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ABSTRACT
An automatic Bayesian Kepler periodogram has been developed for identifying and
characterizing multiple planetary orbits in precision radial velocity data. The peri-
odogram is powered by a parallel tempering MCMC algorithm which is capable of
efficiently exploring a multi-planet model parameter space. The periodogram employs
an alternative method for converting the time of an observation to true anomaly that
enables it to handle much larger data sets without a significant increase in compu-
tation time. Improvements in the periodogram and further tests using data from HD
208487 have resulted in the detection of a second planet with a period of 90982

−92d, an
eccentricity of 0.370.26

−0.20, a semi-major axis of 1.870.13
−0.14 au and an M sin i = 0.450.11

−0.13
MJ. The revised parameters of the first planet are period = 129.8± 0.4d, eccentricity
= 0.20±0.09, semi-major axis = 0.51±0.02 au and M sin i = 0.41±0.05 MJ. Particu-
lar attention is paid to several methods for calculating the model marginal likelihood
which is used to compare the probabilities of models with different numbers of planets.

Key words: stars: planetary systems; stars: individual: HD 208487; methods: statis-
tical; methods: numerical; techniques: radial velocities.

1 INTRODUCTION

The discovery of multiple planets orbiting the Pulsar
PSR B1257+12 (Wolszczan & Frail, 1992), ushered in
an exciting new era of astronomy. Fifteen years later,
over 200 extra-solar planets have been discovered by
a variety of techniques, including precision radial ve-
locity measurements which have detected the major-
ity of planets to date (Extrasolar Planets Encyclopedia,
http://vo.obspm.fr/exoplanetes/encyclo/index.php). It is to
be expected that continued monitoring and increased preci-
sion will permit the detection of lower amplitude planetary
signatures. The increase in parameters needed to model mul-
tiple planetary systems is motivating efforts to improve the
statistical tools for analyzing radial velocity data (e.g. Ford
& Gregory 2006, Ford 2005 & 2006, Gregory 2005b, Cum-
ming 2004, Loredo & Chernoff 2003, Loredo 2004). Much of
the recent work has highlighted a Bayesian MCMC approach
as a way to better understand parameter uncertainties and
degeneracies.

Gregory (2005a, b & c) presented a Bayesian MCMC
algorithm that makes use of parallel tempering to efficiently
explore the full range of model parameter space starting

? E-mail: gregory@phas.ubc.ca
† http://www.physics.ubc.ca/ gregory/gregory.html

from a random location. It is able to identify any signif-
icant periodic signal component in the data that satisfies
Kepler’s laws and thus functions as a Kepler periodogram 1.
This eliminates the need for a separate periodogram search
for trial orbital periods which typically assume a sinusoidal
model for the signal that is only correct for a circular or-
bit. In addition, the Bayesian MCMC algorithm provides
full marginal parameters distributions for all the orbital el-
ements that can be determined from radial velocity data.
The samples from the parallel chains can also be used to
compute the marginal likelihood for a given model (Gre-
gory 2005a) for use in computing the Bayes factor that is
needed to compare models with different numbers of planets.
The parallel tempering MCMC algorithm employed in this
work includes a control system that automates the selection
of efficient Gaussian parameter proposal distributions. This
feature makes it practical to carry out blind searches for
multiple planets simultaneously.

This paper outlines improvements to the parallel tem-
pering MCMC algorithm that allow for improved mixing

1 Following on from Bretthorst’s pioneering work (Bretthorst

1988), many other Bayesian periodograms have been developed.
Several examples, based on different prior information, are given

by Bretthorst (2001, 2003), Gregory & Loredo (1992), and Gre-
gory (1999).
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2 P. C. Gregory

and more efficient convergence. In addition several different
methods for computing the model marginal likelihood are
compared. We also confirm our earlier discovery (Gregory
2005c) of a second planet in HD 208487.

Some of the analysis presented in this paper was based
on the original 31 radial velocity measurements (old data)
given in Tinney et al. (2005). Recently, Butler et al. (2006)
published a revised radial velocity data set based on an im-
proved pipeline used to convert the raw spectra to radial
velocities. This new data set also includes 4 new measure-
ments. Most of the results pertain to the new data set, but
some of the results dealing with model selection in Section 7
make use of the old data set and this is indicated in the text.

2 PARALLEL TEMPERING

A simple Metropolis-Hastings MCMC algorithm can run
into difficulties if the target probability distribution is multi-
modal with widely separated peaks. It can fail to fully ex-
plore all peaks which contain significant probability, espe-
cially if some of the peaks are very narrow. This is frequently
the case with extrasolar planet data which is typically very
sparsely sampled. The problem is somewhat similar to the
one encountered in finding a global χ2 minimum in a nonlin-
ear model fitting problem. One solution to finding a global
minimum is to use simulated annealing by introducing a
temperature parameter T which is gradually decreased.

In parallel tempering, multiple copies of the MCMC
simulation are run in parallel, each at a different tempera-
ture. Mathematically, we can describe these tempering dis-
tributions by

π(X|D,β,M1, I) = C p(X|M1, I)p(D|M1,X, I)
β

= C p(X|M1, I) ×
exp(β ln[p(D|M1,X, I)]), (1)

for 0 < β < 1

where X stands for the set of model parameters. The nor-
malization constant, C, is unimportant and will be dropped.
Rather than use a temperature which varies from 1 to in-
finity, we use its reciprocal, β = 1/T , and refer to as the
tempering parameter. Thus β varies from 1 to zero.

One of the simulations, corresponding to β = 1,
is the desired target probability distribution. The other
simulations correspond to a ladder of higher temperature
distributions. Let nβ equal the number of parallel MCMC
simulations. At intervals, a pair of adjacent simulations on
this ladder are chosen at random and a proposal made to
swap their parameter states. A Monte Carlo acceptance
rule determines the probability for the proposed swap to
occur. For β = 1, the distribution is the desired target
distribution which is referred to as the cold sampler. For
β � 1, the distribution is much flatter. This swap allows
for an exchange of information across the population of
parallel simulations. In the higher temperature simulations,
radically different configurations can arise, whereas in
higher β (lower temperature) states, a configuration is
given the chance to refine itself. Some experimentation
is needed to refine suitable choices of β values, which
can be assessed by examining the swap acceptance rate
between adjacent simulations. If adjacent simulations do

not have some overlap the swap rate between them will
be very low. The number of β values required depends
on the application. For parameter estimation purposes
a typical value of nβ = 12. It is important that the
iterations from the lowest value of β explore the full range
of the prior parameter space. For HD 208487, the set β =
{0.05, 0.1, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.70, 0.80, 0.90, 1.0}
proved useful for parameter estimation and achieved a typ-
ical acceptance rate between adjacent levels of > 50%. The
mean number of iterations between swap proposals was set
= 8. Final inference is based on samples drawn from the
β = 1.0 simulation.

