

The agreement with the true regression line is very good.
Figure 2.17 shows the marginal distributions for the regression line parameters

α, β, σ and nuisance parameters µ, τ. The values used in the simulation for α, β, σ,
shown by the solid vertical lines, are in good agreement with the distributions.
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Figure 2.16 Panel (a) shows the simulated straight line together with the second
example full simulated data set after adding intrinsic scatter and measurement er-
rors in both coordinates. The error bars indicate the 1σ IID measurement errors.
Panel (b) shows the selection function p(q = 1|y, I). Panel (c) shows the same
simulated straight line with only the selected data set. Panel (d) shows the FM-
CMC mean regression line fit (black solid line) to the selected data set, ignoring
the selection function, and the mean ±1σ fit uncertainty (dashed curves) com-
pared to the simulated line (gray). In panel (e) we allow for the selection function
in the analysis. The solid black wiggly curve is the mode of the FMCMC regres-
sion line fit distribution. The upper and lower dashed curves are the 68% credible
region boundaries of the FMCMC regression line fit distribution. In panel (f), the
mode of the fit distribution (wiggly curve in panel (e)) has been replaced by the
best fitting straight line to the mode curve. The MAP fit line is indicated by the
dot-dashed line.

2.8 Regression with non detections

Suppose you make measurements of some quantity y at a specified set of values of
the independent variable x. In astronomy y could be the flux of a source in some
frequency band and x might be the optical flux or redshift. It is commonly the case
that a source for which y exceeds three times the background noise level is consid-
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Figure 2.17 Posterior marginal distributions for the regression line parameters
α, β, σ and nuisance parameters µ, τ.

ered detected, otherwise considered a non detection. In the case of a non detection,
the y value is often specified by an upper limit set = 3× the background noise level.
Non detections involving an upper and/or lower limit are referred to as “censored”
data. See Feigelson (1992) [6] for a review of censored data in astronomy.

The reader is referred to Kelly (2007) [13] for a Bayesian solution to regression
analysis of censored data, with measurement errors in both dependent and inde-
pendent coordinates, by employing a Gaussian mixture model for the true values
of the independent variables.

2.9 Summary

In this chapter we have introduced multilevel modeling (MLM) as away to handle
hidden variables and missing data problems. Our first example was concerned with
fitting a straight line model to some data with measurement errors in both the de-
pendent (y) and independent (x) variables. It was necessary to introduce additional
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variables xti to represent the hidden true x coordinates which we marginalized over.
By employing an informative prior for xt, we can learn about the mean and variance
of the xt values and avoid the biased estimates of the intercept and slope common
to ordinary least-squares analysis of this situation. A mixture of Gaussians (Gaus-
sian mixture model) is flexible enough to model a wide variety of distributions and
simplifies the integration over xt. The analytic expressions were then generalized
to allow for correlations between the x, y measurement errors.

We extended this approach to handle linear regression problems where there is
an intrinsic scatter in the relationship between the true hidden values of the depen-
dent and independent variables. If the intrinsic scatter is modeled by a Gaussian,
then the integration over the hidden variables can be evaluated analytically, greatly
facilitating the calculations. An alternative is to treat the hidden true coordinates
as additional parameters and use MCMC techniques to integrate over these param-
eters to extract the regression parameters. This is applicable even if the intrinsic
scatter is non Gaussian but can still be parametrically modeled. Another advantage
is that it yields the marginal distributions of the true hidden xt, yt values to expose
representative samples of the underlying regression. The multilevel (hierarchical)
Bayesian regression effectively de-convolves the blurring effect of the measure-
ment errors. We illustrated both of these approaches in a detailed analysis of two
simulated data sets employing the fusion MCMC (FMCMC) algorithm. We also
explored the effect of measurement errors on the regression correlation coefficient.

The analysis outlined above was then extended to regression with multiple in-
dependent variables. Section 2.7 was devoted to handling selection effects which
cause some potential data to be missed giving rise to biased estimates. We learned
how to extend the regression analysis to correct for the missing data and carried
out a detailed analysis of two simulated data sets which had a selection function
which gave rise to a gradual cutoff in the measured dependent variable. We also
explored the dependence of the selection effect on the regression slope parameter
for a variety of values of the selection break parameter.

A valuable reference used in preparing the chapter was Kelly (2007) [11] which
also includes a discussion of how to handle Bayesian regression analysis when
some of the data are only upper limits, referred to as censored data. Hopefully, the
analysis in this chapter is detailed enough to enable the reader to apply these tech-
niques to their own data and develop multilevel models (MLM) for applications in
new areas. Loredo (2013) [16] provides a broader review of MLM astrostatistical
applications, some of the latest of which are described the first volume of ‘Astro-
physical Challenges for the New Astronomy’ [10].
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Appendix A

FMCMC control system details

In this appendix we describe the details behind part of the complex control sys-
tem that automates the choice of efficient proposal distributions even when the pa-
rameters exhibit strong correlations. In broad terms the fusion MCMC (FMCMC)
algorithms employs two different proposal schemes, the ‘I’ proposals and the ‘C’
proposals. The ‘I’ scheme is ideally suited for the exploration of independent pa-
rameters while the ‘C’ scheme is well suited to dealing with correlated parameters.
Each scheme is employed 50% of the time and the two are designed to work to-
gether.

