

SUSTAINABILITY

Only 60 Years of Farming Left If Soil Degradation Continues

Generating three centimeters of top soil takes 1,000 years, and if current rates of degradation continue all of the world's top soil could be gone within 60 years, a senior UN official said

By Chris Arsenault (Thomson Reuters Foundation), Dec. 5, 2014

THE SCIENCES

SUSTAINABILITY

Only 60 Years of Farming Left If Soil Degradation Continues

Generating three centimeters of top soil takes 1,000 years, and if current rates of degradation continue all of the world's top soil could be gone within 60 years, a senior UN official said

By Chris Arsenault (Thomson Reuters Foundation), Dec. 5, 2014

The causes include chemical-intensive farming, plowing or tilling, current livestock management, deforestation, and global warming. About 1/3 of the world's soil has already been degraded.

Soil degradation

To keep up with the global food demand, the United Nations estimates,

6 million hectares of new farmland will be needed every year. Instead,

12 million hectares/year are lost through soil degradation.

http://www.un.org/en/events/desertificationday/background.shtml

Rickson, R.J., Deeks, L.K., Graves, A. et al. Food Security (2015) 7: 351.

We are going backwards at a rate of 18 million hectares/ year.

For comparison the area of England is 13 million hectares.

1 hectare =2.47 acres

My Investigation

Decided that I needed to investigate the subject to make my own assessment and to discover what if anything could be done.

This led me on a fascinating two year journey into current agricultural practices, soil biology, desertification, and grazing practices.

I learned about some amazing advances that have been made in the last 20 to 30 years and especially in the arena of soil biology and understanding nature's complexity.

I benefitted from 4 online courses that I completed from one of the pioneers of this new revolution, Dr. Elaine Ingham.

Please consider this presentation as a viewpoint on the subject through an astronomer's lens after two years of study.

The Good News

My findings indicate that we now possess the knowledge to:

- 1) rapidly reverse the degradation of soils,
- 2) there is good evidence to suggest that we can sequester much of the excess atmospheric carbon (perhaps all of it) in the soil,
- 3) and mitigate the root cause of much of the suffering in Africa and the Middle East caused by the collapse of agriculture.

They are all connected and the solution may not be that expensive as nature can do a lot of the work.

The real challenge is to re-educate ourselves in the limited time frame available.

An Astronomer's Perspective

This short video features another astronomer, Dr. Laura Danly of California's Griffith Observatory. She is helping the U.S. Department of Agriculture promote its "healthy soils" campaign.

Permission granted by USDA Natural Resources Conservation Service

https://www.youtube.com/watch?v=6tJlkAjDjjo&index=6&list=PL4J8PxoprpGZ-uMTxScBBn9nYT6CMX8aD

Microbes are the secret behind healthy soil.

Each teaspoon of healthy soil contains as many microbes as the population of humans on earth.

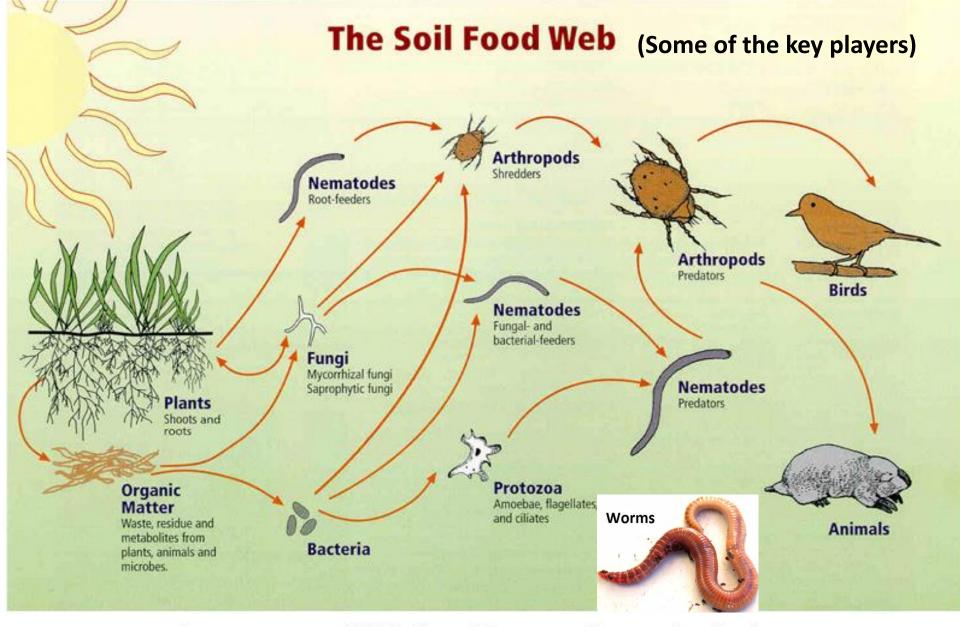
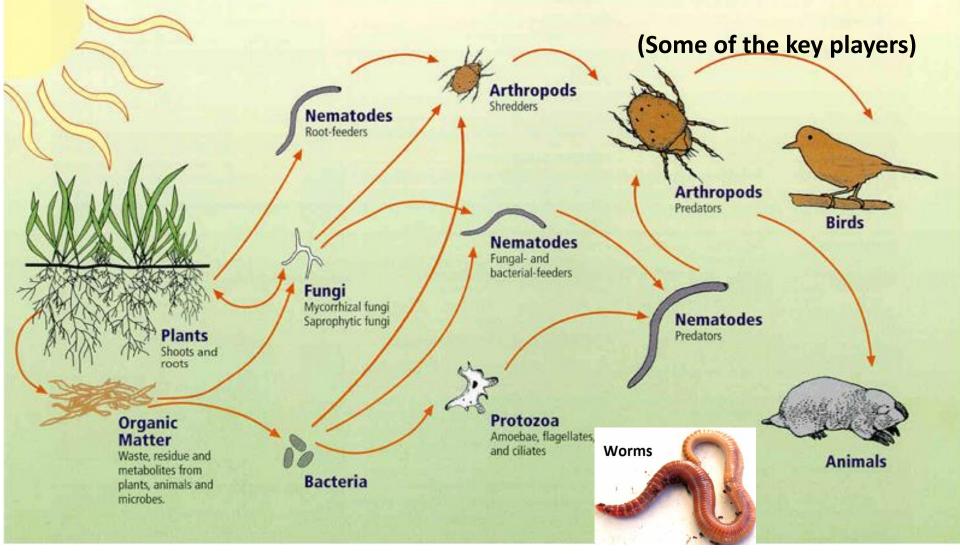