It is possible to use the samples from hotter simulations
to evaluate the marginal (global) likelihood needed for model
selection (see Section 12.7 of Gregory 2005a). Marginal like-
lihoods estimated in this way typically require many more
parallel simulations. For HD 208487, 34 β levels were used
spanning the range β = 10−8 to 1.0. This is discussed more
in Section 7.

2.1 Proposal distributions

In Metropolis-Hastings versions of MCMC, parameter pro-
posals are drawn from a proposal distribution. In this anal-
ysis, independent Gaussian proposal distributions, one for
each parameter, were employed. Of course, for sparse data
sets it can often be the case that some of the parameters are
highly correlated resulting in inefficient sampling from inde-
pendent Gaussians. One solution is to use combinations of
model parameters that are more independent. More on this
later. In general, the σ’s of these Gaussian proposal distri-
butions are different because the parameters can be very dif-
ferent entities. Also if the σ’s are chosen to small, successive
samples will be highly correlated and it will require many
iterations to obtain an equilibrium set of samples. If the σ’s
are too large, then proposed samples will very rarely be ac-
cepted. Based on empirical studies, Roberts et al. (1997)
recommend calibrating the acceptance rate to about 25%
for a high-dimensional model and to about 50% for mod-
els of 1 or 2 dimensions. Although these studies were based
on a multinormal target probability distributions, they have
proven a useful guideline for our application as well.

The process of choosing a set of useful proposal σ’s
when dealing with a large number of different parameters
can be very time consuming. In parallel tempering MCMC,
the problem is compounded because of the need for a sep-
arate set of proposal σ’s for each simulation. We have au-
tomated this process using a two stage statistical control
system (CS) in which the error signal is proportional to the
difference between the current acceptance rate and a target
acceptance rate, typically 25%. In the first stage an initial
set of proposal σ’s (≈ 10% of the prior range for each param-
eter) are separately perturbed to determine an approximate
gradient in the acceptance rate with respect to the proposal
σ’s. The σ’s are then jointly modified by a small increment
in the direction of this gradient. This is done for each of the
parallel simulations or chains as they are sometimes called.
When the σ’s are large all the MCMC simulations explore
the full prior distribution and locate significant probability
peaks in the joint parameter space. As the proposal σ’s de-
crease these peaks are more efficiently explored in the β = 1
simulation. This annealing of the proposal σ’s typically takes
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place over the first 5,000 to 150,000 (unthinned) iterations
for one planet and first 5,000 to 300,000 iterations for two
planets. This may seem like an excessive number of itera-
tions but keep in mind that we are dealing with sparse data
sets that can have multiple, widely separated probability
peaks and we want the MCMC to locate the most signifi-
cant probability peak before finalizing the choice of proposal
σ’s.

Although the acceptance rate for the final joint set of
parameter σ’s is achieved, it often happens that a subset of
the proposal σ’s will be too small leading to excessive cor-
relation in the MCMC iterations for these parameters. The
second stage CS corrects for this. In general, the burn-in
period occurs within the span of the first stage CS, i.e., the
significant peaks in the joint parameter probability distribu-
tion are found, and the second stage improves the choice of
proposal σ’s for the highest probability parameter set. Oc-
casionally, a new higher probability parameter set emerges
at a later iteration. The second phase of the control system
can detect this and compute a new set of proposal σ’s. If this
happens the control system resets the burn-in period to in-
clude all previous iterations. The useful MCMC simulation
data is obtained after the CS is switched off. Although inclu-
sion of the control system may result in a somewhat longer
effective burn-in period, there is a huge saving in time be-
cause it eliminates many trial runs to manually establish a
suitable set of proposal σ’s.

3 RE-PARAMETERIZATION

Ford (2006) examined the effect of a variety of re-
parameterizations for the Kepler model on the MCMC con-
vergence speed. By far the biggest improvement was ob-
tained with re-parameterizations that involved ω, the argu-
ment of periastron, and M0, the mean anomaly at initial
epoch. This is because for low eccentricity orbits ω can be
poorly constrained but the observational data can often bet-
ter constrain the ω +M0.

In our analysis the predicted radial velocity is given

v(ti) = V +K[cos{θ(ti + χP ) + ω} + e cosω], (2)

and involves the 6 unknowns

V = a constant velocity.
K = velocity semi-amplitude.
P = the orbital period.
e = the orbital eccentricity.
ω = the longitude of periastron.
χ = the fraction of an orbit, prior to the start of data

taking, that periastron occurred at. Thus, χP = the number
of days prior to ti = 0 that the star was at periastron, for
an orbital period of P days.

θ(ti + χP ) = the angle of the star in its orbit relative
to periastron at time ti, also called the true anomaly.

We utilize this form of the equation because we obtain
the dependence of θ on ti by solving the conservation of
angular momentum equation

dθ

dt
− 2π[1 + e cos θ(ti + χ P )]2

P (1 − e2)3/2
= 0. (3)

Our algorithm is implemented in Mathematica and it proves

faster for Mathematica to solve this differential equation
than solve the equations relating the true anomaly to the
mean anomaly via the eccentric anomaly. Mathematica gen-
erates an accurate interpolating function between t and θ
so the differential equation does not need to be solved sepa-
rately for each ti. Evaluating the interpolating function for
each ti is very fast compared to solving the differential equa-
tion, so the algorithm should be able to handle much larger
samples of radial velocity data than those currently available
without a significant increase in computational time.

Instead of varying χ and ω at each MCMC iteration, we
varied ψ = 2πχ+ω and φ = 2πχ−ω, motivated by the work
of Ford (2006). ψ is well determined for all eccentricities. Al-
though φ is not well determined for low eccentricities, it is
at least orthogonal to the ψ parameter. It is easy to demon-
strate that uniform sampling of ψ in the interval 0 to 2π and
uniform sampling of φ in the interval −2π to +2π results in
uniform coverage of χ in the interval 0 to 1 and uniform
coverage of ω from 0 to 2π using the relations

χ = Modulus
[
ψ + φ

4π
, 1

]

ω = Modulus
[
ψ − φ

2
, 2π

]
(4)

Restricting φ to the interval 0 to 2π produces an hourglass
coverage of half the χ,ω plane. This re-parameterization,
together with the additional second stage CS, achieved good
mixing of the MCMC iterations for a wide range of orbital
eccentricities.

4 FREQUENCY SEARCH

For the Kepler model with sparse data, the target probabil-
ity distribution can be very spiky. This is particularly a prob-
lem for the orbital period parameters which span roughly 6
decades. In general, the sharpness of the peak depends in
part on how many periods fit within the duration of the
data. The previous implementation of the parallel temper-
ing algorithm employed a proposal distribution for P which
was a Gaussian in the logarithmic of P . This resulted in a
constant fractional period resolution instead of a fixed abso-
lute resolution, increasing the probability of detecting nar-
row spectral peaks at smaller values of P . However, this
proved not to be entirely satisfactory because for the HD
73526 data set of Tinney et al. (2003), one of the three prob-
ability peaks (the highest) was not detected in two out of
five trials (Gregory 2005b).