Here we focus on the ‘I’ proposal scheme which employs a multiple control
system (CS). Let m = the number of model parameters. For the ‘I’ proposals we
employ a separate Gaussian proposal distribution for each parameter. The chal-
lenge here is to choose a suitable σ for each of the m Gaussian distributions for
each parallel chain. To tune the σ manually involves running a series of FMCMC
trials, each time varying individual σ until the FMCMC appears to converge on
an equilibrium distribution with a proposal acceptance rate that is reasonable for
the number of parameters involved, e.g., approximately 25% for a large number
of parameters [52]. The parallel tempering feature of our analysis compounds the
difficulty because each of the parallel chains is exploring a different probability dis-
tribution. This is because the likelihood is raised to a different power, β. One of the
applications of FMCMC is in the arena of exoplanet research where it is employed
as a multi-planet Kepler periodgram. For an 8 planet model with 42 parameters 1

and 8 parallel chains requires 336 different σ values. Faced with this problem the
author decided to devise a method to automate the selection of σ values.

Initially this was accomplished with two stage control system, stages 1 and 2.
The CS was subsequently improved by the additional of an initial stage now re-
ferred to as stage 0. More recent studies indicate that the combination of stage 0

1 The extra two parameters are the systematic velocity of the star and the unknown extra noise (stellar jitter)
parameter.
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followed by stage 2 generally performs more efficiently than the combination of
stages 0, 1, and 2. Future versions of the code will likely see the complete demise
of stage 1, but for the moment it remains as an option that can be turned on or
off. Sections A.1, A.2 and A.3 describes these stages. The various stages can be
separately turned on or off by a set of binary (0 or 1) control switches labelled sw0,
sw1, and sw5 as outlined below.

A.1 Control system stage 0

If sw0 is set = 1, then the control system begins by executing stage 0. In what
follows σα,β represents the proposal σ for the parameter Xα,β, indexed by α for
each parameter and indexed by β for each chain. Let Xi,β represent the vector of
parameter values for the ith iteration. As a first step we choose starting values for
{Xα,β}. The same initial set is used for each parallel chain. An initial sequence of n0
iterations (typically n0 = 5000) is executed to crudely home in on a set of proposal
sigma values that get the joint acceptance rate close to a desirable value. Initially
the proposal σ are automatically set equal to 15% of the user specified prior range
of each parameter. Keep in mind that the goal is to achieve an automatic CS that
can be employed for nonlinear model fitting for a wide range of problems so we
are assuming no prior experience with applying FMCMC to the particular problem
in hand. The same initial set is used for each parallel tempering chain.

In the first n0/5 iterations the number of accepted proposals and starting pro-
posal σ values are recorded. This is repeated for a second n0/5 iterations with all
the proposal σ values reduced by a factor of 5. For the next two n0/5 iterations
the proposal σ values are reduced by a further factor of 5 each time and likewise
for the last n0/5 iterations. The choice of σ values that yield an acceptance rate
closest to the desired joint acceptance rate ≈ 25% are then employed as the start-
ing σ values for the stage 2 CS. This selection of starting σ values is carried out
separately for each parallel chain. Initially there may be only a few parameters for
which the proposal σ is seriously limiting the joint acceptance rate. We will refer
to these as the critical parameters. In the exoplanet problem these are the orbital
period/frequency parameters. The stage 0 procedure to bring these key parameter
proposal σ into range will very likely drive the proposal σ for other parameters
to values which are too small. This situation is eventually remedied in stage 2. A
stage 1 option, which may be employed following stage 0, is described next. The
focus continues to be on evolving the proposal σ for the critical parameters while
the FMCMC explores the frequently multi-modal target probability distribution.
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A.2 Control system stage 1

As mentioned in the introduction of this appendix, there no longer appears to be a
need for this stage of the control system so the reader may want to skip over this
section. If sw1 is set = 1, then stage 1 is execute following stage 0. The stage 1
CS contains major and minor cycles. During the major cycles the current set of
{σα,β} are used for n1 iterations. The acceptance rate achieved during this major
cycle is compared to the target acceptance rate. If the difference for the β = 1
chain is greater than a chosen threshold, tol1, then minor cycles are employed to
explore the sensitivity of the acceptance rate to the indiviual σα,β. Only one σα,β is
perturbed in each minor cycle. The {σα,β} are updated and another major cycle run.
The algorithm involves the following steps:

1). Start with the {σα,β} set determined from stage 0 in Section A.1.
2). Choose the maximum factor, scmax, to use in perturbing the current {σα,β} val-

ues. Typically scmax = 10.
3). Major cycle iterations: set the counter nc1 = 1 and execute n1 = 1000 itera-

tions of the FMCMC with the current {σα,β} values labeled by σα(current). Keep
track of the number of accepted proposals for each chain which we represent by
a vector quantity labeled nc2. Again at iteration i, chain β is in parameter state
Xi,β.

4). Compute an error vector term, er, based on the results of the major cycle which
is given by

er = nc2 − λ × n1, (A.1)

where the acceptance rate, λ ≈ 25%. The term erβ stands for the component of
er corresponding to chain β. The switch sw is a vector of +1 and −1 values, one
for each chain. If erβ < 0, then set switch swβ = +1 , otherwise set swβ = −1.
Set Xi,β(major) equal to the set of parameter values at the end of the major cycle.

5). Minor cycle iterations: normally the major cycle is followed by a sequence
of minor cycles, one for each parameter, each for n2 = 200 iterations. In the
minor cycles each σα,β is separately perturbed to determine which of the σα,β
need to be adjusted to permit the erβ to move closer to zero. If the value of
erβ is negative for a particular β then the σα,β are all decreased in the minor
cycles, otherwise they are increased. The amount of the increase or decrease is
discussed in item 7 below.

6). Minor cycle data collection: repeat the following steps for each model param-
eter:
{

a) Set each element of the counter vector nc2 = 0. This counter keeps track
of the number of proposals accepted in the next minor cycle.
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b) Execute n2 MCMC iterations, starting from Xα,β(major), using a new value
of σα,β given by

σα(new),β = σα(current),β ×
(
scβ

)swβ
, (A.2)

where

scβ = (scmax)−scexpβ , (A.3)

and where scmax is a constant and scexpβ is given by

scexpβ = Minimum
[
1 ,

( |erβ|
λ n1

)γ]
, (A.4)

where the acceptance rate, λ ≈ 25%. For the example given in the section of the
text dealing with extra-solar planets, scmax = 10 and the value of the damping
factor, γ = 1.6.