Image courtesy of USDA Natural Resources Conservation Services http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/biology/

For a fascinating account of the mining capabilities of fungi see:

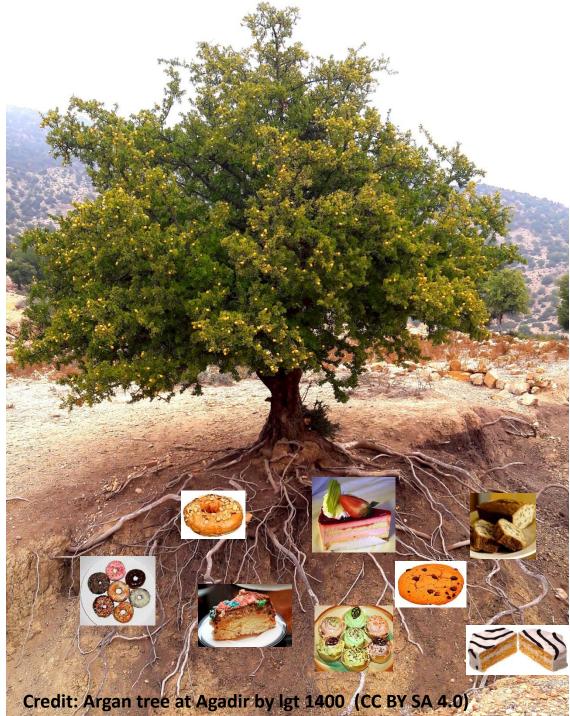
- 1) 'The World's Largest Mining Operation Is Run by Fungi' Jennifer Frazer, Scientific American Nov. 5, 2015
- 2) 'Linking Plants to Rocks: ectomycorrhizal fungi mobilize nutrients from minerals' Renske Landeweert et al., Trends in Ecology & Evolution 16, no. 5 (2001): 248

Plants are the conductors of this symphony of nature

How do they do it?

Up to 40% of the sugars, carbohydrates and proteins that plants produce through photosynthesis are released from their roots to attract the microbes the plant requires.

Called root exudates.

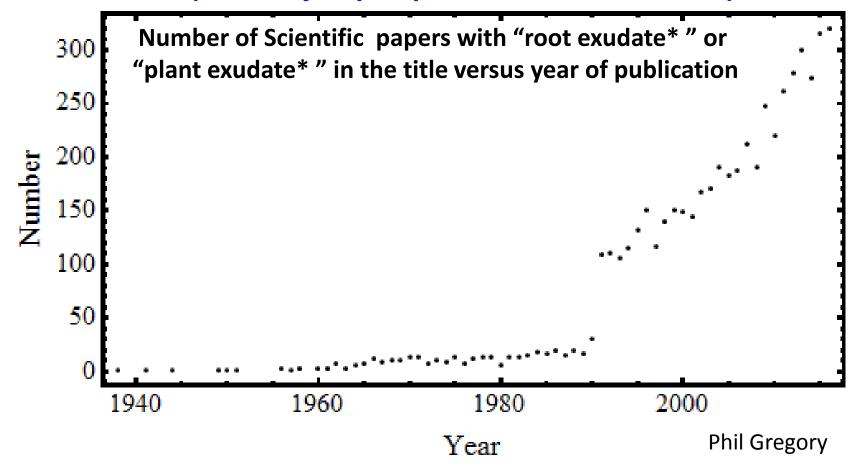


Plants are the conductors of this symphony of nature

"What do you make when you mix sugar, a carbohydrate like flour and protein like eggs and milk?