Our latest algorithm implements the search in fre-
quency space for the following reasons. In a Bayesian analy-
sis, the width of a spectral peak, which reflects the accuracy
of the frequency estimate, is determined by the duration of
the data, the signal-to-noise (S/N) ratio and the number
of data points. More precisely (Gregory 2005a, Bretthorst
1988), for a sinusoidal signal model, the standard deviation
of the spectral peak, δf , for a S/N > 1, is given by

δf ≈
(
1.6

S

N
T
√
N

)−1

Hz, (5)

where T = the data duration in s, and N = the number of
data points in T . The thing to notice is that the width of
any peak is independent of the frequency of the peak. Thus
the same frequency proposal distribution will be efficient for
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all frequency peaks. This is not the case for a period search
where the width of a spectral peak is ∝ P 2. Not only is the
width of the peak independent of f, but the spacing of peaks
is constant in frequency (roughly ∆f ∼ 1/T ), which is a an-
other motivation for searching in frequency space (e.g., Scar-
gle 1982, Cumming 2004). With a frequency search strategy,
a re-analysis of the original HD 73526 data set resulted in
all three peaks being detected in five out of five trials.

5 CHOICE OF PRIORS

In a Bayesian analysis we need to specify a suitable prior
for each parameter. We first address the question of what
prior to use for frequency for multi-planet models. In this
work, the lower cutoff in period of 1d is chosen to be less
than the smallest orbital period of known planets but some-
what larger than the Roche limit which occurs at 0.2d for
a 10MJup planet around a 1M� star. The upper period
period cutoff of 1000yr is much longer than any known ex-
trasolar planet, but corresponds roughly to a period where
perturbations from passing stars and the galactic tide would
disrupt the planet’s orbit (Ford & Gregory 2006). For a sin-
gle planet model we use a Jeffreys prior because the prior
period (frequency) range spans almost 6 decades. A Jeffreys
prior corresponds to a uniform probability density in ln f .
This says that the true frequency is just as likely to be in the
bottom decade as the top. The Jeffreys prior can be written
in two equivalent ways.

p(ln f |M1, I) d ln f =
d ln f

ln(fH/fL)
(6)

p(f |M,I) df =
df

f ln(fH/fL)
(7)

What form of frequency prior should we use for a mul-
tiple planet model? We first develop the prior to be used in
a frequency search strategy where we constrain the frequen-
cies in an n planet search such that (fL 6 f1 6 f2 · · · 6
fn 6 fH). From the product rule of probability theory and
the above frequency constraints we can write

p(ln f1, ln f2, · · · ln fn|Mn, I) = p(ln fn|Mn, I)

×p(ln fn−1| ln fn,Mn, I) · · · p(ln f2| ln f3,Mn, I)

×p(ln f1| ln f2,Mn, I). (8)

For model selection purpose we need to use a normalized
prior which translates to the requirement that
∫ ln fH

lnfL

p(ln f1, ln f2, · · · ln fn|Mn, I)d ln f1 · · · d ln fn = 1. (9)

We assume that p(ln f1, ln f2, · · · ln fn|Mn, I) is equal to a
constant k everywhere within the prior volume. We can solve
for k from the integral equation

k

∫ ln fH

ln fL

d ln fn

∫ ln fn

lnfL

d ln fn−1 · · ·
∫ lnf2

ln fL

d ln f1 = 1. (10)

The solution to equation (10) is

k =
n!

[ln(fH/fL)]n
. (11)

The joint frequency prior is then

p(ln f1, ln f2, · · · ln fn|Mn, I) =
n!

[ln(fH/fL)]n
(12)

Expressed as a prior on frequency, equation (11) becomes

p(f1, f2, · · · fn|Mn, I) =
n!

f1f2 · · · fn [ln(fH/fL)]n
(13)

We note that a similar result, involving the factor n! in the
numerator, was obtained by Bretthorst (2003) in connection
with a uniform frequency prior.

Two different approaches to searching in the frequency
parameters were employed in this work. In the first approach
(a): an upper bound on f1 6 f2 (P2 > P1) was utilized to
maintain the identity of the two frequencies. In the second
more successful approach (b): both f1 and f2 were allowed
to roam over the entire frequency range and the parame-
ters re-labeled afterwards. In this second approach nothing
constrains f1 to always be below f2 so that degenerate pa-
rameter peaks can occur. For a two planet model there are
twice as many peaks in the probability distribution possible
compared with (a). For a n planet model, the number of pos-
sible peaks is n! more than in (a). Provided the parameters
are re-labeled after the MCMC, such that parameters as-
sociated with the lower frequency are always identified with
planet one and vice versa, the two cases are equivalent 2 and
equation (12) is the appropriate prior for both approaches.

Approach (b) was found to be more successful because
in repeated blind period searches it always converged on the
highest posterior probability distribution peak, in spite of
the huge period search range. Approach (a) proved to be
unsuccessful in finding the highest peak in some trials and
in those cases where it did find the peak it required many
more iterations. Restricting P2 > P1 (f1 6 f2) introduces
an additional hurdle that appears to slow the MCMC period
search.

The full set of priors used in our Bayesian calculations
are given in Table 1. Two different limits on Ki were em-
ployed. In the first case #1, the upper limit corresponds to
the velocity of a planet with a mass = 0.01 M� in a circular
orbit with our shortest period of one day. Also the upper
bound on Pi of 1000 yr is an upper bound based on galac-
tic tidal disruption. Previously we used an upper limit of
three times the duration of the data. An upper bound of

Kmax

(
Pmin

Pi

)1/3
was proposed at an exoplanet workshop at

the Statistics and Applied Math Sciences Institute (spring

2006), however, the factor of
(

Pmin
Pi

)1/3
was not incorporated

in early runs of the current analysis. We set Kmax = 2129m
s−1, which corresponds to a maximum planet-star mass ratio
of 0.01.

For case #2, the upper limit on Ki was set equal to

Kmax

(
Pmin

Pi

)1/3 1√
1−e2

i

based on equation (14).

K =
m sin i

M∗

(
2πGM∗

P

)1/3 (
1 +

m

M∗

)−2/3 1√
1 − e2

, (14)

where m is the planet mass, M∗ is the star’s mass, and G is
the gravitational constant. Case #2 is an improvement over

Kmax

(
Pmin

Pi

)1/3
because it allows the upper limit on K to

depend on the orbital eccentricity. Clearly, the only chance

2 To date this claim has been tested for n 6 3.
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Table 1. Prior parameter probability distributions.