If swβ = +1, then equation (A.2) decreases σα,β by a factor that depends on
the size of the error erβ, or increases σα,β by this factor if swβ = −1.

c) Increase the counter nc2β each time the new parameter set proposal is
accepted.

d) At the end of n2 iterations store nc2α into a counter array nbα,β and re-
set σα,β to its original value at the start of the minor cycles.
}

7). Minor cycle analysis: If swβ = +1 compute nbmax,β and nbmin,β, the maximum
and minimum values of the counter array nbα,β.

If nbmin,β < nbmax,β, only modify the σα,β for parameters for which nbα,β =
nbmax,β, according to

σα(new),β = σα(current),β ×
(
1 − gainβ ×

(
1 − scβ

))
, (A.5)

where gainβ < 1 is a simple monotonic function of β and is discussed further at
the end of this section.
Else, if nbmin,β = nbmax,β, then multiply all σα,β by (1 − gainβ × (1 − scβ)) for
use in the next major cycle.

An earlier version of the CS changed all σα,β values in proportion to their
ability to move the acceptance rate towards the target value. In some circum-
stances the stage 1 CS resulted in certain σα,β values being driven down to
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unreasonably small values. To prevent this from happening lower bounds were
imposed on all σα,β and another vector switch labeled swmin was introduced
to indicate the parameters for which this had occurred by setting that switch
component = 1 from the normal setting of 0. Restricting the changes in σα,β to
parameters corresponding to nbmax,β yielded an improved performance.

If swβ = −1, we want to decrease the acceptance rate by increasing σα,β.

In this case, if nbmin,β < nbmax,β, only modify the σα,β for parameters for which
nbα,β = nbmin,β, by a factor of 1 + gainβ × (sc−1

β − 1) for use in the next major
cycle. We adjust theσα,β for parameters that have been shown to give the biggest
reduction in the acceptance during the minor cycles, i.e., given rise to the nbmin,β

values.

Otherwise, if swβ = −1 and nbmax = nbmin, then multiply all σα,β by 1+gainβ×
(sc−1

β − 1).

8). Termination of stage 1 CS: The sequence of major and minor cycles is re-
peated unless one of two conditions is met. If the number of iterations exceeds
minCS and |erβ=1| < tol2, then the stage 1 CS is terminated and normally fol-
lowed by the stage 2 CS (if the appropriate switch is enabled, sw5 = 1). The
error signal is a count which is subject to statistical fluctuations so typically tol2
is set to a value of 1.5

√
λ × n1. Bare in mind that while the stage 1 CS is tuning

the {σα,β}, the FMCMC is homing in on the most probable parameter set. Set-
ting minCS ∼ 20, 000 iterations allows some time for the homing in process to
occur. When the number of iterations exceeds maxCS then the stage 1 CS is al-
ways terminated and again normally followed by the stage 2 CS. If the homing
in process has not happened by maxCS ∼ 60, 000 iterations, then the chances
are better it will happen during the stage 2 CS.

Between minCS and maxCS the minor cycles are turned off on any occasion
where the magnitude of the largest component er vector is < tol1. Typically
tol1 = 1.5

√
λ × n1.

The performance of the stage 1 CS can be assessed from an examination of the
error signal which is shown in Figures A.1 and A.2 for a 3 planet FMCMC fit to a
sample of Gliese 581 exoplanet data. The different traces correspond to the eight β
values employed during the test with

β = {0.09, 0.13, 0.20, 0.30, 0.42, 0.55, 0.74, 1.0}.
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The β = 1 error signal is shown by the thicker red dashed curve. Normally, the stage
1 CS is terminated as soon as number of iterations exceeds minCS and |erβ=1| <
tol2 or shut off when maxCS = 60, 000 iterations. In this particular case we set
tol2 = 0 and maxCS = 300, 000 iterations to provide a longer span of stage 1
CS activity. For both figures the gainβ was a simple monotonic function of β. In
the case of Figures A.1, the gainβ ranged from 0.6 at the lowest β value to 0.7 at
β = 1. The reduced amplitude error signal shown in Figures A.2, was achieved for
a stronger taper of gainβ ranging from 0.4 at the lowest β value to 0.7 at β = 1. The
final gainβ equation employed is
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Figure A.1 The stage 1 control system (CS) error signal versus iteration for a CS
gainβ value ranging from 0.6 at the lowest β value to 0.7 at β = 1.

gainβ = 0.361 + 0.625β − 0.290β2. (A.6)

A.3 Control system stage 2

If sw5 is set = 1, then stage 2 is execute following stages 0 and 1, or if sw1=0,
then stage 2 follows immediately after stage 0. For sw5=0, stage 2 is never exe-
cuted. As mentioned above recent studies indicate that the combination of stage
0 followed by stage 2 performs more efficiently than the combination of stages 0,
1, and 2 above. A limitation of both stages 0 and 1 is that although the desired
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Figure A.2 The stage 1 control system (CS) error signal versus iteration for a CS
gainβ value ranging from 0.4 at the lowest β value to 0.7 at β = 1.

joint acceptance rate may be achieved, typically a subset of the proposal σ’s are
too small leading to an excessive autocorrelation in the MCMC iterations for these
parameters. The second stage CS corrects for this as follows.