That's a recipe for cakes and cookies. So the plant is putting out cakes and cookies to attract the microbes."

Dr. Elaine Ingham



Plants also release exudates through their foliage.

In healthy soil conditions leaf surfaces are covered by microbes held to the plant by the strong biotic glues. That protective layer is one of nature's way of achieving disease suppression.

One indicator of the recent revolution in soil biology (sudden jump in publication rate in 1991)

One of the key papers indicating the important role of soil biology:

"Interactions of Bacteria, Fungi, and their Nematode Grazers: Effects on Nutrient Cycling and Plant Growth," by Russell E. Ingham, J. A. Trofymow, Elaine R. Ingham, and David C. Coleman, *Ecological Monographs*, Vol. 55, No. 1 (Mar., 1985), pp. 119-140. (672 citations to 2016)

Bacteria and fungi build soil structure

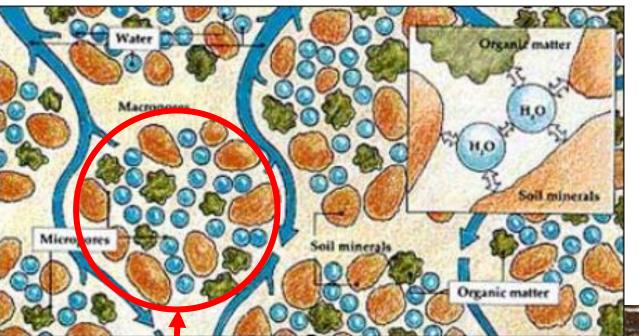
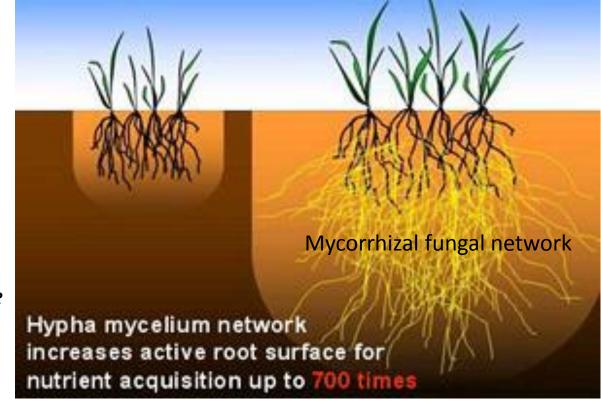


Image credit UN FAO.

Together they build underground cities for the microbes to live in, with passage ways that allow water and air to penetrate to great depths.

microaggregate

Bacteria secrete biotic glues that stick soil minerals and organic matter together in what are called microaggregates.


Fungal strands (right) tie microaggregates together forming aggregates.

Mycorrhizal Fungal Network

Fungal hyphae are long thin strands, invisible to the naked eye.

Mycelium is a visible network or bundle of hyphae, for example mold on spoiled food.

Strange but True: the largest organism on Earth is a fungus, nearly 10 square km in size and estimated to be 2400 years old. (Oregon Blue Mountains)

Current Agricultural Practices

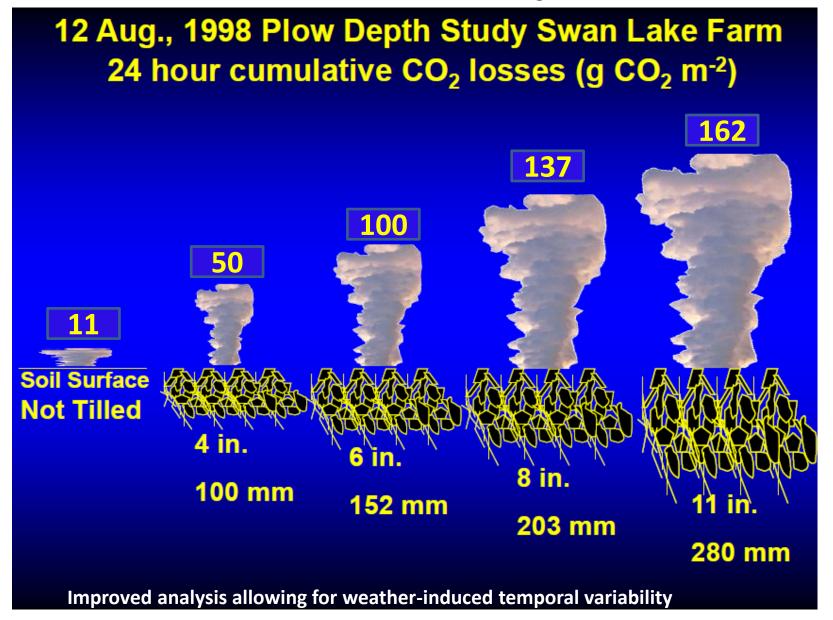
- Plowing or tillage
- Growing of monocultures in the belief that diversity means competition.