Parameter Prior Lower bound Upper bound

Orbital frequency p(lnf1, lnf2, · · · lnfn|Mn, I) = n!
[ln(fH /fL)]n

1/1 d 1/1000 yr

(n =number of planets)

Velocity Ki (1) Modified Jeffreys a 0 (K0 = 1) Kmax = 2129
(m s−1)

1
K+K0

1

ln
(
1+ Kmax

K0

)

(2)
(K+K0)

−1

ln

[
1+

Kmax
K0

(
Pmin

Pi

)1/3 1√
1−e2

i

] 0 Kmax

(
Pmin

Pi

)1/3 1√
1−e2

i

V (m s−1) Uniform −Kmax Kmax

Eccentricity ei Uniform 0 1

Longitude of periastron ωi Uniform 0 2π

Extra noise s (m s−1)
(s+s0)

−1

ln
(
1+

smax
s0

) 0 Kmax

standard deviation (s0 = 1 & 10m s−1)

a Since the prior lower limits for K and s include zero, we used a modified Jeffreys prior of the form

p(X |M,I) =
1

X + X0

1

ln
(
1 + Xmax

X0

) (15)

For X � X0, p(X |M,I) behaves like a uniform prior and for X � X0 it behaves like a Jeffreys prior. The

ln
(
1 + Xmax

X0

)
term in the denominator ensures that the prior is normalized in the interval 0 to Xmax.

we have of detecting an orbital period of 1000 yr with current
data sets is if the eccentricity is close to one and we are lucky
enough to capture periastron passage. Prior #2 was used in
this work with the exception of Section 7 on model selection.
In that section, some results were obtained with prior #1
and the rest with prior #2, as indicated in the text.

Three of the models considered in this paper, M0 (no
planet), M1 (one planet), and M2 (two planet model), incor-
porate an extra noise parameter, s, that can allow for any
additional noise beyond the known measurement uncertain-
ties 3. We assume the noise variance is finite and adopt a
Gaussian distribution with a variance s2. Thus, the combi-
nation of the known errors and extra noise has a Gaussian
distribution with variance = σ2

i + s2, where σi is the stan-
dard deviation of the known noise for ith data point. For
example, suppose that the star actually has two planets,
and the model assumes only one is present. In regard to
the single planet model, the velocity variations induced by
the unknown second planet acts like an additional unknown
noise term. Other factors like star spots and chromospheric
activity can also contribute to this extra velocity noise term

3 In the absence of detailed knowledge of the sampling distribu-

tion for the extra noise, we pick a Gaussian because, for any given
finite noise variance, it is the distribution with the largest uncer-

tainty as measured by the entropy, i.e., the maximum entropy
distribution (Jaynes 1957, Gregory 2005a section 8.7.4.)

which is often referred to as stellar jitter. Several researchers
have attempted to estimate stellar jitter for individual stars
based on statistical correlations with observables (e.g., Saar
& Donahue 1997, Saar et al. 1998, Wright 2005). In general,
nature is more complicated than our model and known noise
terms. Marginalizing s has the desirable effect of treating
anything in the data that can’t be explained by the model
and known measurement errors as noise, leading to conser-
vative estimates of orbital parameters (see Sections 9.2.3 and
9.2.4 of Gregory (2005a) for a tutorial demonstration of this
point). If there is no extra noise then the posterior probabil-
ity distribution for s will peak at s = 0. The upper limit on
s was set equal to Kmax. For the old data set we employed
a modified Jeffrey’s prior with a knee, s0 = 1m s−1. For the
new data we carried out the calculations for two different
choices, namely, s0 = 1 and s0 = 10m s−1.

We also consider a fourth model M1j , a one planet
model with a Gaussian prior for the extra noise parameter
s of the form

p(s|M1j , I) = kJ exp

(
− (s− sa)2

2σ2
s

)
, (16)

where kJ is the normalization constant given by

kJ = 1/

∫ s=Kmax

0

exp

(
− (s− sa)2

2σ2
s

)
ds. (17)

For this model we set sa = 5.4m s−1, the jitter estimate for
HD 208487 given by Butler et al. (2006), based on Wright’s
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Figure 1. The new data is shown in panel (a) and the best fitting

two planet (P1 = 129.8 day, P2 = 908 day) model versus time is
shown in (b). Panel (c) shows the residuals.

(2005) jitter modeling. We set σs = 3m s−1 as an estimate
of the uncertainty in the value of sa.

6 RESULTS

As mentioned in the introduction, the initial analysis was
carried out using the 31 radial velocity measurements from
Tinney et al. (2005) who reported the detection of a single
planet with M sin i = 0.45±0.05 in a 130±1 day orbit with
an eccentricity of 0.32±0.1. Figure 1 shows the new precision
radial velocity data for HD 208487 from Butler et al. (2006)
who reported a single planet with M sin i = 0.52± 0.08 in a
130.08±0.51 day orbit with an eccentricity of 0.24±0.16. The
additional data points are the last 4 shown in the figure. The
new pipeline resulted in changes to the values of the original
31 data points. The largest change after allowance for the
different means (different zero points) was 6.9 m s−1 or 1.3
σ.

Gregory (2005c) reported results from a preliminary re-
analysis of the old data set which indicated a second planet
with a period of ≈ 1000 days. Panels (b) and (c) show the
best fitting two planet light curve and residuals based on the
more detailed analysis of the new data which is presented in
this paper.

Figure 2 shows β = 1 MCMC iterations for each of the

parameters starting from a specific but arbitrary initial lo-
cation in parameter space of P1 = 50 d, e1 = 0.3, V = 2.0
ms−1, ψ1 = 2.0 radians, K1 = 20 ms−1, φ1 = 0.0 radi-
ans, P2 = 700 d, e2 = 0.1, ψ2 = 2.0 radians, K2 = 15
ms−1, φ2 = 0.0 radians, s = 3 ms−1. A total of 1.8 mil-
lion iterations were used but only every sixth iteration was
stored. For display purposes only every two hundredth point
is plotted in the figure. The burn-in period of approximately
40,000 iterations is clearly discernable. The dominant solu-
tion corresponds to P1 = 129.8d and P2 = 908d, but there
are occasional jumps to other remote periods demonstrat-
ing that the parallel tempering algorithm is exploring the
full prior range in search of other peaks in the target pos-
terior distribution. The χi and ωi traces were derived from
the corresponding ψi, φi traces using equation (4). Figure 3
shows the post burn-in iterations for a window in period
space (125 6 P1 6 135d and 650 6 P2 6 1200d) that
isolates the dominant peak. All the traces appear to have
achieved an equilibrium distribution. There is a weak corre-
lation between P2 and e2 and weak correlation tail evident
between K2, e2, and V . These correlations are shown better
in the joint marginal distributions for 6 pairs of parameters
in Figure 4. Each dot is the result from one iteration. The
lower four panels of this plot nicely illustrate the advantage
of the using the ψi = 2πχi + ωi and φi = 2πχi − ωi re-
parameterization, which are essentially uncorrelated in com-
parison to the χi and ωi.