The goal of the second stage is to achieve a set of proposal σ’s that equalizes
the FMCMC acceptance rates when new parameter values are proposed separately
and achieves the desired acceptance rate when they are proposed jointly. Let acc(1)
equal the acceptance for single parameter proposals and acc(m) the desired accep-
tance rate (λ = 0.25) for m parameter joint proposals. We need to determine how
acc(1) depend on m. Initially, we might guess that for independent parameters

acc(m) ≈ acc(1)m, (A.7)

The actual relationship will be modified by the Metropolis transition kernal which
says that the acceptance probability is given by

acceptance probability = min(1, r) = min
(
1,

p(Y |D, I)
p(X|D, I)

)
, (A.8)

where Y is the proposed parameter set and X is the current parameter set.
The true relationship (shown below) was arrived at in the following way. An

MCMC simulation was run on an m parameter multivariate normal target proba-
bility distribution with a mean for each parameter of zero and a covariance matrix
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equal to the identity matrix. New parameters were proposed using another mul-
tivariate normal with mean zero and a covariance matrix equal to γ2 times the
identity matrix. Thus, γ is the ratio of the proposal σ to the target distribution σ for
each parameter. For each choice of γ in the range 0.3 to 1.0, the MCMC acceptance
rate for joint parameter proposals was determined as a function of m in the range
m = 1 to 60. For each γ the acceptance rate was well fit by a function of the form

acc(m) = acc(1)mα

, (A.9)

where the value of α depends on γ. Designate the value of m at which acc(m) =
0.25 by mα. Figure (A.3) shows the acceptance rate versus number of model pa-
rameters, m, for γ = 0.7. In this particular case the fitted dashed line is given by
acc(m) = (acc(1))mα

, where α = 0.703. The horizontal line, corresponding the an
acceptance rate of 25%, intersects the fitted curve at m = 11.8. Note, in the figure,
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Figure A.3 The acceptance rate versus number of model parameters, m, for γ =
0.7. The fitted dashed line is of the form acc(m) = (acc(1))m0.703

. The horizontal
line, corresponding the an acceptance rate of 25%, intersects the fitted curve at
mα = 11.8.

acc(1) is the acceptance rate found for the m = 1 model with the same value of γ
as the models with m > 1. For γ ranging from 0.3 to 1.0, mα varied from 60 to 6.4
and α from 0.64 to 0.74. A decaying exponential provided a good fit to the (mα, α)
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pairs yielding Equ. (A.10).

α = 0.6426 + 0.1507 exp (−mα/15), (A.10)

Figure (A.4) shows a plot of these values.
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Figure A.4 A plot of computed (mα, α) pairs (with the α subscript dropped) to-
gether with the fitted exponential.

The final relationship between acc(m) and acc(1)

acc(m) = acc(1)mk α

, (A.11)

acc(1) = acc(m)1/mk α

= λ1/mk α

, (A.12)

where k is an empirically derived fudge factor that compensates for the fact that the
true target distributions may not be well represented by a multivariate normal with
a diagonal covariance matrix. A typical value of k is in the range 0.91 (for m ≈ 12)
to 0.97 (for m ≈ 40). For m = 17, Eq. (A.10) gives α = 0.69. Plugging these values
into Eq. (A.12) yields acc(1) = 0.77.

The next step is to adjust the individual parameter proposal σ’s to achieve an
acceptance of acc(1) given by Equ. (A.12). Using the proposal σ’s obtained from
the previous stage, each parameter is allowed to vary one at a time during a minor
cycle 2 of n3 = 1000 iterations and the acceptance rate measured. Let acc1 = the

2 No output is recorded during the stage 2 iterations except for two items: (1) the relevant statistic needed to
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measured acceptance rate when the proposal σ for the parameter in question was
σ1. We then update the proposal σ for this parameter to σ2 according to

σ2 = σ1

√
(acc1 + ∆)

acc(1)
(1 − acc(1))

(1 − acc1 + ∆)
, (A.13)

where we use a ∆ = 0.01.
If acc1 = acc(1), then Equ. (A.13) leaves the proposal σ unchanged except

for the small effect of the ∆ term. The ∆ term is there to handle the extremes of
acc1 = 0 and 1 gracefully. If acc1 = 1, then we want to increase the proposal σ
for that parameter. From Equ. (A.13) and m = 17 parameters, σ2/σ1 = 6.7. If on
the other hand acc1 is too low, say acc1 = 0.25, we want to decrease the size of the
proposal distribution. In this case, Equ. (A.13) yields σ2/σ1 = 0.39. Equ. (A.13)
can be iterated for each parameter to achieve a final set of proposal σ’s that achieve
equal acceptance rates and a final joint acceptance rate of acc(m) = λ.

In general, the burn-in period occurs within the span of the CS, i.e., the signif-
icant peaks in the joint parameter probability distribution are found. The stage 2
CS improves the choice of the ‘I’ proposal σ for the highest probability parameter
set. Occasionally, a new higher (by a user specified threshold) target probability
parameter set emerges after the CS has been turned off. The control system has
the ability to detect this and re-activating the second stage. In this sense the CS is
adaptive. If this happens the iteration corresponding to the end of the control sys-
tem is reset, i.e, the burn-in period is reset. The useful FMCMC simulation data is
obtained after the CS is switched off.

Although inclusion of the control system may result in a somewhat longer effec-
tive burn-in period, there is a huge saving in time because it eliminates many trial
runs to manually establish a suitable set of proposal σ’s. When the σ’s are large
all the FMCMC chains explore broadly the prior distribution and locate significant
probability peaks in the joint parameter space. As the proposal σ’s are refined these
peaks are more efficiently explored, especially in the higher β chains. In the exo-
planet problem, this annealing of the proposal σ’s typically takes place within the
first 15,000 (unthinned) iterations for one or two planet. When there is evidence for
a large number of planets the annealing can span a much larger range. This may
seem like an excessive number of iterations but keep in mind that (a) we are dealing
with sparse data sets that can have multiple, widely separated probability peaks, (b)
the typical start location in parameter space is far from the target posterior peak,
and (c) we want the FMCMC to locate the most significant probability peak before
finalizing the choice of proposal σ’s. Within each chain, the CS corresponds to

compute acc(1) for each parameter, and (2) any parameter vector that emerges in this stage which has a target
probability higher than any previous parameter vector found (stored as maxlogpd f All).
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an annealing operation. Taken together with the parallel tempering, the two oper-
ations enhance the chances of detecting peaks in the target posterior compared to
just implementing either one.