Application of chemical fertilizers, herbicides and pesticides

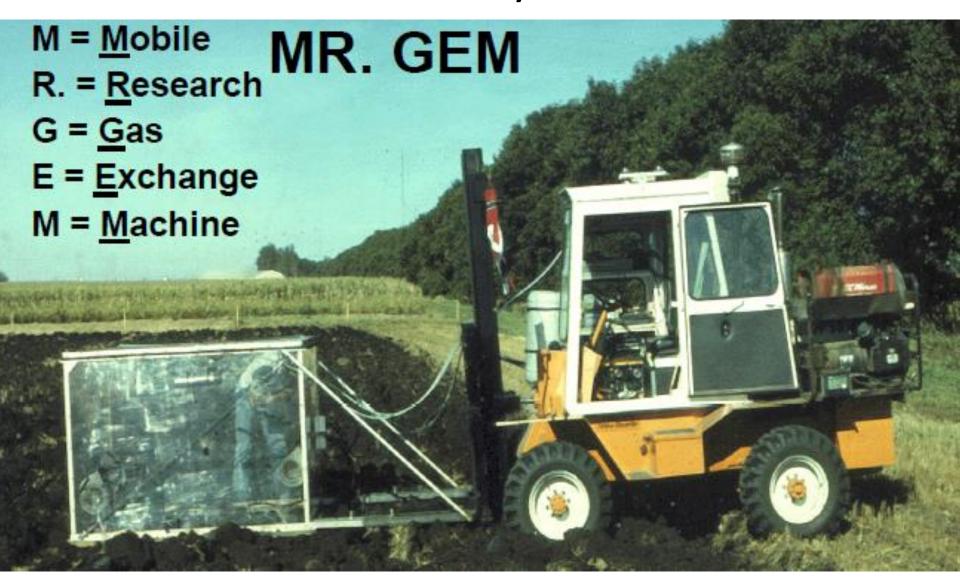
- Livestock in confinement (from poultry battery cages to feed lots)

Examples of plowing (also called tillage)

Credit: Trish Steel, (Co


Plowing slices and dices the soil structure built by bacteria and fungi with their biotic glues - turning living soil into dirt.

Those underground cities were home to a diverse ecosystem capable of providing all the nutrients required by plants without the need for chemical fertilizers.


Effect of tilling on CO₂ emission

Dr. Don Reicosky , USDA Agricultural Research Services

D.C. Reicosky and D. W. Archer, Soil and Tillage Research, Vol. 94, Issue 1, pp. 109–121, 2007

Tillage and planting: impact on carbon and soil quality Dr. Don Reicosky USDA-ARS

Soil health lessons in a minute: by Ray Archuleta, USDA

Permission granted by USDA Natural Resources Conservation Service

a) Water infiltration test: shows how healthy soil can capture (infiltrate) much more of the rainfall and store it in the soil. This alleviates drought and prevents soil erosion. credit: U.S. Department of Agriculture

https://www.youtube.com/watch?v=Rpl09XP_f-w

b) Soil stability test: comparison of healthy soil with lots of microbes creating biotic glues and fungal strands that hold the soil together, to soil that has been turned to dirt by repeated plowing.

https://www.youtube.com/watch?v=9 ItEhCrLoQ

Without the biotic glues and living plant roots, soil is easily washed away by rain or blown away during periods of drought, creating massive dust storms.

Each soil sample used in the demonstration was air dried

Dust storm approaching Stratford, Texas 1935.

Credit: NOAA George E. Marsh Album (Public Domain)
https://commons.wikimedia.org/w/index.php?title=Special%3ASearch&profile=default&search=
2015+dust+storm+Colorado&fulltext=Search&uselang=en

Current agricultural model involves a lot of killing of weeds, fungi, insects, & biodiversity

1,700 beneficial or indifferent insect species for every 1 pest species

Address cause of pest problem rather than the symptons

(Entomologist, Dr. Jonathan Lundgren)

We try to keep monoculture production and the factory-farming of livestock viable through chemistry, drugs, machinery, genetic engineering and ultimately cash subsidy.

(Allan Savory, Holistic Management)

Current agricultural model uses 10 calories of fossil fuel energy to produce one calorie of food

Alternative Agricultural Model Nature's way (biomimicry)

-Nature doesn't plow or till the soil

A certain amount of disturbance by animals is natural as plants and animals co-evolved together.

-Nature favors biodiversity

A typical natural prairie grassland has over 100 different plants living together in a mutually beneficial (symbiotic) relationship.

-Natural soil is full of living microbes:

They provide all the nutrients plants need and protect against disease. Adding fertilizers upsets this ecology.