The Gelmen-Rubin statistic is typically used to test for
convergence of the parameter distributions. In parallel tem-
pering MCMC, new widely separated parameter values are
passed up the line to the β = 1 simulation and are occa-
sionally accepted. Roughly every 100 iterations the β = 1
simulation accepts a swap proposal from its neighboring sim-
ulation. If the transition is to a location in parameter space
that is very remote from the dominant solution, then the
β = 1 simulation will have to wait for another swap to return
it to the dominant peak region. One example of such a swap-
ping operation is shown for the P2 parameter in Figure 5. Of
course most swaps are to locations within the equilibrium
distribution of the dominant peak. The final β = 1 simula-
tion is thus an average of a very large number of independent
β = 1 simulations. What we have done is divide the β = 1
iterations into ten equal time intervals and inter compared
the ten different essentially independent average distribu-
tions for each parameter using a Gelmen-Rubin test. For
all of the two planet model parameters the Gelmen-Rubin
statistic was 6 1.02.

Figure 6 shows the individual parameter marginal dis-
tributions for the two planet model dominant solution. For
comparison purposes, the marginals distributions for the one
planet model are shown in Figure 7. Table 2 compares our
Bayesian one planet orbital parameter values and their er-
rors, for the two different choices of s0, to the values from
a) Tinney et al. (2005) and b) Butler et al. (2006). The pa-
rameter values given for our analysis are the median of the
marginal probability distribution for the parameter in ques-
tion and the error bars identify the boundaries of the 68.3%
credible region. The value immediately below in parenthesis
is the MAP value, the value at the maximum of the joint
posterior probability distribution. It is clear from Table 2
that changing s0 from 1 to 10m s−1 did not significantly al-
ter the M1 parameter estimates. The values derived for the
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Figure 2. MCMC parameter iterations. The upper left panel is
a plot of the prior × likelihood, and the upper right panel shows

a blow-up of the y-axis after dropping the first 10,000 iterations.

semi-major axis and M sin i, and their errors, are based on
the assumed mass of the star = 1.05 ± 0.12 M� (Valenti
& Fischer 2005). Tinney et al. (2005) assumed a mass of
= 0.95 ± 0.05 M�, while Butler et al. (2006) assumed a
mass of = 1.13 M� but also quote Valenti & Fischer (2005)
as the reference.

Table 3 gives our Bayesian two planet orbital parameter
values and their errors for the two different choices of s0.
Apart from the s parameter, changing s0 from 1 to 10m s−1
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Figure 3. Post burn-in MCMC iterations for a window in period

space (125 6 P1 6 135d and 650 6 P2 6 1200d) that isolates the
dominant peak.

did not significantly alter the M2 parameter estimates. We
note that the MAP value for P2 falls just outside the 68.3%
credible region. Finally, Panel (a) of Figure 8 shows the data,
minus the best fitting P2 orbit, for two cycles of P1 phase.
The best fitting P1 orbit is overlaid. Panel (b) shows the
data plotted versus P2 phase with the best fitting P1 orbit
removed. The reduced χ2 = 1.01 for the best M2 model fit
when no jitter is assumed. The reduced χ2 = 2.33 for the
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Table 2. One planet model parameter estimates.

Parameter Tinney et al. Butler et al. Model M1j Model M1 Model M1

(2005) (2006) (s0 = 1m s−1) (s0 = 10m s−1)

P (d) 130± 1 130.08± 0.51 129.97+0.45
−0.41 129.98+0.42

−0.41 129.98+0.45
−0.39

(129.97) (130.08) (130.08)

K (m s−1) 20± 2 19.7± 3.6 19.3+1.9
−2.0 19.3+2.0

−2.0 19.2+2.1
−1.9

(19.6) (19.6) (19.4)

e 0.32± 0.10 0.24± 0.16 0.22+.10
−.10 0.22+.10

−.11 0.22+.11
−.11

(0.24) (0.24) (0.23)

ω (deg) 126± 40 113 113+32
−33 114+31

−31 114+31
−33

(116) (111) (113)

a (au) 0.49± 0.04 0.52± 0.03 0.51+.02
−.02 0.51+.02

−.02 0.51+.02
−.02

(0.51) (0.51) (0.51)

M sin i (MJ) 0.45± 0.05 0.52± 0.08 0.48+.06
−.06 0.48+.06

−.06 0.48+.06
−.06

(0.49) (0.49) (0.49)

Periastron 11002.8± 10 10999± 15 11001+10
−10 11000+10

−11 11001+10
−11

passage (10001) (10999) (10999)

(JD - 2,440,000)

s (m s−1) 5.9+1.2
−1.4 5.6+1.4

−1.5 5.8+1.4
−1.5

(4.5) (4.6) (4.4)

RMS residuals 7.2 8.2 7.5 7.5 7.5

(m s−1)

Table 3. Two planet model parameter estimates.

Parameter Model M2 (s0 = 1m s−1) Model M2 (s0 = 10m s−1)
planet 1 planet 2 planet 1 planet 2

P (d) 129.8+0.4
−0.4 908+81

−94 129.8+0.4
−0.4 909+82

−92

(129.9) (1001) (129.9) (1001)

K (m s−1) 16.5+1.5
−1.6 10.7+2.1

−3.0 16.5+1.6
−1.5 10.1+2.2

−2.9

(16.4) (12.8) (16.4) (12.8)

e 0.21+.09
−.09 0.38+.26

−.20 0.20+.09
−.09 0.37+.26

−.20

(0.19) (0.61) (0.19) (0.61)

ω (deg) 123+40
−37 227+53

−48 121+49
−38 226+52

−52

(99.7) (255) (99.5) (255)

a (au) 0.51+.02
−.02 1.87+.13

−.15 0.51+.02
−.02 1.87+.13

−.14

(0.510) (1.991) (0.510) (1.991)

M sin i (MJ) 0.413+.049
−.052 0.45+.09

−.11 0.41+.05
−.05 0.45+.11

−.13

(0.414) (0.513) (0.414) (0.513)

Periastron 11008+13
−13 10605+148

−120 11007+14
−13 10601+152

−125

passage (10995) (10512) (10998) (10524)

(JD - 2,440,000)

s (m s−1) (0.0)+1.6
−0.0 (0.0)+2.2

−0.0

RMS residuals 4.4 4.4

(m s−1)
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Figure 4. Joint marginals for various pairs of parameter values.
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Figure 5. A blow-up of a small range of parameter P2 iterations
illustrating a transition to a location that is very remote from

the dominant solution that occasionally results from the parallel
tempering swap operation. This allows the algorithm to widely

explore the full prior parameter space in search of other significant
peaks.

best M1 model fit with no jitter, and 1.13 when a jitter of
5.4m s−1 is assumed.