A.4 Further CS studies

Here we report on some experiments to improve the CS which may help others. All
the experiments were done with a blind 3 planet model fit to the HARPS Mayor
2009 data set for Gliese 581. There is good agreement that there are at least 4
Kelper-like signals. The strongest three signals occur at periods of 5.37, 12.92, 66.9
d. The presence of the other signals makes a blind 3 planet search an interesting
challenge. We judged any change to the CS to be a success if it improved the speed
of detection all three of the strongest signals, i.e., fewer FMCMC iterations.

1). Tried out a version of the CS that allowed one cycle of stage 2 to be run imme-
diately following stage 0 and before stage 1. Stage 2 was run again following
stage 1. The thinking here was that since many proposal σ were driven down
to very low values in stage 0, it could be advantageous to bring them back into
a meaningful range (so they were influencing the joint acceptance rate). This
seems to have made matters worse. Why? In the exoplanet problem the three
orbital frequency/period parameters turned out to be the main focus of the ac-
tion in stage 0 and 1. Maintaining the proposal σ of the other parameters at
values much smaller than optimum meant that little progress was made in re-
fining the parameters for local probability peaks as they were encountered. The
extra noise parameter, s, remained inflated and facilitated progress in finding
the globally most probable period set.

2). Experimented with fewer iterations in each minor cycle of stage 2 (reduction
from n3 = 1000 to 500). The potential advantage here would be to speed up
the FMCMC run. Found that the success rate in correctly identifying the three
periods in a 500,000 iteration run was reduced by 50%.

3). To speed up the parallel processing npara iterations are done at once. This also
resulted in a thinning of the stored iterations by the same factor. In principle
increasing npara should reduce the compute time. Changing npara from the
normal value of 10 to 40 resulted in a 50% reduction in success rate.

4). Tried out a new stage 2 algorithm for adjusting the proposal σ.

σ2 = σ1
(acc1 + 0.03)

acc(1)

√
(1 − (acc(1))2)

(1 − (acc1)2 + 0.01)
, (A.14)

Preliminary results indicate that it is not quite as good as the existing algorithm.
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A.5 Choosing tempering values

For parallel tempering to work well we need to select a set of tempering β values
to achieve a desirable swap rate. We discovered a useful empirical correlation that
can be used to automate this step. Figure A.5 shows a correlation between the
parallel tempering swap rate between tempering levels i and i − 1 and the product
of (βi − βi−1) × δ⟨loglike⟩, where δ⟨loglike⟩ = ⟨loglike⟩i − ⟨loglike⟩i−1, based on
multiple 3 planet fits to Gliese 581 data. Figure A.6 shows the correlation based on
multiple 5 planet fits to Gliese 581 data. ⟨loglike⟩i is the FMCMC average value of
the log likelihood for the ith chain. Clearly the correlation is tighter for the 5 planet
fit.
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Figure A.5 Correlation between the parallel tempering swap rate and the product
of (βi − βi−1) × δ⟨loglike⟩ based on multiple 3 planet fits to Gliese 581 data.

In each figure the solid line is the best fit straight line and the dashed curve is
a fit of the equation y = A + B × exp[−Cx] where y represents the swap rate and
x = (βi−βi−1)×δ⟨loglike⟩. The exponential form provides a significantly better fit.
The best fitting exponentials to the 3 and 5 planet correlations are:

y(3planet) = 0.02235 + 0.7445 exp[−0.4251x] (A.15)

y(5planet) = 0.09137 + 0.6826 exp[−0.5211x] (A.16)
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Figure A.6 Correlation between the parallel tempering swap rate and the product
of (βi − βi−1) × δ⟨loglike⟩ based on multiple 5 planet fits to Gliese 581 data.

Figure A.7 shows a comparison of equations (A.15) and (A.16). Over the range
of swap rates of interest from 0.25 to 0.5 the two curves are virtually identical
indicating that the correlation between swap rate and (βi−βi−1)× δ⟨loglike⟩ is very
general.

A.5.1 Procedure for selecting tempering values

The empirical correlation between swap rate and (βi − βi−1) × δ⟨loglike⟩, summa-
rized in figure A.7, provides the basis for the following scheme for selecting β

values. Choose the desired swap rate between tempering levels, say 25% or 0.25,
and figure A.7 gives a value of (βi − βi−1) × δ⟨loglike⟩ = 2.8. In practice we have
obtained improved performance of the FMCMC algorithm using a value of

(βi − βi−1) × δ⟨loglike⟩ = 1.0, (A.17)

corresponding to a swap rate of ≈ 0.5 between the top two levels and a value of

(βi − βi−1) × δ⟨loglike⟩ = 2.0, (A.18)

corresponding to a swap rate of ≈ 0.3 between the other levels.
The steps in the computation of the β values are illustrated in figure A.8. Figure A.8(a)
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Figure A.7 Comparison of the best fit correlations between the parallel tempering
swap rate and the product of (βi − βi−1) × δ⟨loglike⟩ for the 3 planet (solid) and 5
planet (dashed) fits to Gliese 581 data.

shows the values of ⟨loglike⟩β obtained from an FMCMC run using an initial set of
8 tempering levels of