- -Nature has plants covering the ground year round
- -Nature's way is sustainable and more profitable for the farmer

Move to regenerative agriculture where we rebuild the soil biology and sequester more carbon at the same time as we grow food.

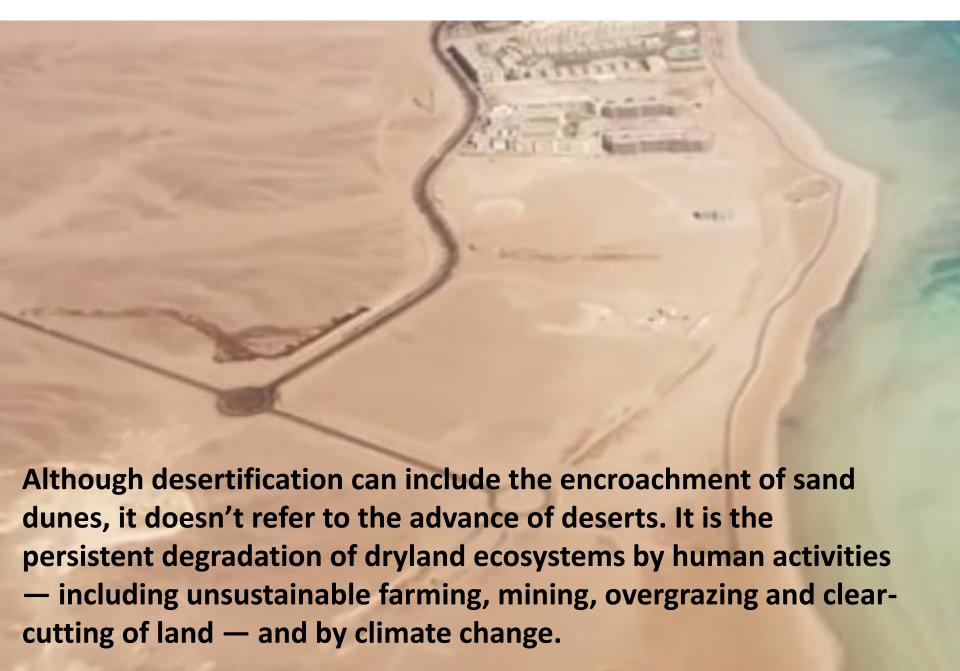
How to rebuild the soil biology?

 By inoculating the dirt with a thin layer of compost or by spraying with a compost extract and compost tea.

It is important to ensure the compost is teeming with a good selection of soil microbes using a soil microscope.

 Ensure a good cover of plants providing root exudates to feed the microbes.

Soil Solutions to Climate Problems


Video created by the Center for Food Safety 19 Nov 2015, Narrated by Michael Pollan

Permission granted by the Center for Food Safety

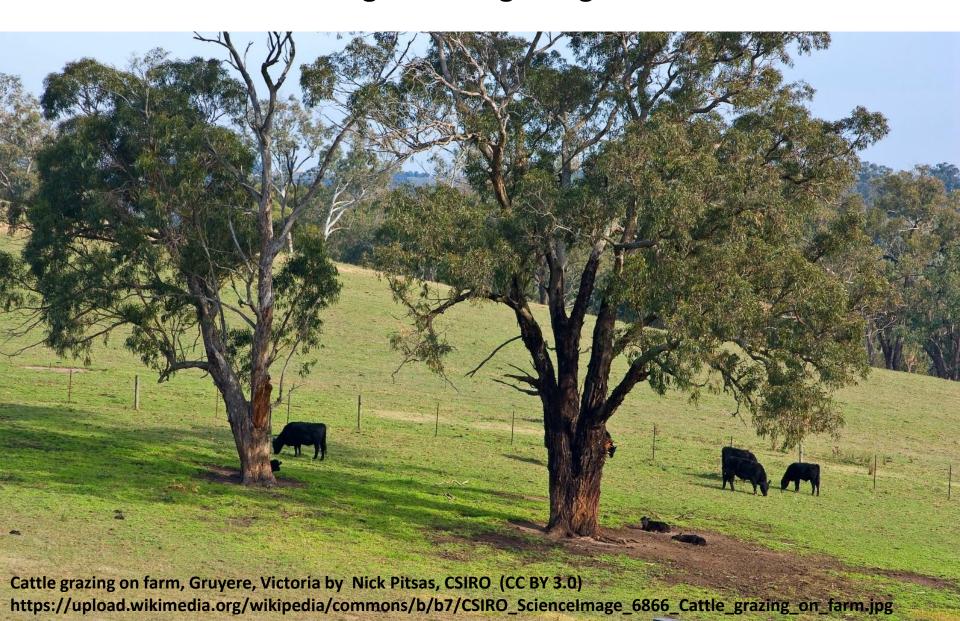
https://www.youtube.com/watch?v=NxqBzrx9yIE

The final segment of this presentation concerns desertification and livestock grazing practices.

Desertification

Desertification: the extent of the problem

Drylands, areas prone to desertification, occupy approximately 40% of Earth's land area and are home to more than 2 billion people.