7 MODEL SELECTION

To compare the posterior probabilities of the two planet
model to the one planet models we need to evaluate the
odds ratio, O21 = p(M2|D,I)/p(M1|D, I), the ratio of the
posterior probability of model M2 to model M1. Application
of Bayes’s theorem leads to,

O21 =
p(M2|I)
p(M1|I)

p(D|M2, I)

p(D|M1, I)
≡ p(M2|I)
p(M1|I)

B21 (18)
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Figure 6. Marginal parameter probability distributions for the

two planet model for the new data set and s0 = 1m s−1 .

where the first factor is the prior odds ratio, and the sec-
ond factor is called the Bayes factor. The Bayes factor is
the ratio of the marginal (global) likelihoods of the mod-
els. The MCMC algorithm produces samples which are in
proportion to the posterior probability distribution which is
fine for parameter estimation but one needs the proportion-
ality constant for estimating the model marginal likelihood.
Clyde (2006) recently reviewed the state of techniques for
model selection from a statistics perspective and Ford &
Gregory (2006) have evaluated the performance of a variety
of marginal likelihood estimators in the extrasolar planet
context.

In this work we will compare the results from three
marginal likelihood estimators: (a) parallel tempering, (b)
ratio estimator, and (c) restricted Monte Carlo. The analysis
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Figure 7. Marginal parameter probability distributions for the
one planet model for the new data set and s0 = 1m s−1.
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Figure 8. Panel (a) shows the data, with the best fitting P2

orbit subtracted, for two cycles of P1 phase with the best fitting

P1 orbit overlaid. Panel (b) shows the data plotted versus P2

phase with the best fitting P1 orbit removed.
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Figure 9. A plot of 〈ln[p(D|Mi,X, I)]〉β versus β. The inset
shows a blow-up of the range β = 0.1 to 1.0.

presented in Section 7.1, 7.2, and 7.3 is based on the old
data set (Tinney et al. 2005) and prior #1. These results
are summarized in Section 7.4 together with model selection
results for the new data set (Butler et al. 2006) using prior
#2.

7.1 Parallel tempering estimator

The MCMC samples from all (nβ) simulations can be used
to calculate the marginal likelihood of a model according to
equation (19) Gregory (2005a).

ln[p(D|Mi, I)] =

∫
dβ〈ln[p(D|Mi,X, I)]〉β, (19)

where i = 0, 1, 2 corresponds to a zero, one or two planet
model, and X represent a vector of the model parameters
which includes the extra Gaussian noise parameter s. In
words, for each of the nβ parallel simulations, compute the
expectation value (average) of the natural logarithm of the
likelihood for post burn-in MCMC samples. It is necessary
to use a sufficient number of tempering levels that we can
estimate the above integral by interpolating values of

〈ln[p(D|Mi,X, I)]〉β =
1

n

∑

t

ln[p(D|Mi,X, I)]β, (20)

in the interval from β = 0 to 1, from the finite set. For this
problem we used 34 tempering in the range β = 10−8 to 1.0.
Figure 9 shows a plot of 〈ln[p(D|Mi,X, I)]〉β versus β. The
inset shows a blow-up of the range β = 0.1 to 1.0.

The relative importance of different decades of β can
be judged from Table 4. The second column gives the frac-
tional error that would result if this decade of β was not
included and thus indicates the sensitivity of the result to
that decade. In Ford & Gregory (2006) we constructed a
similar table for the one planet system HD 88133 only we
investigated a wider range of β values down to 10−11. The
fractional errors for the β range 10−5 to 10−8 were very
similar to those given in Table 4. The fractional error for
β = 10−11 − 10−8 was only 0.002 and consequently this
range of β can safely be ignored.

Figure 10 shows a plot of the parallel tempering
marginal likelihood versus iteration number for two differ-
ent MCMC runs for the two planet model. The solid gray
curve shows the result for the second ratio estimator method
which is discussed below. All three curves converge to the
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Table 4. Fractional error versus β for the results shown in Figure 9.

β range Fractional error

1.0 − 10−1 1.55× 1044

10−1 − 10−2 7.46× 106

10−2 − 10−3 15.2

10−3 − 10−4 1.17
10−4 − 10−5 0.52

10−5 − 10−6 0.35
10−6 − 10−7 0.16

10−7 − 10−8 0.02
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Figure 10. A plot of the parallel tempering marginal likelihood

versus iteration number (dashed curves) for two different MCMC
runs for the two planet model. The solid gray curve shows the

result for the ratio estimator method which is discussed in Sec-
tion 7.2.

same value but the ratio estimator converges much more
rapidly. The final parallel tempering marginal likelihood es-
timates from the two runs were 1.5× 10−54 and 3.4× 10−54,
yielding an average value of 2.4 × 10−54.

7.2 Marginal likelihood ratio estimator

Our second method was introduced by Ford & Gregory
(2006). It makes use of an additional sampling distribution
h(X). Our starting point is Bayes’ theorem

p(X|Mi, I) =
p(X|Mi, I)p(D|Mi,X, I)

p(D|Mi, I)
. (21)

Re-arranging the terms and multiplying both sides by h(X)
we obtain

p(D|Mi, I)p(X|Mi, I)h(X) =

p(X|Mi, I)p(D|MI,X, I)h(X). (22)

Integrate both sides over the prior range for X.

p(D|Mi, I)re

∫
p(X|Mi, I)h(X)dX =

∫
p(X|Mi, I)p(D|MI,X, I)h(X)dX. (23)

The ratio estimator of the marginal likelihood, which we
designate by p(D|Mi, I)re, is given by

p(D|Mi, I)re =

∫
p(X|Mi, I)p(D|Mi,X, I)h(X)dX∫

p(X|Mi, I)h(X)dX
. (24)

To obtain the marginal likelihood ratio estimator,
p(D|Mi, I)re, we approximate the numerator by drawing

samples X̃
1
, X̃

2
, · · · , X̃n′

s from h(X) and approximate the

denominator by drawing samples ~X
1
, ~X

2
, · · · , ~X

ns
from the

β = 1 MCMC post burn-in iterations. The arbitrary func-
tion h(X) was set equal to a multinormal with a covariance
matrix equal to twice the covariance matrix computed from
a sample of the β = 1 MCMC output. We used 4 n′

s = 105

and ns from 104 to 2×105. Some of the samples from a multi-
normal h(X) can have nonphysical parameter values (e.g.
K < 0). Rejecting all nonphysical samples corresponds to
sampling from a truncated multinormal. The factor required
to normalize the truncated multinormal is just the ratio of
the total number of samples from the full multinormal to
the number of physical valid samples. Of course we need to
use the same truncated multinormal in the denominator of
equation (24) so the normalization factor cancels. The solid
gray curve in Figure 10 shows marginal likelihood ratio es-
timator versus iteration number for model M2. It lies be-
tween the two parallel tempering convergence values. From
Figure 10 it is clear that the p(D|M2, I)re converges much
more rapidly than the parallel tempering estimator and the
parallel tempering estimator, p(D|M2, I)PT , required 34 β
simulations instead of one. The final values of p(D|Mi, I)re

for models M2 and M1 were 2.0 × 10−54 and 3.3 × 10−56.