β = {0.09, 0.13, 0.20, 0.30, 0.42, 0.55, 0.74, 1.0}.
Figure A.8(b) shows the now familiar correlation between swap rate and (βi−βi−1)×
δ⟨loglike⟩ for this single FMCMC run. Figure A.8(c) shows a plot of ∆⟨loglike⟩ =
(⟨loglike⟩nβ −⟨loglike⟩nβ−i) versus ∆β = βnβ−βnβ−i for i = 0 to nβ−1 in steps of 1.
nβ is the total number of tempering levels in this case 8 and βnβ = 1. The points are
connected by dashed straight lines and the solid curve is an interpolation derived as
follows. A second order spline interpolation is first fit to the Log[∆⟨loglike⟩+0.001]
versus ∆β. The ordinate of this interpolation is transformed back by exponentiation
followed by a subtraction of the small offset of 0.001. This results in an interpo-
lation that is more constrained in its swings than one obtained using the original
points. The resulting interpolation is then averaged with a straight linear interpola-
tion of the original points to produce the final interpolation designated interpAve.

Figure A.8(d) shows the final interpolation (solid) and the equation y = 1.0/∆β
(dashed) based on equation (A.17). The intersection of the two curves yields the
desired ∆β1 between tempering levels nβ and nβ − 1. Figure A.8(e) depicts the
solution for ∆β4. In this case the solution is given by the intersection of interpAve−
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Figure A.8 Panel (a) shows the values of ⟨loglike⟩β obtained from an FMCMC
run using an initial set of 8 tempering levels. Panel (b) shows the correlation
between swap rate and (βi − βi−1) × δ⟨loglike⟩ for this single FMCMC run. Panel
(c) shows a plot of ∆⟨loglike⟩ versus ∆β and the interpolation. The intersection
of the two curves in panel (d) yields the desired ∆β1 between tempering levels nβ
and nβ− 1. Panel (e) illustrates the intersection of the two curves described in the
text that yield the desired ∆β4. Panel (f) shows the location of the improved set
∆βi values.

interpAve[∆β3] and the equation y = 2.0/(∆β − ∆β3) (dashed curve) based on
equation (A.18). This is shown in figure A.8(d). Figure A.8(f) shows the location
of the improved set ∆βi values on the interpAve curve. They correspond to a set of
tempering β values given by

β = {0.091, 0.13, 0.21, 0.32, 0.40, 0.54, 0.74, 1.0}.
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This procedure for deriving an improved set of tempering β values from an initial
FMCMC run is easily automated.

How well does this procedure work in practice? Because the shape of ∆⟨loglike⟩
versus ∆β curve can exhibit abrupt changes it is necessary to use more than 8
tempering levels with smaller separations in ∆β to more accurately define the curve
if you want to do a good job. The point of going to this trouble is to attempt to pick
a set of β values that yield an optimum swap rate. In practice we did not find a
strong dependence on FMCMC performance and swap rate for swap rates in the
range 0.1 to 0.6.



Appendix B

Exoplanet priors

B.1 Frequency search

For the Kepler model with sparse data, the target probability distribution can be
very spiky. This is particularly a problem for the orbital period parameters which
span roughly 6 decades 1. The actual search in that domain is best implemented
in frequency space for the following reasons. The width of a spectral peak, which
reflects the accuracy of the frequency estimate, is determined by the duration of the
data, the signal-to-noise (S/N) ratio and the number of data points. More precisely
[24] [7], for a sinusoidal signal model, the standard deviation of the spectral peak,
δ f , for a S/N > 1, is given by

δ f ≈
(
1.6

S
NT

√
N
)−1

Hz, (B.1)

where T = the data duration in s, and N = the number of data points in T . The thing
to notice is that the width of any peak is independent of the frequency of the peak.
Thus the same frequency proposal distribution will be efficient for all frequency
peaks. This is not the case for a period search where the width of a spectral peak is
∝ P2. Not only is the width of the peak independent of f, but the spacing of peaks in
the spectral window function is roughly constant in frequency, which is a another
motivation for searching in frequency space [56], [11]. Figure B.1 shows a section
of the spectral window function, described in Section 1.5.3, for the 35 samples of
radial velocity measurements for HD 208487. The true peridogram of the data is
the convolution of the true spectrum with the spectral window function.

1 With the exception of a pulsar planet (PRS 1719-14 b) with a period of 0.09d, the period range of interest is
from ∼ 0.2d to ∼ 1000yr. A period of 1000yr corresponds roughly to a period where perturbations from
passing stars and the galactic tide would disrupt the planet’s orbit [21]. According to Exoplanet.eu [57], the
longest period planets discovered to date are Fomalhaut b (320000d) and Oph 11 b (730000d).
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Figure B.1 A portion of the spectral window function of the radial velocity data
for HD 208487 demonstrating the uniform spacing of peaks in frequency. The
29.5 d peak corresponds to the synodic month.

B.2 Choice of frequency prior for multi-planet models

In this section we address the question of what prior to use for frequency for multi-
planet models. For a single planet model we use a scale invariant prior because the
prior period (frequency) range spans almost 6 decades. A scale invariant prior cor-
responds to a uniform probability density in ln f . This says that the true frequency
is just as likely to be in the bottom decade as the top. The scale invariant prior can
be written in two equivalent ways.

p(ln f |M1, I) d ln f =
d ln f

ln( fH/ fL)
(B.2)

p( f |M, I) d f =
d f

f ln( fH/ fL)
(B.3)

What form of frequency prior should we use for a multiple planet model? We
first develop the prior to be used in a frequency search strategy where we constrain
the frequencies in an n planet search such that ( fL ≤ f1 ≤ f2 · · · ≤ fn ≤ fH). From
the product rule of probability theory and the above frequency constraints we can
write

p(ln f1, ln f2, · · · ln fn|Mn, I) = p(ln fn|Mn, I)