Desertification

Conventional wisdom has it that one of the main causes of desertification is overgrazing by cattle, sheep and goats.

According to one of my agricultural heroes, the African biologist Allan Savory, we were once just as certain that the earth was flat. As he has shown, it is not about numbers, it is all about timing.

It's our failure to manage plant recovery time that leads to overgrazing and land desertification.

Continuous grazing is a common practice in which livestock have unrestricted access throughout the grazing season.

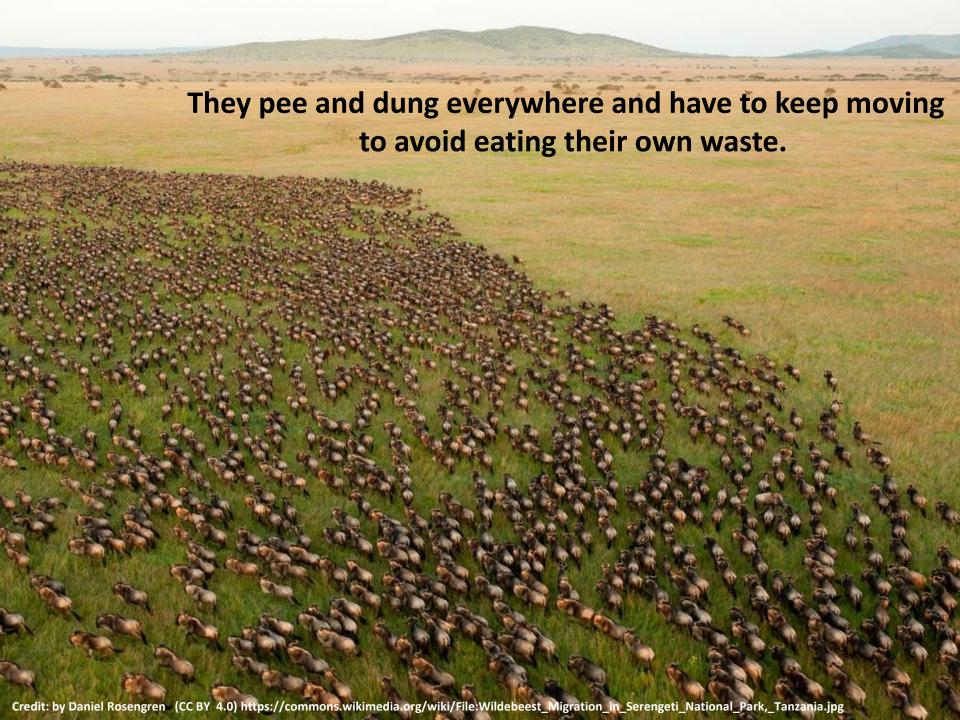
Desertification

It is common practice to put cattle into a fenced pasture for an extended period of time. A typical native grassland contains more than 100 plant species and like humans, herbivores have their preferences, and from these they choose the freshest growth.

They first eat their preferred grasses and only move to other type after it is all gone. They will return to eat their favourite as soon as it starts to regrow before the root has been recharged by photosynthesis.

In drought prone areas this repeated cropping kills the grass leaving bare ground with no plants to feed the soil microbes. This leads to desertification and a loss of soil carbon. The dark bare soil gets very hot, causing soil moisture to evaporate leading to soil erosion, droughts, famine and poverty.

How does nature prevent overgrazing?



Wildebeests only safe inside the herd.

Credit: Kevin Pluck (CC-8Y 2.0) https://commons.wikimedia.org/wiki/ File Elon_waiting_in_Namibia.jpg

How can humans imitate nature?

One method: use electric fence to emulate the predators

The farmer spends about 20 minutes each day setting up the electric fence for the next paddock.

Credit: Peter Byck © ESEF 2015 (with permission), "Soil Carbon Cowboys" https://vimeo.com/80518559

Wait a minute - aren't we supposed to eat less meat?

Methane produced by ruminants is a potent green house gas (GHG)

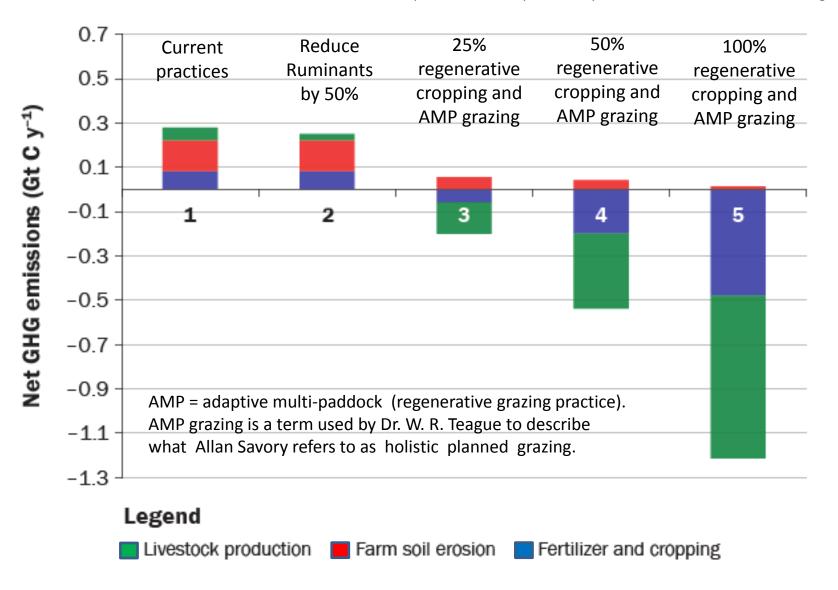
But we have been ignoring a whole other side to this story.