7.3 Restricted Monte Carlo marginal likelihood
estimate

We can also make use of Monte Carlo integration to evaluate
the marginal likelihood as given by equation (25).

p(D|Mi, I) =

∫
p(X|Mi, I)p(D|MI,X, I)dX. (25)

Monte Carlo (MC) integration can be very inefficient in
exploring the whole prior parameter range, but once we
have established the significant regions of parameter space
with the MCMC results, this is no longer the case. The
outer borders of the MCMC marginal parameter distribu-
tions were used to delineate the boundaries of the volume
of parameter space to be used in the Monte Carlo inte-
gration. RMC integration using 107 samples was repeated
three times for the two planet model. The results were
1.6 ± 2.6, 1.1 ± 1.2, 2.3 ± 0.6 × 10−54 yielding a weighted
average of 2.1± 0.1 × 10−54. The weighted average of RMC
repeats for the one planet model was 2.9 ± 0.1 × 10−56.

7.4 Summary of model selection results

Table 5 summarizes the marginal likelihoods and Bayes fac-
tors comparing models M0 and M2 to M1 for the old data
set analyzed using prior #1. For model M0, the marginal
likelihood was obtained by numerical integration. For M1,
the value and error estimate are based on the ratio esti-
mator and RMC methods. For model M2, the two parallel
tempering marginal likelihood estimates differed by a factor
of ∼ 2, although their average agreed within 20% with the

4 According to Ford & Gregory (2006), the numerator converges
more rapidly than the denominator.
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Table 5. Marginal likelihoods for old data set (Tinney et al. 2005)

and prior #1.

Model s0 Marginal Bayes

(m s−1) Likelihood factor

M0 1.0 1.60× 10−60 (76± 7) × 10−6

M1 1.0 (3.10± 0.3)× 10−56 1.0
M2 1.0 (2.2± 0.2)× 10−54 (71± 9)

Table 6. Marginal likelihoods for new data set (Butler et al.
2006) and prior #2.

Model s0 Marginal Bayes
(m s−1) Likelihood factor

M0 1.0 1.56× 10−68 (38± 4)× 10−6

M1 1.0 (4.08± 0.39)× 10−64 1.0

M2 1.0 (9.54± 0.87)× 10−62 234± 31

M1j (2.44± 0.24)× 10−63

M0 10.0 1.44× 10−68 (58± 6)× 10−6

M1 10.0 (2.47± 0.25)× 10−64 1.0
M2 10.0 (4.38± 0.69)× 10−62 177± 33

values obtained by the ratio estimator and RMC methods.
Combining the three results yielded a marginal likelihood
good to ∼ ±10%. The conclusion is that the Bayes factor
strongly favors a two planet model compared to the other
two models.

Table 6 gives the same information for the new data set
analyzed using the improved prior #2 for both choices of s0
(1 and 10m s−1). The improved data significantly strength-
ens the case for the existence of the second planet as judged
by the value of B21. Since the value of B21 decreases as we
increase the value of s0, what argument can we give for not
using a very much larger value, say s0 = 1000. This would
effectively convert our Jeffreys prior into a uniform prior.
For a uniform prior, the probability in the decade s = 100
to 1000m s−1 is 100 times the probability in the decade from
1 to 10m s−1. Thus, a uniform prior assumes that it is much
more likely that s is very large than it is very small. We ar-
gue that the scale invariant property of the Jeffreys prior is
much more consistent with our prior state of knowledge for
the current problem. For model selection purposes we want
to employ the smallest value of s0 that avoids the divergence
that would otherwise occur at s = 0. For the current prob-
lem, a value of s0 = 10m s−1 is large enough to achieve this
goal.

Table 6 gives values of B21 and B01 for the two cases,
s0 = 1 and 10m s−1. Table 6 also includes an entry for
M1j , the one planet plus stellar jitter model (introduced at
the end of section 5). It is not as simple to compare mod-
els M1j to M2 because M1j makes use of additional prior
information concerning stellar velocity noise or jitter. One
approximate way to make use of this information for model
M2 would be to set the prior upper bound on our extra
noise parameter at a few times the jitter estimate, say 15m
s−1. Reducing the prior upper bound on s from 2129m s−1

to 15m s−1 reduces the Occam penalty associated with the
unknown s parameter by a factor of ≈ 6 for s0 = 10m s−1.

Thus for s0 = 10 m s−1, the marginal likelihood for M2

would need to be increased by a factor of ≈ 6 before com-
paring with the likelihood for M1j . The corresponding Bayes
factor is B21j ≈ 108.

Following Cumming (2004), we compute a Bayesian
false alarm probability. For this purpose we will restrict the
hypothesis space of interest to just two models M1 and M2.
In this context, the Bayesian false alarm probability, F , is
the probability there is really only one planet given the data
D and our prior information I. In this case the probability
of the data is

p(D|I) = p(M1|I)p(D|M1, I) + p(M2|I)p(D|M2, I). (26)

Combine this with Bayes theorem

p(M1|D,I) = p(M1|I)p(D|M1, I)/p(D|I), (27)

to obtain

F = p(M1|D,I) =
1

1 + p(M2 |I)
p(M1 |I)

p(D|M2 ,I)
p(D|M1 ,I)

=
1

1 +B21
, (28)

where we have assumed p(M1|I) = p(M2|I). According to
equation (28), a Bayes factor B21 ≈ 177 corresponds to a
false alarm probability of 0.006.

8 DISCUSSION

One source of error in the measured velocities is jitter, which
is due in part to flows and inhomogeneities on the stellar sur-
face. Wright (2005) gives a model that estimates, to within
a factor of roughly 2 (Butler et al. 2006), the jitter for a star
based upon a stars activity, color, Teff, and height above the
main sequence. For HD 208487, Butler et al. (2006) quote a
jitter estimate of 5.4m s−1, based on Wright’s model. Our
models M0, M1 and M2 employ instead an extra Gaussian
noise nuisance parameter, s, with a prior upper bound of
equal to Kmax = 2129m s−1. Anything that cannot be ex-
plained by the model and published measurement uncer-
tainties (which do not include jitter) contributes to the ex-
tra noise term. Of course, if we are interested in what the
data have to say about the size of the extra noise term then
we can readily compute the marginal posterior for s. The
marginal for s is shown in Figures 6 and 7 for models M2

and M1, respectively. For M1, the marginal for s shows a
pronounced peak with a median value of 5.6m s−1, which is
very close to the jitter estimate given in Butler et al. (2006)
based on Wright’s model.