×p(ln fn−1| ln fn,Mn, I) · · · p(ln f2| ln f3,Mn, I)

×p(ln f1| ln f2,Mn, I). (B.4)

For model selection purpose we need to use a normalized prior which translates to



B.2 Choice of frequency prior for multi-planet models 127

the requirement that∫ ln fH

ln fL

p(ln f1, ln f2, · · · ln fn|Mn, I)d ln f1 · · · d ln fn = 1. (B.5)

We assume that p(ln f1, ln f2, · · · ln fn|Mn, I) is equal to a constant k everywhere
within the prior volume. We can solve for k from the integral equation

k
∫ ln fH

ln fL

d ln fn

∫ ln fn

ln fL
d ln fn−1 · · ·

∫ ln f2

ln fL

d ln f1 = 1. (B.6)

The solution to equation (B.6) is

k =
n!

[ln( fH/ fL)]n . (B.7)

The joint frequency prior is then

p(ln f1, ln f2, · · · ln fn|Mn, I) =
n!

[ln( fH/ fL)]n (B.8)

Expressed as a prior on frequency, equation (B.7) becomes

p( f1, f2, · · · fn|Mn, I) =
n!

f1 f2 · · · fn [ln( fH/ fL)]n (B.9)

We note that a similar result, involving the factor n! in the numerator, was obtained
by Bretthorst (2003) in connection with a uniform frequency prior.

Two different approaches to searching in the frequency parameters were em-
ployed in this work. In the first approach (a): an upper bound on f1 ≤ f2 (P2 ≥ P1)
was utilized to maintain the identity of the two frequencies. In the second more
successful approach (b): both f1 and f2 were allowed to roam over the entire fre-
quency range and the parameters re-labeled afterwards. In this second approach
nothing constrains f1 to always be below f2 so that degenerate parameter peaks
can occur. For a two planet model there are twice as many peaks in the probabil-
ity distribution possible compared with (a). For a n planet model, the number of
possible peaks is n! more than in (a). Provided the parameters are re-labeled after
the MCMC, such that parameters associated with the lower frequency are always
identified with planet one and vice versa, the two cases are equivalent 2 and equa-
tion (B.8) is the appropriate prior for both approaches.

Approach (b) was found to be more successful because in repeated blind period
searches it always converged on the highest posterior probability distribution peak,
in spite of the huge period search range. Approach (a) proved to be unsuccessful
in finding the highest peak in some trials and in those cases where it did find the

2 To date this claim has been tested for n ≤ 3.
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peak it required many more iterations. Restricting P2 ≥ P1 ( f1 ≤ f2) introduces an
additional hurdle that appears to slow the MCMC period search.

B.3 K Prior

The full set of priors used in our Bayesian calculations are given in Table 1.1.
The limits on Ki have evolved over time. Initially, the upper limit corresponded to
the velocity of a planet with a mass = 0.01 M· in a circular orbit with a shortest
period of one day or Kmax = 2129m s−1. An upper bound of Kmax

(
Pmin
Pi

)1/3
was

proposed at an exoplanet workshop at the Statistics and Applied Math Sciences
Institute (spring 2006). Also an upper bound on Pi of 1000 yr was suggested based
on galactic tidal disruption. Previously we used an upper limit of three times the
duration of the data. Again, we set Kmax = 2129m s−1, which corresponds to a
maximum planet-star mass ratio of 0.01.

Later, the upper limit on Ki was set equal to

Kmax

(
Pmin

Pi

)1/3 1√
1 − e2

i

, (B.10)

based on equation (B.11).

K =
m sin i

M∗

(
2πGM∗

P

)1/3 (
1 +

m
M∗

)−2/3

, (B.11)

where m is the planet mass, M∗ is the star’s mass, and G is the gravitational con-
stant. This is an improvement over Kmax

(
Pmin
Pi

)1/3
because it allows the upper limit

on K to depend on the orbital eccentricity. Clearly, the only chance we have of
detecting an orbital period of 1000 yr with current data sets is if the eccentric-
ity is close to one and we are lucky enough to capture periastron passage. All the
calculations in this supplement are based on Equation (B.10).

B.4 Eccentricity Prior

In the early years it was common to use a flat prior for eccentricity. It was soon re-
alized that the effect of noise is to favour higher eccentricities. Gregory and Fischer
[29] provided the following explanation of this bias. To mimic a circular velocity
orbit the noise points need to be correlated over a larger fraction of the orbit than
they do to mimic a highly eccentric orbit. For this reason it is more likely that noise
will give rise to spurious highly eccentric orbits than low eccentricity orbits. In a
related study, Shen (2008) [58] explored least-χ2 Keplerian fits to synthetic radial
velocity data sets. They found that the best fit eccentricities for low signal-to-noise
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Figure B.2 Exoplanet eccentricity priors. The solid black curve is the best fit Beta
distribution[40] to the eccentricity data of 396 high signal to noise exoplanets.
The dashed and dot-dashed black curves are Kipping’s Beta distribution fits to
the subsets with periods > 382.3 d (median) and < 382.3 d, respectively. The red
curve is the Gaussian eccentricity prior adopted by Tuomi et al. [62]. The gray
curve is my earlier eccentricity prior which attempted a modest correction for
noise induced eccentricity bias. The blue curve is eccentricity prior employed in
this work.

ratio K/σ ≤ 3 and moderate number of observations Nobs ≤ 60, were systemat-
ically biased to higher values, leading to a suppression of the number of nearly
circular orbits. More recently, Zakamska (2011) [69] found that eccentricities of
planets on nearly circular orbits are preferentially overestimated, with typical bias
of one to two times the median eccentricity uncertainty in a survey, e.g., 0.04 in the
Butler et al. catalogue [8]. When performing population analysis, they recommend
using the mode of the marginalized posterior eccentricity distribution to minimize
potential biases.