When herbivores are adaptively grazed to emulate nature there is a net reduction in GHG. The GHG emission of methane is more than compensated for by the amount of atmospheric carbon sequestered in the soil.

Some of the recent science.

https://www.youtube.com/watch?v=crG4L4J-OEg

W.R. Teague et al., Journal of Soil and Water Conservation, 71, #2, p. 156, 2016 Tong Wang et al., Sustainability 2015, 7(10), 13500-13521

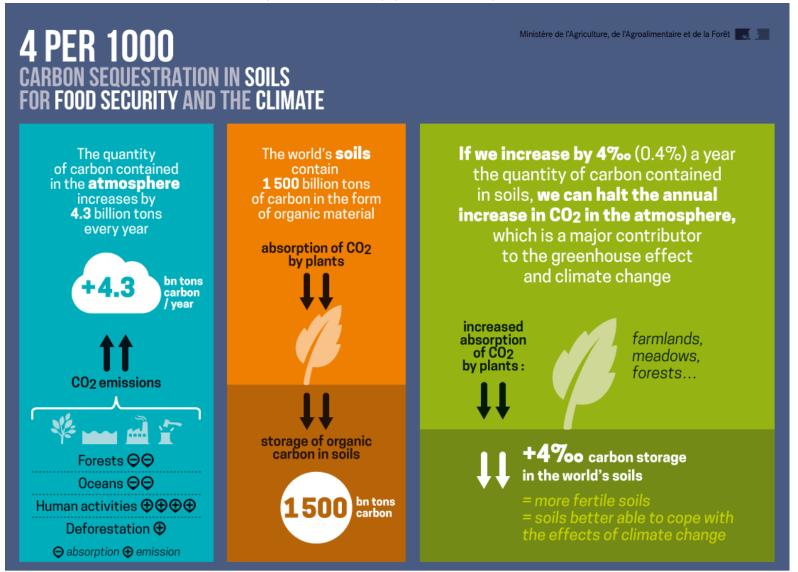

Our new knowledge shows how cattle, sheep and goats can be a big part of the solution.

See the TED talk by Allan Savory at

https://www.ted.com/talks/allan savory how to green the world s deserts and reverse climate change?language=en

Best working hypothesis for North American agricultural greenhouse gas (GHG) emissions for a transition to regenerative cropping and regenerative grazing practices

Based on: W.R. Teague + 11 authors, Journal of Soil and Water Conservation, 71, #2, p. 156, 2016 See also Quivira Conference presentation https://www.youtube.com/watch?v=crG4L4J-OEg


Potential for Improved Data

- As an astronomer I would like to have 5 planet earths to test out the different scenarios indicated in the previous slide. Since this is not possible we need to treat these estimate for the green house gas emissions for regenerative agriculture as the best working hypothesis.
- Fortunately, over the next 4 years we may acquire a lot more data as the French Government has embarked on an ambitious regenerative agriculture program aimed at sequestering large amounts of atmospheric carbon with improved soil monitoring. This '4 per 1000' initiative was announced at the 2015 Paris Climate Meeting COP 21.

(For more ongoing research in regenerative agriculture see the supplementary notes.)

French Government's `4 per 1,000 ' Initiative proposed at the Paris Climate meeting COP 21

France is committed to ensuring that at least 50% of its agricultural holdings will have adopted this approach by 2020.

Countries participating in the French "4 pour 1000" initiative (as of Nov. 2016)

Australia Mexico

Austria Morocco

Bulgaria Netherlands

Costa-Rica New Zealand

Croatia Philippines

Denmark Poland

Estonia Portugal

Ethiopia Slovenia

Finland Spain

France Sweden

Germany Tunisia

Hungary Ukraine

Iran United Kingdom

Ireland Uruguay

Japan Andalusia

Latvia Wallonie Region

Lithuania

Hopefully more countries will join this important

initiative

My conclusion after two years of investigating this issue:

1) If regenerative agriculture, including both regenerative cropping and regenerative grazing, is practiced on 100% of the world's agricultural land then the current best estimate of the net global green house gas emissions is -0.5 G t C/yr.

We would be removing CO₂ from the atmosphere.