ForM2, the marginal for s shows a sharp peak at a value
of s = 0m s−1. We can determine whether the posterior
shape was strongly influenced by our choice of knee (s0 =
1.0m s−1) in the modified Jeffreys prior for s, by comparing
with the results obtained assuming s0 = 10m s−1. The two
marginal posteriors are shown in Figure 11. Clearly, using a
larger s0 does suppress the sharp peak at s = 0, however,
the marginal posterior still favors a value of s close to zero.
It would appear that the velocity variations arising from
the second planet are on the same scale as the previously
estimated stellar jitter for HD 208487. The results of our
Bayesian model selection analysis indicate that a two planet
model is greater than 100 times more probable than a one
planet model with the previously estimated jitter. Based on
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Figure 11. A comparison of the marginal probability distribu-

tions for the extra noise parameter, s, for two different values of
the prior knee, s0 for model M2. The dashed curve corresponds

to s0 = 1.0m s−1 and the solid curve to s0 = 10.0m s−1.
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Figure 12. A comparison of the marginal probability distribu-

tions for the extra noise parameter, s, for two different values of
the prior knee, s0 for model M1. The dashed curve corresponds

to s0 = 1.0m s−1 and the solid curve to s0 = 10.0m s−1.

model M2, and s0 = 10m s−1, the 95% upper limit on the
remaining stellar jitter is 4.2m s−1.

Figure 12 shows a comparison of the marginal for s for
s0 = 1m s−1 (dashed curve) and s0 = 10m s−1 (solid) for
model M1. In this case, the marginal for s0 = 10m s−1

is displaced very slightly to larger values of s, as expected
for a more uniform prior, but the shift is negligible when
compared to the uncertainty in the parameter value.

It is interesting to compare the measured one σ width
of the marginal period PDF to values estimated from equa-
tion (5) after multiplying by P 2 to convert to δf to δP .
We have used the ratio of K/

√
2 to the mean velocity error

as an estimate of the S/N for use in equation (5). For P1

the predicted δPpred = 0.31, whereas the measured value
δPmeas = 0.4. Of course, the effect of any correlations be-
tween parameters is to broaden the marginal distribution, so
if anything we expect the measured value to be broader. In
the case of P2, δPmeas ≈ 1.8 × δPpred. In this case both the
shape of the marginal and the P2 versus e2 correlation dia-
gram of Figure 4 suggest that the data allow for two closely
blended solutions in the vicinity of 900d. The marginals for
χ2 and ω2 also show evidence for a blend of two components.
A preliminary three planet model analysis failed to detect a
third planet.

A rough estimate of the expected width of the marginal
velocity PDF is equal to the mean velocity error divided by
the

√
N , or 0.9m s−1, where N is the number of data points.

In comparison the measured widths are 1.6m s−1 for P1 and
2.5m s−1 for P2.

In section 5, we discussed two different strategies to
search the orbital frequency parameter space for a multi-
planet model: (a) an upper bound on f1 6 f2 6 · · · 6 fn is
utilized to maintain the identity of the frequencies, and (b)
all fi are allowed to roam over the entire frequency range and
the parameters re-labeled afterwards. In this second case,
nothing constrains fi−1 to be less than fi so that degener-
ate parameter peaks can occur. For case (b) and an n planet
model, the number of possible peaks is n! more than in (a).
In this work we adopted approach (b) because in repeated
blind frequency (period) searches it always converged on the
highest posterior probability peak, in spite of the huge pe-
riod search range. Approach (a) failed to locate the highest
peak in some trials and in the cases where it succeeded it
required many more iterations.

Apart from their very different relative efficiency to lo-
cate the highest probability peak, the two approaches are
equivalent and equation (12) is the appropriate frequency
prior for both approaches. As a test of this claim, we ob-
tained p(D|M2, I)re = 1.9×10−54 from an MCMC run using
approach (a), the old data set, and prior #1. This compares
closely with the value 2.0×10−54 obtained for approach (b).
Again, from an MCMC run using prior #2 and the old data
set, we obtained p(D|M2, I)re = 3.9 × 10−54 for (a) and a
value of p(D|M2, I)re = 3.9 × 10−54 for (b). Further tests
of this claim were carried out in a entirely different problem
involving the detection of three spectral lines. For this prob-
lem the marginal likelihoods computed using approaches (a)
and (b) agreed to within 1%.

It is interesting to compare the performance of the three
marginal likelihood estimators employed in this work to their
performance on another data set for HD 88133, which in-
volved fitting a one planet model (Ford & Gregory 2006).
In the latter study, 5 separate (nβ = 32) parallel temper-
ing runs were carried out. After 300,000 iterations, four es-
timates agreed within 25% while the fifth was a factor of
two larger. Based on these two applications, it would ap-
pear that any single parallel tempering marginal likelihood
estimate is only accurate to a factor of 2. For HD 208487
and a two planet model, the parallel tempering estimator
required ∼ 1.5 × 106 iterations for convergence. Of course
to establish convergence, it is necessary to execute at least
two separate parallel tempering runs. The chief advantage of
parallel tempering, in respect to model selection, is that it is
able to estimate the marginal likelihood even for multimodal
posterior distributions. For HD 88133, both the marginal
likelihood ratio estimator and RMC estimator yielded val-
ues within 5% of the average of the best 4 parallel tempering
estimates. For the 2 planet model of HD 208487 and only two
parallel tempering runs, the three estimators agreed within
20%, with the final estimate considered accurate to ±10%.
For more information on these and additional marginal like-
lihood estimators see Ford & Gregory (2006).

9 CONCLUSIONS

In this paper we demonstrate the capabilities of an auto-
mated Bayesian parallel tempering MCMC approach to the
analysis of precision radial velocities. The method is called
a Bayesian Kepler periodogram because it is ideally suited
for detecting signals that are consistent with Kepler’s laws.
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However, it is more than a periodogram because it also pro-
vides full marginal posterior distributions for all the orbital
parameters that can be extracted from radial velocity data.
The periodogram employs an alternative method for con-
verting the time of an observation to true anomaly that en-
ables it to handle much larger data sets without a significant
increase in computation time.

A preliminary re-analysis of the old data for HD 208487
found evidence for a second planet (Gregory 2005c). This has
now been confirmed by the current analysis based on the re-
sults of the improved Kepler periodogram and the new data
set of Butler et al. (2006). The velocity variations arising
from the second planet are on the same scale as the previ-
ously estimated stellar jitter for HD 208487. Based on our
two planet model results, the 95% upper limit on stellar
jitter is 4.2m s−1.

We also derived the form of joint frequency prior to use
for a multiple planet search which is given by

p(f1, f2, · · · fn|Mn, I) =
n!

f1f2 · · · fn[ln(fH/fL)]n
(29)

where n is the number of planets. There are two frequency
search strategies: (a) constrain the frequencies such that
fL < f1 < f2 < · · · < fn < fH, or (b) allow each frequency
to be unconstrained and re-label them afterwards. In prac-
tice we found that case (b) was significantly more successful
than (a) for blind searches. In both cases equation (29) is
the correct joint frequency prior.

Considerable attention was paid to the topic of Bayesian
model selection. Based on current research, it appears nec-
essary to employ more than one method for estimating
marginal likelihoods in order to obtain results that are ac-
curate at the 10% level.
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