Recently, Kipping (2013) [40] fit the eccentricity distribution of 396 exoplanets,
detected through radial velocity with high signal-to-noise, with a Beta distribution.
The Beta distribution can reproduce a diverse range of probability density functions
(PDFs) using just two shape parameters (a and b). The black, large dash curve in
Figure B.2 is the best fit Beta distribution (a = 0.867, b = 303) to all exoplanets
in sample. The dot-dashed black curve is the best fit Beta distribution (a = 1.12, b
=3.09) to exoplanets in sample with P < 382.3d. The dashed black curve is the best
fit Beta distribution (a = 0.697, b = 3.27) to exoplanets in sample with P > 382.3d.
One drawback with the first two of these Beta distributions is that they are infinite
at e = 0, so it is necessary to work with a prior in the form of a cumulative density
distribution (CDF) instead of a simpler PDF for MCMC work. The black curve is
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the eccentricity distribution utilized in this work which is another Beta Distribution
(a = 1, b = 3.1) intermediate between Kipping’s low and high period curves and is
well behaved at e = 0. With these values the Beta distribution simplifies to

p(e|I) = 3.1(1 − e)2.1. (B.12)

The red curve is the Gaussian prior adopted by Tuomi et al (2012) [62]. The gray
curve is my earlier eccentricity prior which attempted a modest correction for noise
induced eccentricity bias.



Appendix C

Accuracy of Mathematica model Radial Velocities

As explained in Section 1.5, we convert the observation times, ti, to orbital angles,
θi, by solving the conservation of angular momentum equation. As it stands equa-
tion 1.15 runs into problems when the period P is small because Mathematica’s
NDSolve produces an interpolation function that spans the entire time range. If
there are many cycles a very large number of iteration steps are required and the
procedure slows to a crawl. To avoid this we first convert the ti to qi, the corre-
sponding fraction of one orbit, using the equation

qi = mod[ti/P + χ, 1], (C.1)

where again χ = the fraction of an orbit, prior to the start of data taking, that
periastron occurred at. The relationship between qi and θi is given by

dθ
dq
− 2π[1 + e cos θ(q)]2

(1 − e2)3/2 = 0. (C.2)

Note: the relationship between θ and q depends only on the eccentricity parameter,
e.

Mathematica generates an accurate interpolating function between q and θ so
the differential equation does not need to be solved separately for each qi. The
solution of the differential equation is the largest component in the timing budget.
Evaluating the interpolating function for each qi is very fast compared to solving
the differential equation, so the algorithm should be able to handle much larger
samples of radial velocity data than those currently available without a significant
increase in computational time. For example, an increase in the sample size from
35 to 220 resulted in only an 18% increase in execution time. Of course, for a large
enough sample size the interpolation operation will begin to dominate and after
that the execution time will scale with the number of data points.

We now address the question of the accuracy of the model radial velocities which
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are limited by the accuracy of the Mathematica interpolating function. This was
accomplished as follows:

1) Divide the interval θ = 0 to 2π into n = 107 equal parts labeled θ j. Let θacc

represent this set of accurate θ j values.
2) Evaluate the corresponding accurate RVacc/K values, model radial velocities di-

vided by K, where RVacc/K = [cos(θacc + ω) + e cosω].
3) Convert the θ j values to q j values by computing the orbital area swept out be-

tween each pair of θ j values. According to Kepler’s Law of Areas, dq j is propor-
tional to that area increment. The computed total area swept out in the interval
θ = 0 to 2π was found to agree with theory to better than 1 part in 1011.

4) The computed q j values were converted to a set of interpolated θ values (θint)
using Mathematica’s solution of equation C.2.

5) Compute the corresponding set of interpolated RVint/K = [cos(θint+ω)+e cosω].
6) Compute 1

K (RVint − RVacc), the radial velocity error as a fraction of K.

1
K

(RVint − RVacc) = cos (θint + ω) − cos (θacc + ω)

= cosω (cos θint − cos θacc)

− sinω (sin θint − sin θacc) (C.3)

Let θ0 =
(θint + θacc)

2
and δθ = (θint − θacc) (C.4)

Then

1
K

(RVint − RVacc) = −2 sin
δθ

2
sin θ0 cosω

−2 sin
δθ

2
cos θ0 sinω

= −2 sin
δθ

2
sin (θ0 + ω)

≈ −δθ sin (θ0 + ω) (C.5)

For any θ0, the fractional model radial velocity error has a maximum positive or
negative value for sin (θ0 + ω) = ±1. Fig. C.1 show plots of the Log10 of the abso-
lute magnitude of the fractional error versus q for three different values of eccen-
tricity. The figure assumes a worst case value for | sin(θ0 + ω)| = 1. More realisti-
caly, these errors should be reduced by a factor 2/π which is expectation value of
| sin(θ0 + ω)|. Even for e = 0.99 the fractional error is < 10−5 over most of the q
range only rising above this towards the very end of the interpolation interval. The
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bottom panel shows the maximum value of the fractional error versus eccentricity.
Based on this analysis, the maximum error in the Mathematica derived model ra-
dial velocities, expressed as a fraction of the K parameter, is ≤ 2.2 × 10−5 for e
values in the range 0 to 0.8. The situation degrades progressively for larger values
e but is still ≤ 2.8 × 10−3 for e = 0.98, rising to 1.2 × 10−2 for e = 0.99.
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Figure C.1 The top three panels show plots of the Log10 of the absolute magni-
tude of the model radial velocity error as a fraction of the K value versus q, the
fraction of the orbital period, for three different values of eccentricity. The bottom
panel shows Log10 of the maximum value of the above fractional radial velocity
error versus eccentricity.
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