- 2) If we were only to achieve this on 1/3 of the agricultural land we could reduce green house gas emissions by approximately 35%.
- 3) If we use livestock to reverse desertification then we don't need to destroy rain forests to grow more grain for feedlot operations!

Regenerative agriculture is a win-win - - - win situation.

- 1) Less money for chemicals and plowing, reduced use of fossil fuels, saves farmers money, reduced soil erosion and water pollution.
- 2) Increased soil organic matter, greater biodiversity, improved soil structure, more water infiltration and storage.
- 3) Increased long term production and greater resistance to droughts.
- 4) Reduced famines and agricultural collapses.
- 5) Reduced workload for farmer as the soil biology does most of the work.
- 6) More nutritious food.

Video showing the connections between Soil Carbon, Climate Change, and Food Security

"The Soil Story"

was produced by Kiss the Ground and is narrated by the Carbon Underground President Larry Kopald.

Open source and free to use for educational purposes.

https://thecarbonunderground.org/the-carbon-underground-president-larry-kopald-narrates-the-soil-story/

Supplementary material for lecture by Dr. Phil Gregory, Physics and Astronomy Dept., University of British Columbia

How are seeds planted in no till farming

https://www.youtube.com/watch?v=V5uK-1dclRY

The Hidden Half of Nature: The Microbial roots of Life and Death by David R. Montgomery and Anne Bilké, Norton Publishers, 2016

Gabe Brown's story: a farmer ahead of his time

https://www.youtube.com/watch?v=GxlyKfWf9kU

Singing Frogs Farm https://www.youtube.com/watch?v=zAn5YxL1PbM

Carbon cowboys

https://www.youtube.com/results?search_query=Carbon+cowboys

Soil Food Web (Dr. Elaine Ingham)

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2 053868

We need regenerative farming, not geoengineering

https://www.theguardian.com/sustainable-business/2015/mar/09/we-need-regenerative-farming-not-geoengineering

Oxford Real Farming Conference keynote talk by Dr. Elaine Ingham

https://www.youtube.com/watch?v=x2H60ritjag

Slides for this talk are online here

https://drive.google.com/file/d/0B6tV3TorfmstbXllUU5yMXB2MWM/view

Supplementary material continued

French initiative 4 per 1000 to sequester C in the soil for food security and climate

http://4p1000.org/understand

https://concilium.digital/wp-content/uploads/2016/11/Leaflet-4per1000-GB.pdf

Scientific talk on 4p1000 program

https://www.youtube.com/watch?v=sBeCHZNf2L4

Dr. Elaine Ingham's Life in the Soil Classes http://www.lifeinthesoilclasses.com/

Introduction to gardening with nature by Dr. C. A. Rollins and Dr. Elaine Ingham http://www.soilfoodweb.com/Article.html

Industrial Farming Threatens Food Security in the US, Dr. Mercola, 10 Jan 2017

http://articles.mercola.com/sites/articles/archive/2017/01/10/industrialization-versus-regenerative-agriculture.aspx?utm_source=dnl&utm_medium=email&utm_content=art1&utm_campaign=20170110Z1&et_cid=DM1_32724&et_rid=1836044384

What If the World's Soils Run Out?

http://world.time.com/2012/12/14/what-if-the-worlds-soil-runs-out/

Water in Plain Sight: Hope for a Thirsty World, by Judith D. Schwartz St. Martin's Press, New York, 2016

Draft Policy for Long Term Food Security and Climate Action, by Phil Gregory, UBC, Submitted to the Canadian Federal Government, 2016

http://www.phas.ubc.ca/~gregory/papers/CanadaFoodSecurityClimateActionPolicyProposalPhilipGregory27Dec2016.pdf

Supplementary material continued

The following is a fictional story that I created for my granddaughter Maia when she was 10 after I learned about regenerative agriculture. Please share it with any young person in your life.

Hannah's African Dreamtime Video https://youtu.be/fQ4hm1N1mVw

Allan Savory's TED talk: inspired the Hannah's African Dreamtime Video http://www.ted.com/talks/allan savory how to green the world s deserts and reverse climate change

The Savory Institute http://savory.global/

Holistic Management: A Common Sense Revolution To Restore Our Environment by Allan Savory with Jody Butterfield published by Island Press, 3rd Edition, 2016.

Eating Our Way To A Healthy Planet with Allan Savory, Allan Savory 5 Jun 2013 https://www.youtube.com/watch?v=sNDCMUgNQtg

What Gets Me Up in the Morning, Joel Salatin TEDxUVA, 28 Feb. 2017

Pasture Cropping - Profitable Regenerative Agriculture, talk by Colin Seis, 18 Aug. 2013

Australian farmer in NSW. Fascinating account of the farm's evolution from 1886 to date.

https://www.youtube.com/watch?v=AAeiONBVBIM

The Adaptive Multi-Paddock Grazing Research Project http://www.soilcarboncowboys.com/research